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Abstract 

A spatiotemporal experimental route is reported for the antisolvent vapor diffusion crystal growth 

of metal halide perovskites.  A computational analysis combining automated image capture and 

diffusion modeling enables the determination of the critical concentrations required for nucleation 

and crystal growth from a single experiment.  Five different solvent systems and ten distinct 

organic ammonium iodide salts were investigated with lead iodide, from which nine previously 

unreported compounds were discovered.  Automated image capture of the mother liquor and 

antisolvent vials were used to determine changes in solution meniscus positions and detect 

nucleation event location.  Matching the observations to a numerical solution of Fick’s second law 

diffusion model enables the calculation of reactant, solvent and antisolvent concentrations at both 

the time and position of the first stable nucleation and crystal growth.  A machine learning model 



was trained on the resulting data reveals solvent- and amine-specific crystallization tendencies.  

Solvent systems that interact more weakly with dissolved lead species promote crystallization, 

while those with stronger interaction can prevent crystallization through increased solubilities.  

Organic amines that interact more strongly with inorganic components and exhibit greater rigidity 

are more likely to be incorporated into crystalline products.   



Introduction 

Metal halide perovskites, the subject of intense interest owing to their promise in solar cell 

applications, 1-5 photodetection, 6-9 and lasers,10-12 can be created in different forms using a range 

of synthetic techniques.  Single crystalline samples are grown using a range of solution phase 

methods,13-17 with antisolvent vapor-assisted crystallization (ASVC) being used commonly 

because of the high quality samples that are produced and the lack of temperature management 

challenges present in inverse temperature crystallization methods.18-21  In AVSC, the slow 

diffusion of antisolvent (AS) into the perovskite precursor solution reduces the solubility of the 

target compounds and induces precipitation. A range of experimental parameters affect an ASVC 

experiment, including the nature of the solvent and AS, organic cation structure and relative 

reactant concentrations. The conditions required for nucleation and crystal growth directly affect 

the properties of the resulting crystalline products.22  As such, the elucidation of these critical 

reaction parameters is paramount in understanding this chemistry.  However, the critical factors 

leading to nucleation remain unresolved, despite the number of studies investigating ASVC 

perovskite crystallization. 

A central challenge with ASVC perovskite crystallization lies in the large experimental 

space, owing to the interplay between reactant, solvent and antisolvent concentrations each of 

which vary during the course of an experiment.  High throughput techniques have been applied to 

explore these possible combinations by setting up many possible reactions. Kirman et al. described 

the use of a protein dropsetter to perform antisolvent vapor diffusion experiments to explore ASVC 

growth of phenethylammonium lead bromide and 3-picolylammonium lead chloride perovskites.23 

Although their system could image reaction compositions over time, imaging the reaction system 

from above only allows for observing whether a given mother liquor and antisolvent composition 



gives rise to crystal formation.  Similarly, Li et al. describe a liquid handling robot based system 

for performing high-throughput ASVC experiments to explore mother liquor and antisolvent 

composition variables; likewise, only the final composition is reported,24 obscuring the critical 

parameter required to induce crystallization.  In contrast, here we report a unique spatiotemporal 

approach that replaces a parallel set of experiments in space (i.e., conducted in separate spatial 

vials and with separate materials) with a smaller set of experiments conducted over time.  Our 

approach enables the determination of both time and position of nucleation and crystal growth, by 

imaging a single reaction orthogonal to the direction of diffusion propagation.  Fitting these 

observations to a numerical antisolvent diffusion model provides the critical concentrations of each 

reactant required for crystal growth (Figure 1).  In this way, observing the progress of a single 

experiment in time can be used to scan over a wide range of reactant, solvent and antisolvent 

concentrations.  A set of individual reactions was conducted using PbI2, ten different organic 

ammonium iodide salts and five solvent systems in order to better understand the generalized 

requirements for such syntheses.  The spatiotemporal reaction design allows for the elucidation of 

these critical reaction parameters from a single experiment in each reagent combination.  The 

critical concentration parameters along with the computed chemical descriptors of the reaction 

components were pooled into a rich dataset and used for machine learning analysis in the form of 

an explanatory decision tree model to uncover complex trends observed in the data. 



 
Figure 1.  Spatiotemporal reaction design, including (a) 
reaction block diagram, (b) reaction image capture, (c) mother 
liquor (ML) and antisolvent (AS) meniscus positions, and 
nucleation detection, and (d) calculated solvent and antisolvent 
concentrations as a function of time. 

 

Experimental  

Materials.  All reagents were purchased from commercial sources and used without further 

purification.  Lead (II) iodide (99%), formic acid (FA, ≥95%), γ-butyrolactone (GBL, ≥99%), 

dimethyl sulfoxide (DMSO, (≥99.9%), dimethylformamide (DMF, 99.8%), and dichloromethane 

(DCM, ≥99.8%) were purchased from Sigma-Aldrich.  Ten organic ammonium iodide salts were 

purchased from GreatCell Solar: methylammonium iodide (ma, 99.99%), ethylammonium iodide 

(ea, >99.8%), 1,3-dimethylammonium iodide (1,3-dap, >99.8%), acetamidinium iodide (acet, 



>99%), N,N-dimethylammonium iodide (dmed, >99.8%), N,N-diethyl-1,3-diaminopropane iodide 

(dedap, >99.8 %), cyclohexylmethylammonium iodide (chma, >99.8%), 1-(2-

amionethyl)pyrrolidinium iodide (aep, >99.8%), 1,4-benzene diammonium iodide (dabz, >99.8%) 

and phenethylammonium iodide (phenea, >99%). 

Spatiotemporal reaction design. All reactions were conducted using an antisolvent vapor 

diffusion crystallization technique.  Reagent solutions (180 µl) and antisolvent (800 µl, DCM) 

were placed in separate 1 mL cylindrical glass vials.  These clear vials were placed in an aluminum 

block and sealed using glass panes to prevent escape of vapors, shown in Figure 1a.  The reactions 

were allowed to proceed for 24 h at room temperature.  Optical images of the reaction blocks were 

captured every 60 seconds for the duration of each crystallization experiment using a microscope 

camera.  At the end of the reaction, the contents of the vials were scored using the four point scale, 

no solids, fine powder, small  or large crystallites as described in more detail in the Supporting 

Information, consistent with previous work.25  After reaction, the reactor block was opened in air 

and the solid products were recovered by vacuum filtration.  Powder X-ray diffraction data were 

collected on all solid reaction products.  Ten different organic ammonium iodide salts, shown in 

Figure 2, and five solvent systems were selected for study.  These solvent systems included GBL, 

GBL:DMF, DMF, DMF:DMSO and DMSO. Reaction outcomes are shown in Figure 3.  Nine new 

compounds (1 – 9) were observed, in addition to seven previously reported phases (A – G), as 

listed in Table 1.   



 
 

Figure 2.  The ten organic amines used in this study. 
 

 

 
 

Figure 3.  Reaction outcomes as a function of organic amine 
and solvent system. Alphanumeric labels refer to structures 
reported in the text. 

 

Targeted bench scale crystal growth experiments were performed to generate single 

crystals for structural characterization, using a reactor design shown in Figure S25. 

PbI2:ammonium iodide stock solutions in the respective solvent (GBL, GBL:DMF, DMF, 

DMF:DMSO or DMSO) were prepared at 75 °C and stirred at 450 rpm for 1 hour. Aliquots (200 



μL) of mother liquor solutions were transferred to 1 mL clear shell vials to which 20 μl FAH were 

added. These solutions were mixed on a heater-shaker for 20 minutes. After cooling to room 

temperature, the reaction vials were placed inside 20 mL scintillation vials containing 

approximately 1.5 mL of DCM and sealed with a PTFE-lined solid-top storage cap. Reactions 

were allowed to run for at least 24 h. The calculated powder diffraction patterns were compared to 

the experimental diffraction data from the spatiotemporal experiments to ensure that bench scale 

products were identical to the initially identified products.  Specific reaction details for the 

mixtures that gave rise to compounds 1 – 9 are available in the Supporting Information. 

Image processing.  A Python interface was used for the manual annotation of key parts of the 

reaction images.  Side-on views of the mother liquor and antisolvent reaction vials were collected. 

A ruler was attached to the reaction block to calibrate image pixels to physical distance 

measurements.  Users were shown evenly spaced images across each reaction’s time lapse image 

set.  Meniscus positions for both the mother liquor and antisolvent were user-annotated.  

Additionally, the script was used to identify when and where nucleation first occurred by showing 

the time lapse images to the user following a binary search pattern.  The difference between the 

meniscus position and the bottom of the test-tube determines the height of the solution at each 

time. These solution height measurements were used to calculate the diffusion rate of the anti-

solvent.  The corners of each crystal were denoted manually, allowing for the calculation of the 

mean crystal pixel position at the point to crystal formation.  This Python code  via GitHub, as 

detailed in the Supporting Information section below.   

Powder X-ray diffraction.  Powder X-ray diffraction measurements were performed on a Rigaku 

MiniFlex X-ray diffractometer using CuKα radiation (1.5418 Å).  Powder X-ray diffraction scans 



were collected on all reaction products, these plots are provided in the Supporting Information (SI-

4-24).   

Single crystal X-ray diffraction.  Data was collected using a Bruker Quest CMOS diffractometer 

with a fixed chi angle, a sealed tube fine focus X-ray tube (Mo Kα radiation, λ = 0.71073 Å), a 

single crystal curved graphite incident beam monochromator, a Photon II area detector and an 

Oxford Cryosystems low temperature device. A single crystal was mounted on a Mitegen 

micromesh mount using a trace of Fomblin oil and cooled in situ to 150(2) K for data collection. 

Frames were collected, reflections were indexed and processed, and the files scaled and corrected 

for absorption using APEX3, SAINT and SADABS or TWINABS. For compounds 1, 2 and 4 – 9, 

the heavy atom positions were determined using SIR92. All other non-hydrogen sites were located 

from Fourier difference maps. All non-hydrogen sites were refined using anisotropic thermal 

parameters using full matrix least squares procedures on F2
o with I > 3σ (I). Hydrogen atoms were 

placed in geometrically idealized positions. Calculations for compounds 1, 2 and 4 – 9 were 

performed using Crystals v.14.23c.  The structure of compound 3 was found to be non-

merohedrally twinned by a 180 ° rotation around the real a-axis. The structure was solved by direct 

methods using ShelXS from only the non-overlapping reflections of component 1. The structure 

was refined using Shelxl with the hklf 5 routine with all reflections of component 1 (including the 

overlapping ones), resulting in a BASF value of 0.5490(8). Additional details are given in the cif 

file for compound 3. Relevant crystallographic data for compounds 1 – 9 are listed in Table 2. 

Antisolvent diffusion modeling. An antisolvent diffusion model was created to elucidate the 

critical concentrations for nucleation and crystallization.  The concentration profile of the mother 

liquor was calculated using a finite volume approximation of Fick’s second law to simulate one-

dimensional liquid diffusion.26 The differential equation was integrated numerically by 



discretizing the experimental solution into bins, where each bin has a defined height and starting 

concentration for each species.  See Figure 4a.  Diffusion from bin to bin was calculated based on 

the distances from the centers of each bin. The height of each bin is directly related to the 

concentration of the species occupying it. As the species diffuse into and out of each bin, the height 

of the bin changes and subsequently the distance for diffusion subsequently changes. Fixed 

boundaries are not used because the total volume of the solution increases during the course of the 

experiment.  The top bin has an ingress of antisolvent from the gaseous phase, and evaporation of 

the antisolvent species from the solution. These two parameters vary between experiments and are 

optimized to fit the experimental height as a function of time. With a satisfactory fit, the model 

reasonably reflects the experimental data.   

 
 

Figure 4.  Diffusion modelling, including (a) a diagram 
indicating how the influx of antisolvent molecules affect bin 
heights, and (b) model height fits to observed meniscus height 
and (c) computed concentration profile at crystallization in the 
PbI2 / aep / DMF:DMSO system. 

 



The diffusion simulation requires the experimentally determined diffusion coefficient for 

the antisolvent through each solution.  This is obtained using a laser diffraction experiment, which 

measures the diffusion rate for each experimental condition by observing changes in the refractive 

index of the mixture;27, 28 see Supporting Information. However, these experiments rely on the 

image detection of height for a diffracted beam. This method is subject to measurement error, and 

the diffusion coefficients were found to deviate by an order of magnitude between neat solvent 

systems and mixtures of the same chemicals. To account for this uncertainty in the model, the 

possible error in laser diffraction measurement was propagated through the calculation of the 

diffusion coefficient. This results in three values, the diffusion coefficient with the lowest 

uncertainty, and its associated upper bound and lower bound. Measured refractive indices for each 

solvent system, along with calculated diffusion coefficient parameters are listed in Table 3. 

The rates of evaporation and condensation of antisolvent are free parameters. For each 

experiment, they are optimized to fit the model height growth to the experimental data. See Figure 

4b.  The best fitting evaporation and condensation rates are calculated using the Nelder-Mead 

algorithm, 29 with the sum square difference between the model and experimental height growth 

as the objective function. These optimizations are run three times for each experiment, to determine 

the optimal parameters under the expected diffusion coefficient, the lower bound, and the upper 

bound. See Figure 4b.  

After determining the condensation and evaporation rates, the model is fully constrained, 

allowing us to compute the solute and antisolvent compositions at each height and time. However, 

as the model assumes a constant condensation rate of antisolvent into the solution, the simulation 

must be stopped before the antisolvent supply runs out. As the antisolvent build-up rate differs for 

every experiment and crystallization occurs at various times, a cutoff was implemented based upon 



solution buildup rather than elapsed time. The cutoff in solution height was set to 0.72 cm. This 

stopped all models before the antisolvent supply ran out. After determining this cutoff, the model 

can then be used to calculate the concentration profile of the solution at the time and location of 

crystallization. The model returns the expected concentration of each species, as well the upper 

and lower bound. See Figure 4c.  A more detailed description of the diffusion modelling work is 

present in the Supporting Information, and the MATLAB R2020b source code used to perform the 

simulations is available via github, as detailed in the Supporting Information section. 

Software.  ESCALATE,30 a custom-developed software pipeline, was used to specify 

experimental and stock solution preparation parameters, provide instructions for human operators, 

and to capture experiment results and observations. The algorithms for data visualization and 

analysis were written in Python 3.6 in Jupyter notebooks using the following libraries: Numpy 

1.14.6, Pandas 0.22.0, Scipy 1.0.1, Matplotlib 3.1.0 and Scikit-learn 0.19.2.   

Machine learning. Weka was used to generate a J48 decision tree, which is a Java implementation 

of the C4.5 decision tree algorithm. 31-33 The algorithm is provided with the full set of descriptors, 

(provided in the Electronic Supporting Information), and selects the descriptors that produce 

the ‘best’ split of the data using multi way, predictive model split and Entropy criteria.34 An 

unpruned tree with a confidence factor of 0.25 was used and the minimum number of samples per 

leaf node was set to 2. The set number of folds for reduced error pruning was 3 and a seed value 

of 1 was used. A total of 56 features were used to describe the ASVC perovskite synthesis 

reactions. Those features include 44 organoammonium descriptors, 3 solvent details and 9 

descriptors derived from diffusion model. Input datasets and Weka input files used to perform 

these calculations are available via GitHub, as detailed in the Supporting Information section 

below. 



 

Results and Discussion  

The versatility of ASVD crystallization lies in the technique’s ability to slowly alter the mother 

liquor properties until nucleation and crystallization occurs.  This dynamic process, in which the 

antisolvent slowly diffuses into the mother liquor, allows for one to scan a range of crystallization 

conditions with properties between the pure solvent and (nearly) pure antisolvent.  As the 

antisolvent generally diffuses into the mother liquor slowly, solution properties change gradually, 

promoting large high-quality single crystals.  However, if one wishes to understand the role of any 

specific reactant in such a crystallization, or wishes to probe the trends across reactant sets, 

observing whether or not a reaction results in crystallization is insufficient.  Instead, the critical 

concentrations that allow for nucleation and crystallization of each species must be elucidated.  

Unfortunately, the apparent simplicity of the AVSD technique hides the true complexity at play. 

The synthetic approached described here is intentionally designed to enable the determination 

of the critical reactant concentrations for each system in a single experiment.  The diffusion of 

antisolvent through the mother liquor creates an antisolvent (and solvent) concentration gradient, 

and increases the total volume of the solution.  As such, a wide range of reactant, solvent and 

antisolvent concentrations are created as functions of both time and position.  By capturing time-

dependent images of each reaction from the side of each vial (i.e., orthogonal to the direction of 

mass transport), we are able to determine both when and where nucleation and crystal growth 

occurs.  A numerical antisolvent diffusion model can convert the observed nucleation time and 

position to the critical species concentrations.  See Figure 1.  The power of this approach lies in 



the ability to determine the conditions required for crystallization in a single experiment. Parallel 

experiments in each system are not required, resulting in a much more efficient process.   

A custom reactor block (Figure 1a) was used to acquire images of the reaction vials every 60 

s over the course of 24 h.  Time stamped images were collected and analyzed with a custom script 

to determine meniscus positions, as well as the times and positions of nucleation and crystal 

growth.  Ten different organic amines, shown in Figure 2, and five different solvent systems were 

explored.  Of the 50 potential experiments, 46 were conducted, and 4 were impossible because of 

insufficient Pb2+ solubility.  Specifically, a threshold [Pb2+] value (0.25 M) was used to eliminate 

reactions for which the lead cation solubilities were too low.25  The organic ammonium iodide 

salts were selected to provide diversity along multiple axes, including charge, structure (linear, 

branched, cyclic) and ammonium site connectivity (1º, 2º, 3º).  Five solvent systems (GBL, 

GBL:DMF, DMF, DMF:DMSO and DMSO) were used with a single antisolvent (DCM). Note 

that formic acid was added to each reaction vial.   

The outcomes of the 46 reactions are summarized in Figure 3.  Green and blue boxes represent 

reactions that resulted in metal halide perovskites, while no solid products were observed in 

reactions denoted by red boxes.  The white boxes represent reactions for which the threshold [Pb2+] 

could not be achieved.  These reactions were not performed.  Letter and number designations 

correspond to the to specific reaction products, as listed in Table 1.  Six previously reported metal 

halide perovskites and one ammonium iodide salt were observed, as marked by letter designations.  

Nine previously unreported metal halide perovskite compounds were also discovered (compounds 

1 – 9).   

Compounds 1 – 9 are constructed from similar building units.  Each compound contains Pb2+, 

octahedrally coordinated by I- anions and protonated organic amines.  The Pb – I bonds in these 



compounds vary in length.  Pb – Iterminal bonds range between 3.0363(6) and 3.2041(7) Å.  Pb – 

Ibridging interactions are generally longer, with distances between 3.1220(3) and 3.4907(6) Å.  These 

[PbI6] coordination polyhedra remain isolated in one compound ([dedapH]2[PbI6] (4)), connect 

into larger molecular anions that each contain multiple [PbI6] octahedra ([dmedH2]3[Pb2I9][CO2H] 

(1), [dmedH2]3[Pb3I12]·4DMF (2), [aepH2]4[Pb3I12][CO2H]2·2DMSO (9)), one-dimensional chain 

structures ([dmedH2]2[Pb3I10]·2DMSO (3), [dabzH2][PbI3]2·2GBL·2DMF (5), 

[dabzH2][PbI3]2·4DMF (6), [dabzH2][PbI3]2·4DMSO (7)) and a two-dimensional layer topology 

([aepH2]2[Pb3I10]·2DMF (8)).  Polyhedral representations of the lead halide anions are shown in 

Figure 6.   

 
Figure 6.  Metal halide perovskite formation decision tree.  Red, blue and green nodes represent 
antisolvent, solvent and ammonium cation descriptors, respectively.  Each bin contains a specific outcome 
value and number of reactions correctly and incorrectly assigned to that bin. 

 

Different anion connectivities are observed within the dimensionality classes.  Three distinct 

molecular anions are observed in the compounds reported here.  These include [PbI6]4- isolated 

octahedra, [Pb2I6/1I3/2]5- dimers and [Pb3I6/1I6/2]6- trimers.  See Figure 5.  The [PbI6] octahedra in 



the [Pb2I6/1I3/2]5- dimers and [Pb3I6/1I6/2]6- trimers are connected to one another through shared 

faces.  Two distinct one-dimensional chains are observed, [PbI6/2]n
2n- chains of face shared 

octahedra and [Pb3I2/1I4/2I6/2]n
4n- chains.  These [Pb3I2/1I4/2I6/2]n

4n- chains are essentially constructed 

from edge shared [Pb2I6/1I3/2]5- dimers.  See Figure 5.  The inorganic structures in compounds 1 – 

9 were analyzed using Bond Valence Sums 35, 36.  Calculated ΣSi values for the Pb2+ cations range 

between 1.75 and 1.88, corresponding well with the formal charge on these metal centers.  Full 

Bond Valence Sums tables for compounds 1 – 9 are available in the Supporting Information (Table 

S3 - S11).  

 
Figure 5.  Polyhedral representations of the inorganic 
structures found in the compounds 1 – 9.  Green octahedra and 
purple spheres represent [PbI6] and iodine atoms, respectively. 

 

The inorganic lead halide anions are incorporated into extended structures that include both 

protonated organic amines, and possibly formate anions and/or occluded solvent molecules.  Of 

the nine compounds reported here, only one contains just lead iodide anions and the respective 

organic ammonium cation, [dedapH]2[PbI6] (4).  Formate anions, introduced into the reactions as 



formic acid, were incorporated into two compounds, [dmedH2]3[Pb2I9][CO2H] (1) and 

[aepH2]4[Pb3I12][CO2H]2·2DMSO (9).  The remaining compounds all contain DMF 

([dmedH2]3[Pb3I12]·4DMF (2), [dabzH2][PbI3]2·4DMF (6), [aepH2]2[Pb3I10]·2DMF (8)), DMSO 

([dmedH2]2[Pb3I10]·2DMSO (3), [dabzH2][PbI3]2·4DMSO (7) or both two different solvents 

([dabzH2][PbI3]2·2GBL·2DMF (5)). The protonated organic amines act as hydrogen-bond donors, 

creating extensive hydrogen-bonding networks with the lead halide component and with GBL, 

DMF, DMSO and/or formate anions.  Full three-dimensional packing graphics for compounds 1 – 

9 are available in the Supporting Information (Figure S26 - S34).  

Understanding the formation dynamics in the system described above requires more than just 

observational information regarding the presence or absence of crystalline products.  The dynamic 

nature of ASVC can obscure the critical threshold parameters required to induce crystallization.  

As such, a one-dimensional diffusion model was used to calculate the concentrations of reactants, 

solvent and antisolvent as a function of both time and position in the reaction vial, as summarized 

in the Methods section and explained in greater detail in the Supporting Information.  The Laser 

refraction was used to determine the diffusion coefficient of DCM in each solvent system.27, 28 The 

detailed experimentation set up for the laser refraction experiment is given in the Supporting 

Information.  Calculated diffusion data are presented in Table 3.  The rates of antisolvent 

evaporation and condensation were calculated using experimental meniscus height data. The rates 

of condensation and evaporation vary between reactions and are optimized for each experiment to 

match the experimental data.  A consistent endpoint for the experimental modeling was also 

implemented based upon the addition of a fixed amount of antisolvent to the mother liquor.  This 

cutoff value must occur before all the antisolvent evaporates from its respective vial, as the 

diffusion model assumes a non-zero condensation rate of antisolvent into the mother liquor. If the 



modeling continues past the point of antisolvent reservoir depletion, the assumption of 

condensation no longer holds. The combination of experimentally determined diffusion rates in 

conjunction with modeled evaporation and condensation rates allows for the calculation of 

reactant, solvent and antisolvent concentrations as a function of time and position, which in turn 

enable the elucidation of the critical concentration of all species that are required for 

crystallization.  A full table of these critical concentrations is available in the Supporting 

Information (Table S14). 

An interpretable decision-tree model was used to elucidate the structure–property relationships 

governing crystal formation.  The set of input descriptors used in this work are selected to capture 

‘amine’, ‘solvent’, and ‘concentration’ dependent properties. Amine descriptors relevant to 

crystallization processes (e.g., molecular surface area, hydrogen bond donor/acceptor atom count 

in molecule, rotatable bond count etc.) were computed using ChemAxon.37  Concentration 

descriptors were calculated using the diffusion model. Features describing reaction conditions, 

inorganic and acid descriptors were excluded, as they are relatively constant across the reactions.  

As the goal is explanatory insight using a relatively small dataset, we use an unpruned decision 

tree. 38  We have previously used a similar approach to get insight into factors governing structural 

adaptability of amine-templated metal oxides. 39, 40  Inspection of the decision tree shown in Figure 

6 reveals the importance of two main aspects of crystallization in metal halide perovskites.  First, 

nodes corresponding to solvent choice indicate its importance to reaction outcome, as shown in 

Figure 3.  Second, amine property nodes are observed in the decision tree.  Specifically, charge of 

the organic ammonium cation, rotatable bond count, number of C atoms and aliphatic atom count 

nodes indicate the importance of amine structure on reaction outcome. 



Five solvent systems are used in this study, ranging from GBL to DMF and finally to 

DMSO.  The decision tree shown in Figure 6 indicates that GBL promotes the formation of a metal 

halide perovskite while DMSO-containing reactions are much more likely to result in no solid 

product.  As such, GBL is a good solvent for crystallization in that the critical concentrations 

needed for nucleation and crystallization can be achieved through the incorporation of the 

antisolvent DCM.  This suggests weaker GBL – reactant interactions, which contribute to lower 

solubilities and lower critical concentrations.  DMSO, in contrast, is a poor crystallization solvent 

as the critical reactant concentrations are too high and cannot generally be realized during the 

experiments described here.  This behavior mirrors critical antisolvent concentrations required to 

induce crystallization, shown in Figure 7.  Reactions from which no metal halide perovskites were 

formed are not included in this plot. 

 
Figure 7.  Critical antisolvent concentration versus solvent 
system.  Circle area represents critical solvent concentration at 
nucleation. 

 

The chemical basis for the solvent-dependent concentration trends are consistent with 

previous work correlating lead halide-solvent coordination strength to properties such as the Mayer 

Bond order 41 and Guttman donor index.42  GBL interacts more weakly with the dissolved 



reactants, owing to a lower polar surface area (26.3 vs 38.8 and 36.3 for DMF and DMSO, 

respectively).  DMF in mother liquor can form PbI2-based Lewis adducts through dative Pb-O 

bonds, where the solvent acts as a Lewis base and Pb2+ acts as a Lewis acid.41-44 It has been 

previously reported that DMF and DMSO strongly coordinate with Pb2+ in the mother liquor and 

form coordination complexes, while GBL leads to formation of clusters in the solution.45 As the 

relative strength of solvent – Pb2+ interactions increase from GBL to DMF and DMF:DMSO, so 

do the relative reactant solubilities and critical concentrations required to induce crystallization.  

The average critical antisolvent concentrations, as function of solvent system, shift from 8.39 to 

11.76 M as one moves from GBL to DMF:DMSO.   

Amine structure (indicated by green ellipses) plays an important role in the decision tree 

shown in Figure 6. Two main factors can be observed in the decision tree.  First, increasing the 

strength of interaction between the organic ammonium cations and inorganic species (amine 

charge, SASA of δ+ atoms) promotes the formation of the target compounds.  Higher cation 

charges and greater solvent accessible surface areas of atoms with partial positive charges both 

indicate stronger organic – inorganic interaction strengths, which are known to be critical in the 

formation of organic inorganic hybrid materials.41  Second, reactions involving more rigid organic 

cations are more likely to successfully crystallize.  These descriptors (rotatable bound counts, 

number of carbon atoms, aliphatic atom count) align with the well-known relationship between 

component rigidity (or floppiness) and crystallization.45, 46  More rigid components are much more 

likely to crystallize in well-ordered solids while components with greater conformational freedom 

are the opposite. 

In four of the reactions (1,3-dap in DMF and DMF:DMSO, aep in DMSO, dedap in DMF) 

where crystal formation did not occur, liquid−liquid phase separation (LLPS) or oiling-out 47, 48 



has been observed (shown in Figure S3.a). The liquid-liquid separation results in an AS-rich phase 

and an AS-deficient phase.  The organic ammonium cations preferentially segregate to the AS-

deficient phase, hindering crystallization. This effect has been reported previously in both the 

halide perovskite 49 and in organic pharmaceutical literature l.50 In our work, initial nucleation was 

observed to occur before liquid-liquid separation in three reactions (dmed in GBL:DMF, aep in 

GBL:DMF and dedap in GBL), owing to the presence of weak GBL-reactant interactions.  Images 

are shown in Figure S3b. 

Conclusions 

A spatiotemporal reactor design, coupled with an antisolvent diffusion model, was used to 

understand metal halide perovskite crystallization through analysis of critical species 

concentrations.  The combination of these critical reaction parameters and the use of decision trees 

resulted in the elucidation of both solvent system dependencies and effects associated with amine 

structure.  Solvent systems that interact more weakly with dissolved lead species (GBL-containing 

systems) promote nucleation and crystallization, while amines that interact more strongly with 

inorganic components and exhibit greater rigidity are more likely to be incorporated into 

crystalline products.  More generally, this work demonstrates that combining careful experimental 

design with computational data analysis can increase the insight gained from each experiment: a 

smaller set of experiments conducted over time can be more informative than a much larger set of 

parallel experiments varied in space. 

 

Supporting Information 

CCDC 2121660-2121668 contain the supplementary crystallographic data for this paper.  These data can 

be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/structures. Solubility measurement procedure and data; detailed reaction, image 

http://www.ccdc.cam.ac.uk/structures


analysis description, images of all reaction outcomes, time and position data for first observed 

nucleation and crystal growth, LLPS images; powder diffraction data; single crystal synthesis 

details, crystal packing, layer images,  and bond valence table for compounds 1 - 9; detailed 

description of refractive index measurement and diffusion model calculation, calculated critical 

concentration values for all reactions along with the chemical descriptors and their descriptions 

are given in the Supporting Information file.  A Github repository 

(https://github.com/darkreactions/rapid2) contains the following files and code: 

reaction block CAD file, image analysis process and Python code for: diffusion heights and crystal 

growth, laser diffraction for diffusion coefficient measurement and analysis and diffusion model 

scripts. 

Author Contributions 

MA Najeeb, J Schrier and AJ Norquist conceived the project. MA Najeeb, M Zeile and Z Li 

performed synthesis, characterization and data analysis of reaction products.  R Keesey performed 

the diffusion modelling. N Leiby and V Shekar participated in software development.  M Zeller 

collected and refined single crystal X-ray diffraction data. EM Chan, J Schrier and AJ Norquist 

supervised the project. All authors contributed to the preparation of the manuscript. 

Acknowledgements 

This study is based upon work supported by the Defense Advanced Research Projects Agency 

(DARPA) under Contract No. HR001118C0036. Any opinions, findings and conclusions or 

recommendations expressed in this material are those of the authors and do not necessarily reflect 

the views of DARPA.  MA acknowledges the Solmssen's for their support. Work at the Molecular 

Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. 

https://github.com/darkreactions/rapid2


Department of Energy under Contract No. DE-AC02-05CH11231.  JS acknowledges the Henry 

Dreyfus Teacher-Scholar Award (TH-14-010) and resources of the MERCURY consortium 

(http://mercuryconsortium.org/) under NSF grants CNS-2018427. MZ acknowledges the National 

Science Foundation, Major Research Instrumentation Program under Grant No. CHE 1625543, for 

funding for the single crystal X-ray diffractometer. 

 



Figure Captions. 

Figure 1.  Spatiotemporal reaction design, including (a) reaction block diagram, (b) reaction image 
capture, (c) mother liquor (ML) and anti-solvent (AS) meniscus positions, and nucleation detection, and 
(d) calculated solvent and antisolvent concentrations as a function of time. 

Figure 2.  The ten organic amines used in this study. 

Figure 3.  Reaction outcomes as a function of organic amine and solvent system. 

Figure 4.  Diffusion modelling, including (a) a diagram indicating how the influx of antisolvent 
molecules affect bin heights, and (b) model height fits and (c) concentration profile at crystallization in 
the PbI2 / aep / DMF:DMSO system. 

Figure 5.  Polyhedral representations of the inorganic structures found in the compounds 1 – 9.  Green 
octahedra and purple spheres represent [PbI6] and iodine atoms, respectively. 

Figure 6.  Metal halide perovskite formation decision tree.  Red, blue and green nodes represent 
antisolvent, solvent and ammonium cation descriptors, respectively.  Each bin contains a specific outcome 
value and number of reactions correctly and incorrectly assigned to that bin.   

Figure 7.  Critical antisolvent concentration vs solvent system plot.  Circle size represents critical solvent 
concentration at nucleation. 

 

 

 

 



Table 1.  Reaction products. 

Compound Formula Inorganic 
dimensionality 

Reference 

A [ma][PbI3] 3D 51 
B [ma][Pb3I8]·2DMF 1D 52 
C [ea][PbI3] 1D 53 
D [dapH2][I]2 - 54 
E [acetH][PbI3] 1D 25 
F [chmaH]2[PbI4] 2D 25 
G [pheneaH]2[PbI4] 2D 55 
1 [dmedH2]3[Pb2I9][CO2H] 0D this work 
2 [dmedH2]3[Pb3I12]·4DMF 0D this work 
3 [dmedH2]2[Pb3I10]·2DMSO 1D this work 
4 [dedapH]2[PbI6] 0D this work 
5 [dabzH2][PbI3]2·2GBL·2DMF 1D this work 
6 [dabzH2][PbI3]2·4DMF 1D this work 
7 [dabzH2][PbI3]2·4DMSO 1D this work 
8 [aepH2]2[Pb3I10]·2DMF 2D this work 
9 [aepH2]4[Pb3I12][CO2H]2·2DMSO 0D this work 

  



Table 2.  Crystallographic data for compounds 1 – 9. 

Compound [C4H14N2]3[Pb2I9] 
[CO2H] (1) 

[C4H14N2]3[Pb3I12]· 
4C3H7NO (2) 

[C4H14N2]2[Pb3I10]· 
2C2H6SO (3) 

[C7H20N2]2 
[PbI6] (4) 

[C6H10N2][PbI3]2· 
2C4H6O2·2C3H7NO 
(5) 

Formula C13H43I9N6O2Pb2 C24 H70I12N10O4Pb3 C12H40I10N4O2Pb3S2 C14H40I6N4Pb1 C20H36I6N4O6Pb2 
fw 1872.06 2707.35 2227.17 1233.12 1604.36 
Space-Group  P1�   (No. 2) P1� (No. 2) P21/n (No. 14) P21/n (No. 14) P1� (No. 2) 
a (Å) 9.34390 (5) 8.9706 (4) 10.4168 (7) 11.39480 (7) 8.0944 (4) 
b (Å) 9.85820 (6) 18.4476 (8) 11.7679 (6) 11.50440 (7) 10.6456 (6) 
c (Å) 22.71670 (13) 19.9034 (9) 18.5962 (11) 11.92840 (7) 12.8019 (7) 
α (deg) 93.1160 (2) 76.935 (2) 90.0 90.0 112.991 (2) 
β (deg) 90.2040 (2) 87.338 (2) 96.848 (3) 102.0140 (2) 98.921 (2) 
γ (deg) 105.1086 (19) 85.969 (2) 90.0 90.0 95.953 (2) 
V (Å3) 2016.9 (2) 3199.0 (2) 2263.3 (2) 1529.45 (16) 986.72 (9) 
Z 2 2 2 2 2 
ρcalc (g cm-3) 3.082 2.811 3.268  3.082 2.700 
λ (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 
T (K) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2) 
µ (mm-1) 15.244 13.699 18.059 11.579 13.246  
R1 0.0425 0.0342 0.0486 0.0201 0.0289 
wR2 0.0867 0.0494 0.1040 0.0404 0.0503 

  

 

 



Table 2 Continued.  Crystallographic data for compounds 1 – 9. 

Compound [C6H10N2][PbI3]2· 
4C3H7NO (6) 

[C6H10N2][PbI3]2· 
4C2H6SO (7) 

[C6H16N2]2[Pb3I10]· 
2C3H7NO (8) 

[C6H16N2]4[Pb3I12]· 
2CHO2·2SOC2H6 (9) 

Formula C18H38I6N6O4Pb2 C14H34I6N2O4Pb2S4 C18H46I10N6O2Pb3 C30H78I12N8O6Pb3S2.00 
fw 1578.36 1598.53 2269.25 2855.60 
Space-Group  P21/c (No. 14) P21/c (No. 14) C2/c (No. 15) P1� (No. 2) 
a (Å) 9.7427 (6) 9.1442 (3) 23.77360 (15) 10.0789 (6) 
b (Å) 24.7644 (16) 24.0936 (8) 9.45230 (6) 18.4456 (13) 
c (Å) 7.9702 (5) 8.2387 (3) 21.04520 (12) 19.7271 (13) 
α (deg) 90.0 90.0 90.0 74.235(3) 
β (deg) 95.493(3) 94.6821(13) 90.3600(2) 77.155(2) 
γ (deg) 90 90.0 90.0 82.993(2) 
V (Å3) 1914.2 (2) 1809.07 (11) 4729.1 (5) 3433.8 (4) 
Z 2 2 4 2 
ρcalc (g cm-3) 2.738 2.934 3.187 2.762 
λ (Å) 0.71073 0.71073 0.71073 0.71073 
T (K) 150 (2) 150 (2) 150 (2) 150 (2) 
µ (mm-1) 13.652 14.666 17.206 12.830 
R1 0.0429 0.0232 0.0363 0.0482 
wR2 0.1122 0.0440 0.0912 0.0467 

  



Table 3.  Calculated DCM diffusion coefficients.  

Solvent Refractive 
index 

Expected 
Diffusion 

Coefficient 
(D, m2/s) 

Lower Bound 
Diffusion 

Coefficient 
(D, m2/s) 

Upper Bound 
Diffusion 

Coefficient 
(D, m2/s) 

Propagated 
Uncertainty Range 

(Plus or Minus) 
(D, m2/s) 

GBL 1.4348 5.26 × 10-10 7.00 × 10-11 9.82 × 10-10 4.56 × 10-10 
GBL:DMF 1.4783 1.08 × 10-10 4.00 × 10-12 2.12 × 10-10 1.04 × 10-10 

DMF 1.42075 5.55 × 10-10 0.00 1.14 × 10-9 5.66 × 10-10 
DMF:DMSO 1.436 2.07 × 10-10 1.32 × 10-10 2.82 × 10-10 7.50 × 10-11 

DMSO 1.4305 1.24 × 10-9 9.61 × 10-10 1.52 × 10-9 2.79 × 10-10 
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