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Abstract 

Throughout the history of chemistry, human efforts to design functional molecules have 

caused the discovery of numerous theories. Recently, artificial intelligence (AI)-enabled 

de novo molecular generators (DNMGs) have automated molecular design based on data-

driven or simulation-based property estimates, eliminating the need for chemical-theory-

based guidelines. However, it is unclear whether these DNMGs can discover theories that 

elucidate molecular design and chemistry. Herein, we demonstrate that an AI-enhanced 

DNMG can discover a chemical theory regarding the molecular structure. We attempted 

to elucidate the theory used by the DNMG to generate pure organic molecules (consisting 

of H, C, N, and O) for absorbing long-wavelength light by observing the functional group 

enrichment of molecules during the density-functional-theory-based generation. 

Although the DNMG initially targeted diketone and aniline derivatives, it later focused 

on quinone derivatives with a long absorption wavelength, as if it found a rule for 

chemical constitutions relevant to colour, previously known as Armstrong’s quinonoid 

theory, which claimed that the colour originates from 1,4-quinon derivatives. Additionally, 

the DNMG shows the potential of 1,2-quinone derivatives as chromophores, as 

demonstrated by our experimental validation by synthesising one mimetic generated 

molecule. This study confirms that DNMGs have the potential to discover and expand 
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chemical theories. 
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Introduction 

Since the beginning of modern chemistry, the relationship between colour and molecular 

constitution has been extensively investigated.1-3 These investigations had led to the 

discover of several kind of chemical compounds that were considered as origins of colour, 

among which aniline, azo, and quinone derivatives were representative compounds. 

These investigations have eventually guided several fundamental and industrial studies, 

such as those related to aromatic4, near infrared5, and dye molecules6. From the viewpoint 

of the molecular electronic structure theory based on quantum mechanics7-9, colour 

formation in molecules is mainly attributed to light absorption mediated by the transition 

among quantised electronic structures in molecules. Based on this approach, a technique 

for tuning the light absorption of a molecule by changing the gap between the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) is established. This technique has accelerated the molecular-level structural 

design of photoelectronic devices10,11 through facilitating charge generation in copy/print 

machines12, information storage in optical disks13, and development of photosensitiser 

materials for photodynamic therapy14. Recently, dye-sensitised photovoltaic cells that can 

harvest light with long wavelengths in the near-infrared (NIR) region—a key to 

sustainable life6,15. Simultaneously, several theories for designing NIR molecules have 
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been developed, focusing on narrowing the HOMO/LUMO gap results in a red shift in 

the absorption. Although there are several theories for designing molecular structures to 

tune the HOMO/LUMO gap, such as by increasing conjugate length11,16, through bond 

alternation17 and charge transfer18, their implementation causes an increase in the 

molecular size. The relationship between colour and molecular structure is not fully 

understood; for example, it is still challenging to explore the limitation of absorption 

wavelength due to moderate molecular size.10,19  

Recently, automated molecular design approaches based on theoretical simulations and 

data-driven approaches, combined with the use of de novo molecular generators 

(DNMGs) and molecular property estimators, have been intensively developed; these 

approaches have led to the successful production of molecules as good as or better than 

those imaged by human under limited circumstances.20-23 Traditionally, functional 

organic molecules have been extensively researched and developed using chemists’ 

knowledge (of chemical theories) industrially and academically.12-14, 24-26 These 

molecules are typically developed on the basis of scaffold molecules through 

experimentation in accordance with professional knowledge and experience. However, 

the synthesis of molecules through this strategy depends on professional knowledge, and 

their performance is dependent on that of scaffold molecules. To circumvent the 
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shortcomings of traditional molecular design, inverse molecular design is desired.27 

DNMGs, which are actively developed in informatics, facilitate inverse molecular design. 

Despite the limitation of the target property of the DNMGs developed in informatics, any 

molecular properties can become the target of the DNMGs.28-31 We applied our developed 

DNMG, ChemTS32, to develop several functional materials20,21,32, combining it with 

electronic structure simulation. However, the chemical insights into the DNMG beyond 

its application for the proposal of novel compounds have not been sufficiently obtained. 

In this study, we investigated whether ChemTS, a DNMG that combines reinforcement 

learning with deep learning, can discover chemical theories during the process of 

exploring chemical space to optimise a single chemical property. ChemTS employs the 

Monte Carlo tree search (MCTS) algorithm33, one of the reinforcement learning methods 

used in AlphaGo34, to efficiently search for a target property in chemical space. Through 

this tool, we generated more than 40,000 molecules with long absorption wavelengths, 

with the goal of elongating the absorption wavelength of light, as evaluated by density 

functional theory (DFT) calculations8,9. The history of modern chemistry starts from 

distilling molecular constitutions that characterise the molecular properties of available 

chemical compounds. In line with this, we examined the chemical knowledge learned by 

ChemTS through the analysis of the molecules generated by ChemTS via functional 
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group enrichment analysis. From this analysis, we showed that the DNMG learned the 

potential of quinonoids as a suitable chromophore absorbing long-wavelength light. In 

the past, quinonoids were empirically considered to induce colouration, according to 

Armstrong’s quinonoid theory.1,2 We can conclude that ChemTS rediscovered this theory 

from the world of pure organic molecules whose properties were described at the time-

dependent DFT (B3LYP/3-21G*) level. According to Armstrong’s quinonoid theory, 1,4-

quinon derivatives are responsible for colour formation. Additionally, ChemTS revealed 

the potential of 1,2-quinon derivatives. Even in modern chemistry, the 1,4-quinon moiety 

is regarded as one of the most important chromophores.35,36 However, 1,2-quinon 

derivatives have not received considerable attention for their application as 

chromophores.37 In this study, we report the discovery of chemical theories and their 

extension by artificial intelligence (AI) using deep learning and quantum chemical 

simulation, similar to how joseki was learned by AlphaGo.38 

 

Results and discussions 

Molecule generation 

ChemTS succeeded in generating 45,321 organic molecules, using 2048 cores over 120 

h with the goal of maximising the absorption wavelength of the generated molecules. 
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Figure 1(a) shows the evolution of the absorption wavelength as a function of the number 

of generated molecules. After generating 10,000 molecules, the average value of the 

absorption wavelength began to elongate and reached more than 600 nm. The maximum 

absorption wavelength was over 1,200 nm after generating 40,000 molecules. With an 

increase in the wavelength, the average HOMO/LUMO gap of the generated molecules 

monotonically decreases, as shown in Figure 1(b). Hence, there is an inversely 

proportional correlation between the absorption wavelength and the HOMO/LUMO gap. 

ChemTS also clearly uses this correlation and design molecules whose HOMO/LUMO 

gap is greater than 1.0 eV. However, the oscillator strength (OS) of the absorption does 

not grow and saturates around 0.05, which is not different from the average OS of the 

molecules included in the training data (Figure 1(c)). After 40,000 molecules are 

generated, the average value of OS is degraded, in contrast to the elongation of the 

absorption wavelength. This trend agrees with the intuition and statistical results that the 

organic molecules that absorb the long-wavelength light with high intensity are rare.39 

Hence, the relationship among electronic structures is reasonable. However, the 

relationship between the electronic structure and the molecular structure is not. 

The design principle of ChemTS for molecules that absorb long-wavelength light is not 

dependent on the expanding molecular size. As shown in Figure 1(d), the average 
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molecular weight gradually increased until 40,000 molecules were generated. However, 

from the generation of 40,000 molecules, the average molecular weight decreased. This 

tendency can be observed in the average conjugate length and the number of aromatic 

rings, as shown in Figure 1(e) and 1(f), respectively. Up to the generation of 40,000 

molecules, the absorption wavelength increases with increasing conjugation length and 

the number of aromatic rings (Figure 1(a)). This means that the traditional strategy of 

longer conjugation lengths leading to longer absorption wavelengths is working well16, 

and ChemTS supports the same strategy. However, a slight deviation has occurred since 

the generation of 40,000 molecules. This means that ChemTS takes another strategy to 

elongate the absorption wavelength. 
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Figure 1. Evolution of several molecular properties as a function of the increment of 

generated molecules. (a) absorption wavelength (nm) to S1 excited state, (b) 

HOMO/LUMO gap (eV) (c) absorption intensity (oscillator strength; OS), (d) molecular 

weight (g mol-1), (e) conjugate length, (f) number of aromatic rings. Average values of 

ZINC and generated molecules at each step are depicted by green broken line and blue 

solid line, respectively. The shaded area depicts the distribution profiles of generated 

molecules for each property. A thin shade area represents 5%–95% of the total 

distribution, while a dense shade area represents 15%–75% of the total distribution in 

each number of generated molecules. 
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Functional group enrichment analysis 

The percentages of several functional groups included in the whole generated molecules 

and the training data and PE values are listed in Table 1. Although ketone derivatives are 

predominantly generated (~50%), their PE value is not high (0.649). Similarly, the PE of 

traditional chromophore derivatives (azo, aniline) is not high. Hence, ChemTS does not 

regard the azo and aniline derivatives as suitable molecules for absorbing long-

wavelength light. In contrast, 1,4-quinone shows a high PE of > 30, despite the low 

percentage of generated molecules. Among the generated molecules, 1,2-quinone shows 

a relatively high odds ratio (Table 1). This result indicates that ChemTS predicted that 

1,2-quinone is an important functional group for long-wavelength absorption. Dyes with 

anthraquinone and 1,4-quinone structures are well known.35,36 However, although 1,2-

quinone is considered a cofactor41 and a building block in heterocyclic synthesis40, it has 

received little attention as a chromophore. Among the 1,2-quinone derivatives, the PE of 

1,2-naphthoquinone is the highest in Table 1, in contrast to 1,4-naphthoquinone, an 

isomeric derivative of 1,2-naphthoquinone. 

The evolution of PE for the functional groups shown in Figure 2 indicates that ChemTS 

focuses on the quinone derivatives as the chromophore for absorbing long-wavelength 
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light rather than ketones, diketones, and aniline. As shown in Figure 2(a)–2(c), ChemTS 

insisted on ketone, diketone, and aniline derivatives from the initial stage to 20,000 

molecule generation. From 20,000, however, PE gradually decreased. Instead, the PE of 

azo [Figure 2 (d)] and quinone [Figure 2(e)–2(h)] derivatives gradually increased. In 

particular, the PE of azo, 1,4-quinone, and 1,2-quinone derivatives suddenly increased 

after the generation of 40,000 molecules. This behaviour corresponds to the elongation of 

the absorption wavelength, as shown in Figure 1(a). The PE values of 1,4-quinone and 

1,2-quinone were considerably higher than that of azo. This indicates that ChemTS 

considers that 1,4-quinone is important for designing long-wavelength light absorption 

chromophores. Compounds with 1,4-quinone and anthraquinone structures have been 

known to serve as effective chromophores since B.C. After clarification of their molecular 

composition, these compounds are known as the origin of colour according to 

Armstrong’s quinone theory. These compounds were industrially produced in the mid-

1800s. We concluded that ChemTS also found this theory by itself with the flamework of 

DFT. Additionally, ChemTS has expanded Armstrong’s quinone theory and predicted the 

potential of 1,2-quinone derivatives after exploring the possibilities of ketone, diketone, 

and aniline derivatives during the computation. 
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Table 1. Functional group enrichment analysis for various functional groups and 

their percentage of generated molecules and training data. Odds ratio is given as PE. 

Functional group PE Generated mol. (%) Training data (%) 

Ketone 
0.649 49.7 76.6 

Diketone 

0.375 0.847 2.26 

Aniline 

0.537 16.2 30.1 

Azo 2.37 0.878 0.371 

1,2-quinone 

15.5 1.05 0.668 

 

1,4-quinone 

31.5 0.682 0.0217 

 

1,2-naphthoquinone 

78.5 0.0486 0.000619 

 

1,4-naphthoquinone 

0.938 0.0110 0.0118 
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Figure 2. Odds ratio evolution of several functional groups shown in Table 1 as a 

function of the number of generated molecules. Odds ratios are computed for every 

100 generated molecules. 

 

Experimental validation 

Among the 1,2-quinone derivatives, 1,2-naphthoquinone shows a high odds ratio of 78.5, 
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and its evolution behaviour [Figure 2(g)] is similar to that of 1,2-quinone, as shown in 

Figure 2(e). Hence, ChemTS learned the importance of 1,2-naphthoquinone compounds, 

despite the low percentage of training data. In total, 22 different 1,2-naphthoquinone 

structures were generated (see Figure S9 of the ESI). Among them, we focused on 1 in 

Figure 3(a), which showed the longest wavelength absorption of these molecules. 

Compound 1 has a structure consisting of an enol and a carbonyl skeleton attached to the 

1,2-naphthoquinone skeleton; time-dependent DFT (TD-DFT) calculations at the 

APFD/6-31G* level (computational level is changed for conformation) predicted the 

appearance of the absorption at approximately 949 nm [Figure 3(a)]. For the actual 

synthesis, we simplified 1 by trimming the functional groups that would not be as 

important for their function as chromophores [Figure 3(a)]. First, 2 was obtained by 

replacing the moiety highlighted by red in 1 with hydrogen. According to our preliminary 

computation, TD-DFT calculations estimated that the absorption wavelength of 2 was 

approximately 820 nm, which is shorter than that of 1 by 130 nm. Second, 3 was obtained 

by replacing the triazole group in 2 with the phenyl group that also has an 𝜋 conjugate 

structure because the triazole group is difficult to introduce. TD-DFT calculations 

estimated the absorption wavelength of 3 to be 757 nm. Although enol skeletons are 

thermodynamically unfavoured and isomerise to their keto forms, we tried synthesising 
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the enol but failed to isolate the desired compound. Accordingly, novel 4, in which the 

enol skeleton of 3 was replaced by a simple olefin, was found as a synthesisable model 

of the target chromophore (1). The absorption wavelength of 4 to its first excited state 

owing to HOMO–LUMO single electron transition is estimated to be 575 nm, which 

undergoes a considerable blue shift from that of 1; nonetheless, 4 is expected to be a 

chromophore. The nature of excitation to their first excited state is preserved (see Figure 

S10 of ESI) during the conversion of 1 to 4. 

The retrosynthetic analysis of 4 is shown in Figure 3(b). Compound 4 is prepared from 

2-naphthol 5 by oxidation, which is synthesised from naphthol and an olefin through a 

cross-coupling reaction. As shown in Figure 4(a), using a commercially available 

compound (6) as the starting material, the Suzuki–Miyaura coupling reaction with 

vinylboronic acid pinacol ester gave 5, which introduced the olefinic moiety into the 

naphthol skeleton.42 Compound 5 was oxidised by 2-idoxybenzoic acid (IBX) to form the 

target compound (4) as a dark-purple solid with 95% yield.43 Compound 4 was found to 

be stable in air and soluble in many common solvents such as CHCl3, CH2Cl2, 

tetrahydrofuran, acetonitrile, and acetone. The product was characterised by NMR 

spectroscopy and mass spectrometry (see Figure S1-S4 of ESI). The solution of 4 in 

acetonitrile (1 × 10-5 mol L-1) exhibited a red-purple colour; its UV-vis absorption 
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spectrum showed the first peak appearing at 550 nm, which agrees well with the predicted 

result at the APFD/6-31G* level [Figure 4(b)]. 

 

Figure 3. Target molecule inspired by ChemTS. (a) The generated molecule by 

ChemTS is 1. 2–4 molecules are synthesis models of 1. The absorption wavelength of 

each molecule is estimated at the APFD/6-31G* level. Surfaces of HOMO–LUMO 

orbitals of 4 are drawn at an isodensity value of 0.02. (b) Retro-synthesis of 4. 
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Figure 4. Synthetic route and UV-vis spectrum of molecule 4. (a) Synthesis process of 

4. (b) UV-vis absorption spectrum of the solution of acetonitrile 4 (1 × 10-5 mol L-1) and 

computational absorption spectrum of 4 obtained by TD-DFT calculation at the APFD/6-

31G* level. Photograph of a solution of 4 in acetonitrile (1 × 10-4 mol L-1) under ambient 

light is also shown. 

 

Discussion 

Many theories have been discovered in the history of chemistry through reproducibility 

experiments or deductive methods based on physics (physicochemistry). As shown by 

AlphaGo Zero38, AI can discover joseki (tactics) without human knowledge and can be 
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trained at the superhuman level. This can also be applied in chemistry. We demonstrated 

a novel approach to the theory discovery in chemistry by analysing molecules generated 

by a deep-learning-based DNMG, ChemTS, coupled with DFT calculations. We used 

ChemTS to generate pure organic molecules to maximise their absorption wavelength 

under the constraints that atoms are limited to H, C, N, and O (pure organic molecules). 

ChemTS succeeded in generating 45,321 molecules with absorption wavelengths of 1,200 

nm at the B3LYP/3-21G* level. Functional group enrichment of molecules during 

molecule generation exhibits the evolution of molecules from ketone and diketone 

compounds to quinone and azo compounds with increasing absorption wavelength. 

According to Armstrong’s quinonoid theory, 1,4-quinones such as anthraquinone were 

once considered as the origin of colour. ChemTS also focused on quinone derivatives by 

elongating the absorption wavelength, in accordance with Armstrong’s quinonoid theory. 

Since the beginning of the research on colour formation and chemical constitution in 1856 

by Perkin, the human being spent 32 years to achieve Armstrong’s quinonoid theory.1,2 

The deep-learning-based DNMG succeeded in simulating this evolution in just 120 h 

through the aid of quantum chemistry. In addition to 1,4-quinone derivatives, functional 

group enrichment analysis showed the potential of 1,2-naphthoquinone derivatives. 

Moreover, we successfully verified the potential of the 1,2-naphthoquinone derivatives 
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by selecting one 1,2-naphthoquinone derivative generated by ChemTS and modelling it 

for the synthesis of a new red-purple compound whose UV absorption spectrum had the 

first peak at approximately 550 nm. Therefore, we can conclude that ChemTS not only 

rediscovered Armstrong’s quinonoid theory but also simulated this theory in just 120 h 

and predicted that 1,2-naphthoquinone derivatives are suitable for long wavelength 

absorption molecules rather than 1,4-naphthoquinone derivatives, which known as 

representative chromophores. 

 

Method 

Molecule generator 

To elongate the absorption wavelength of pure organic molecules consisting of C, N, O, 

and H atoms, we used our developed DNMG, ChemTS, which employs the MCTS33 

algorithm and the recurrent neural network (RNN)44. The RNN model was trained with a 

set of 153,253 SMILES45 strings that only consisted of H, O, N, and C elements obtained 

from the ZINC database46. After translating SMILES to Cartesian coordinates using the 

RDKit package47, the absorption wavelength of each generated molecule was computed 

using TD-DFT at the B3LYP/3-21G* level, implemented in the Gaussian 16 package48. 

The lowest 10 states for each molecule were calculated after geometry optimisation. We 



 21 

used the following reward function, r(I), of a generated molecule, I, in the MTCS-based 

search process: 

𝑟(𝐼)＝𝐹(𝐼) ∗ 𝐺(𝐼),   (1) 

𝐹(𝐼)＝
tanh(0.003(𝜆𝐼−𝜃))

2
,  (2) 

𝐺(𝐼) =
− tanh(SA𝐼−4) +1

2
.  (3) 

The reward function consists of the product of a term relating to the absorption 

wavelength, 𝐹(𝐼) , and a term relating to synthesizability, 𝐺(𝐼) . 𝐹(𝐼)  takes values 

between 0 and 1; the longer the computational wavelength, 𝜆I, of molecule I, the larger 

the value. 𝜃 is the comparative criterion, which is set to 400 nm in this study. For a 

wavelength of 400 nm, the value of 𝐹(𝐼) is 0.5. 𝐺(𝐼) also takes values between 0 and 1 

and is calculated from the synthetic accessibility score, SAI, of molecule I, which predicts 

the difficulty of the synthesis. To accelerate the MCTS search, we adopted the virtual loss 

strategy to parallelise the computation. We used the following score (ui) for each child 

node i in the selection step: 

𝑢𝑖＝
𝑡𝑅𝑖

𝑣𝑖+𝑣𝑙𝑖
+ 𝐶𝑃𝑖

√𝑣𝑝+𝑣𝑙𝑝

𝑣𝑖+𝑣𝑙𝑖+1
.   (4) 

Here, 𝑡𝑅𝑖 is the total reward of node i, 𝑣𝑖 is the total number of visits to node 𝑖, and 

𝑣𝑙𝑖 is the total number of virtual visits of 𝑖 (virtual loss). 𝐶 is the search parameter, 

which controls the exploration–exploitation trade-off, and is set to 2 in this study. Without 
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depending on C, the discussion in the next section were almost valid (see the ESI for C = 

2 and 4). 𝑃𝑖 is the probability of node 𝑖, which is calculated using the RNN model. 𝑣𝑝 

and 𝑣𝑙𝑝 are the total number of visits and the total number of virtual visits of parent node 

𝑝 of child node 𝑖. See Ref. 1 for details of the virtual loss. 

To clarify the design principle of ChemTS, we performed functional group enrichment 

analysis using odds ratio (PE) for long-wavelength absorption. PE of a fraction of molecule, 

f, is calculated as 

PE(𝑓) =
P(𝑓)

Pt(𝑓)⁄ , (5) 

where P(f) is the fraction of molecules containing in the generated molecules, and Pt(f) is 

the fraction of molecule containing in the training set. Hence, the higher value of PE is 

the more important fraction for the DNMG. 

 

Data availability  

Chemical formulae of 1,2-naphthoquinone compounds generated by ChemTS, 

computational validation of the model molecules at a high level, and details of the 

chemical synthesis and characterisation of products are available in the Supplementary 

Information. The generated 45,321 molecules are listed in the 

ALW_ChemTS/generated_mols/result.csv file. The file contains following information: 
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generated molecules (SMILES), calculated absorption wavelengths and their oscillator 

strengths, and basic information such as molecular weight. 

 

Code availability 

Our implementation of parallel version of ChemTS for fluorescent molecules is available 

at https://github.com/tsudalab/ALW_ChemTS. 
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