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Abstract: 

Inverse vulcanization, a sustainable platform, can transform an industrial by-product, sulfur, 

into polymers with broad green applications such as heavy metal capture and recyclable 

materials. However, the process usually requires high temperatures (≥159 °C), and the 

crosslinkers needed to stabilise the sulfur are therefore limited to high-boiling-point monomers 

only. Here, we report an alternative route for inverse vulcanization — mechanochemical 

synthesis (MS), with advantages of mild conditions (room temperature), short reaction time (3 

h), high atom economy, less H2S, and broader monomer range. Successful generation of 

polymers using crosslinkers ranging from aromatic, aliphatic to volatile, including renewable 

monomers, demonstrates this method is powerful and versatile. Compared with thermal 

synthesis, the MS products show enhanced mercury capture. The resulting polymers show 

thermal and light induced recycling. The speed, ease, versatility, safety, and green nature of 

this process offers a more sustainable future for inverse vulcanisation, and enables further 

unexpected discoveries.  

 

Introduction:  
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Elemental sulfur, as a by-product during the hydrodesulfurization process of crude oil, is 

extensively produced but has incomplete usage despite its main application in the production 

of sulfuric acid.1, 2 Hence, there is an urgent need to explore an efficient way to transform this 

waste into useful materials. Recently, ‘inverse vulcanization’ coined by Pyun and co-workers 

has given a feasible solution to this issue as more than 50 wt.% sulfur can be used when a 

sulfur-containing polymer is formed using this process.3 The polymers generated by this 

polymerization route are a new category of material based on a sulfur-sulfur back-bone rather 

than carbon-carbon back-bone. Consequently, they show many unique properties thanks to 

their special polymer structures, such as having the highest refractive index among organic 

materials,4, 5, 6, 7 showing good recycling ability despite having crosslinked structures,8, 9, 10, 11 

possessing excellent heavy metal sensitivity arising from the sulfur content,12, 13, 14, 15 and 

showing antibacterial activity thanks to sulfur hybridization16, 17, 18. Starting from the waste 

material and turning towards functional applications, inverse vulcanization acts as a sustainable 

platform of science and technology gives the plastics more sustainable future. Since the first 

research publication was reported, there has been much related research upon both the 

underlying chemistry and theoretical, and the potentially applicable directions and 

applications.19, 20, 21 Majority of renewable resources have been used for production of useful 

sulfur polymers to be applied in the green areas.   

Normally, inverse vulcanized polymers are produced through bulk polymerization at high 

temperature (≥159 °C), because of the requirements for the cleavage of S-S bonds to enable 

ring opening and subsequent polymerisation of the eight-membered ring (S8) by heating. 

However, there are many accompanying problems in this polymerization process including but 

not limited to: inhomogeneous polymers obtained caused by less miscible monomers or 

different reactivity of monomers at high temperature, uncontrollable auto-acceleration22, side 

reactions accompanied by hydrogen abstraction and H2S generation23, and the limitation of co-
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monomer choice by boiling point. That is unsafe and hazardous in the operation. In order to 

apply this new material industrially, alternative easier and safer synthesis methods should be 

explored. Some attempts have been made regarding to this issue, for example, catalytic 

synthesis lowered the reaction temperature and unlocked some new monomers, but more than 

100 °C is still needed;24, 25 also, a vapor-phase deposition method which offers an opportunity 

for more homogeneous reaction and expanded crosslinker range, but it still requires high 

temperature and harsh conditions.5  

Here, we have demonstrated that the mechanochemical synthesis (MS), a green method, can 

be used into the production of inverse vulcanized polymers by using ball milling. 

Mechanochemistry has a long history from the primaeval mortar and pestle used since the stone 

age onward.26, 27, 28, 29 Laboratory shaker mills were introduced into chemistry research since 

the last century and have enabled substantial progress. Up to date, mechanochemistry using 

ball milling has been extensively exploited in organic synthesis,30, 31 inorganic synthesis32, 33 

and materials synthesis.34, 35 This technique is sourced from mechanical energy and is an 

environmentally-friendly method which shows advantageous properties including shorter 

reaction time, homogeneous reaction, high atom economy and so on. It is investigated here for 

the first time for the synthesis of inverse vulcanised polymers by the MS method. No 

requirement for heating, fast reaction, solvent-free, reduced hydrogen abstraction, no auto-

acceleration, broader monomer options, and more homogeneous reaction regardless of 

miscibility of sulfur with monomers can all be observed in this polymerization method. 

According to the obtained results, in addition to the process advantages the method possesses, 

the polymer materials obtained by the MS method show many unexpected and interesting 

properties compared with the normal thermally synthesized products, which are discussed in 

detail below. A notable and surprising finding was that the fallen iron filings from the steel 
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milling balls are able to chemically react with the polymers to form thermally stable inorganic 

substances rather than being only physically dispersed in the polymers.  

 

Results and discussions: 

We synthesized 9 polymers using a ball mill, starting from different crosslinkers ranging from 

aromatic, aliphatic to volatile monomers including 1,3-diisopropenylbenzene (DIB), 

dicyclopentadiene (DCPD), divinylbenzene (DVB), 5-ethylidene-2-norbornene (ENB), 

limonene, myrcene, dially disulfide (DADS), styrene and isoprene (Fig. 1). The synthetic 

polymers were named as MS(S-monomer) respectively. In addition, 8 polymers derived from 

the same monomers, omitting isoprene which is unable to be used at high temperature, were 

synthesized using the conventional thermal synthesis (TS) method to act as control group, and 

were named as TS(S-monomer) respectively. The experimental procedures of the materials 

synthesis can be found in the supporting information (SI). MS(S-DIB) and MS(S-Styrene) were 

used as model reactions to optimize the reaction procedure, as DIB is a well-known monomer, 

which can chemically stabilize polymeric sulfur, and styrene is a monomer with lower 

stabilizing efficiency for sulfur because of the lower number of reactive bonds relative to the 

molecular mass, and linear resulting structure. As differential scanning calorimetry (DSC) 

curves in Fig. S1 show, the obtained polymer MS(S-DIB) shows a clear glass-rubber transition 

even after only 1-hour of reaction, and a clear increase of glass transition temperature (Tg) from 

-11 °C to -1 °C with the reaction time increase from 1 hour to 3 hours, suggesting that DIB can 

react with sulfur quickly to form sulfur-polymer by ball milling, and further crosslinking 

reaction occurs during extended reaction time. However, MS(S-Styrene) still has an obvious 

melt peak of unreacted crystalline sulfur even after 2-hours reaction, and there is only a slight 

glass-rubber transition apparent. After reacting for 3 hours, there is no unreacted crystalline 



5 
 

sulfur remaining in polymerization system, and the product has a very clear glass-rubber 

transition. That indicates that styrene needs longer time to fully react with sulfur compared 

with DIB, and is able to form a sulfur polymer after 3-hours reaction. 

Hence, based on the results of optimisation experiments, all other polymers were synthesized 

for 3 hours in order to fully convert the S8. To be clear here, all the characterizations of the 

products were carried out once the polymers were formed without any further treatment unless 

there is a special illustration. The DSC curves of all the polymers (Fig. S2) show that every 

polymer has a clear Tg and almost all polymers have no unreacted crystalline sulfur remaining 

except a slight sulfur melt peak in MS(S-Myrcene) after 3-hours polymerization. It’s worth 

noting that the volatile monomer isoprene (b.p. 34 °C) was proven to successfully react with 

sulfur to form sulfur polymer by MS method here, which definitely cannot be realised through 

the conventional thermal synthesis process. Comparing the Tg of MS products with that of TS 

products (Fig. S3), it is interestingly found that some of the MS products have much lower Tg 

than the relevant TS products synthesized from the crosslinkers including DIB, DCPD, DVB, 

ENB and DADS, which would form crosslinked network normally, but other MS products 

formed from monomers including myrcene, limonene and styrene, show slightly higher Tg than 

the relevant TS products which are tend to be formed as linear polymer normally. From the 

powder x-ray diffraction (PXRD) curves of the MS products in Fig. S4, we can see that there 

is a trace of crystalline sulfur persisting in some of the polymers although it is not apparent 

from the second heating cycle in DSC curves. The unreacted sulfur can be removed by Soxhlet 

extraction in acetone as evidenced by the absence of peaks in PXRD patterns (Fig. S5a) of the 

MS products after Soxhlet extraction, but it needs to be mentioned that further reaction could 

occur during heating resulting from the dynamic disulfide bonds, since the DSC results (Fig. 

S5b) which show an increase of Tg of all the polymers after Soxhlet extraction. Hence, all the 

characterizations of MS polymers were done directly after 3-hours reaction in the ball mill to 
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investigate their true chemical and physical properties and applications. According to solubility 

evaluation results in Fig. S6, all the MS polymers were demonstrated to be insoluble in neither 

tetrahydrofuran (THF), chloroform or acetone, which is notable. As Fig. S7 shows, TS(S-

Myrcene), TS(S-Limonene), and TS(S-Styrene), which either exhibit linear or branched rather 

than fully crosslinked structures, are fully soluble in THF and chloroform and partly soluble in 

acetone. Other TS polymers, which are more highly crosslinked, are insoluble or only partly 

soluble in those three solvents. Theoretically, higher crosslinking degree will give higher Tg 

and higher solvent resistance to the polymer. Here one question arises, why should some of the 

MS polymers possess lower Tg than the TS polymers, but show higher solvent resistance?  

Elemental analysis results in Table S2 shows that most of obtained polymers contain high 

sulfur content but there are changes on the ratios of C:H and C:S after polymerization. The 

most suspected way which can cause elemental ratio change is the side reaction—H2S gas 

generation in thermal synthesis, which can cause C:H ratio and C:S ratio increase as elements 

S and H are lost. However, the C:H ratio and C:S ratio here both decreased after MS. So, 

another question comes up—how this happened? Both questions suggest there might be 

something different from MS method to the normal TS method in mechanism.  

In order to investigate these questions and better understand the nature of the chemical reaction 

in the ball mill, styrene was chosen as model monomer to monitor the reaction as it theoretically 

has the least reactive activation point. Fourier transform infrared spectroscopy (FT-IR), 

hydrogen nuclear magnetic resonance spectroscopy (1H NMR), and X-ray photoelectron 

spectroscopy (XPS) were used to monitor the chemical environment changes as a function of 

reaction time. From FT-IR curves in Fig. 2A, it is observed that the peak at ~1626 cm-1 

belonging to the C=C stretch and peaks at ~989 cm-1 and ~906 cm-1 belonging to C=C bend 

both disappeared with the increase of the reaction time, which suggests that vinyl groups in 

styrene were consumed to form polymer. Meanwhile, there is no change of the peaks belonging 
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to the benzene ring, suggesting that there is no reaction occurring between the benzine group 

and sulfur, but there is a new peak at ~1701 cm-1 appearing after reaction, which is attributed 

to a C=O group. The same results can be observed from the FT-IR spectra of TS(S-Styrene) 

(Fig. S8). In addition, DSC curve (Fig. S9) of the control experiment MS(S-Toluene) suggests 

that there is no reaction between sulfur with saturated hydrocarbon. Due to insoluble property 

of the MS(S-Styrene), it is difficult to obtain the structure information of the produced polymer 

using solution NMR, but it is clear that the monomer styrene is fully consumed after 3-hours 

reaction from the 1H NMR spectra (Figs. S10 and S11) of monomer and products, resulting 

from the disappearance of the peaks belonging to hydrogen protons of styrene. In addition, 

energy dispersive spectroscopy (EDS) was used to detect the elements existing in the polymers. 

It is surprisingly found that there is Fe present in addition to the elements S and C in the 

polymer from the EDS images of MS(S-DIB) in Fig. 2B. That indicates that there are some 

iron extracted from steel balls trapped in the polymers, and there is a trace of Cr associated 

with Fe existing in the polymer, which is normally used in steel production. Moreover, Fig. 

S12 indicates that Fe was not uniformly dispersed in the polymer. In this case, anchoring of the 

polymeric products to Fe was considered to be the probable reason for the insolubility and 

unexplained elemental analysis results of MS products. The presence of the Fe impurities 

prohibits the use of solid-state NMR. Hence, XPS was used to investigate bonding information 

of the MS polymers by recording the C 1s, S 2p, Fe 2p and O 1s regions (Fig. 2C). As Fig. S13 

shows, clearly there are more S and C chemical environments observed from MS(S-DIB) or 

MS(S-Styrene) than that of TS(S-DIB) and TS(S-Styrene).  Fig. 2F clearly shows the presence 

of Fe in the polymer MS(S-Styrene), and Figs. 2D and 2E give the detailed connectivity 

information of polymer MS(S-Styrene). XPS S 2p peak in Fig. 2D is fitted by three components: 

neutral S (163-165.2 eV) and cationic S+ (165.3-166.7 eV) and oxidized SO3- (166.8-168.4 

eV)36. The S 2p spectrum was curve fitted, indicating the presence of four sulfur chemical 
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bonding environments;  S-S, C-S, S-O and S with Fe at a binding energy (BE) of 163.8 eV, 

165.0 eV, 165.4 eV/166.6 eV and 166.9 eV /168.1 eV, respectively5, 37, 38. Furthermore, the 

bonding assignments from the C 1s data, Fig. 2E, show five carbon bonding environments; C-

C, C-S, C-O, C=O and metal carbonate  at a BE of 284.7 eV, 285.5 eV, 286.4 eV, 287.9 eV, 

289.3 eV respectively.36, 39 That means that sulfur has reacted with the organic co-monomers 

and chemically connected with carbon to form C-S bonds, and there are bonds of metal 

sulfonate and metal carbonate formed in the meantime. In contrast, XPS S 2p and C 1s regions 

(and accompanying survey scan) of TS(S-Styrene) (Fig. S13d) show no Fe present, carbon and 

sulfur were only observed in only the following bonding environments; S-S (163.9 eV), C-S 

(165.0 eV in S 2p spectrum and 285.49 eV in C 1s spectrum), and C-C (284.7 eV in C 1s 

spectrum). Hence, it is further demonstrated that new covalent bonds of C-S were formed in 

MS polymer, and Fe not only disperses in the polymer physically but chemically connects with 

the polymer chains. Moreover, XPS spectra of MS(S-DIB) and TS(S-DIB) show similar results 

with that of MS(S-Styrene) and TS(S-Styrene) (Figs. S13a and S13b). Therefore, all the above 

proof illustrates that sulfur did react with C=C bonds in the monomers initiated by mechanical 

energy to successfully form the sulfur polymers, and iron from the steel balls reacted with the 

polymer to form some inorganic proportion accompanying the polymer formation rather than 

only being ground iron dispersed among polymer particles, which is surprising and interesting.    

Solution inductively coupled plasma optical emission spectrometry (ICP-OES) was used to 

analyse Fe content of the polymers. As Table S3 shows, there are ranging from 8 wt.% to 20 

wt.% Fe in the polymers but there is only 0.77 wt.% Fe in the control sample--ball milled pure 

elemental sulfur. Furthermore, thermogravimetric analysis (TGA) of MS polymers in N2 

shown in Fig. S14 illustrates that there still are some residue percent from polymers at 1000 °C, 

but only around 1.4% residue of control sample (ball milled sulfur) was obtained. It is revealed 

that Fe only reacts with polymer chains during polymer formation but does not react with pure 
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sulfur. Now, we can understand that why the ratios of C:H and C:S decrease after 

polymerization in EA results. That is because that percentage of metal cannot be detected using 

EA technic, but the total percentages of elements were calculated basing on total polymers’ 

mass, which causes decrease of carbon percentage. In addition, unreacted monomers were 

washed out by acetone before the EA characterization, which further decreases the carbon 

percentage. Hence, the detected carbon percent is lower than the calculated value so that the 

ratios of C:H and C:S are lower than the calculated values. That also indicates that there may 

be no/less H2S formation during reaction as there is no decrease of sulfur percentage. 

Theoretically, the organic material all can be burned off in the air. However, the synthesized 

materials in this case still have Fe oxide remaining after being burned, which can be proved by 

the EDS images of burned MS(S-DIB) in Fig. S15, there is only elements Fe, Ge or some C 

which cannot be confirmed since the background is carbon film, but no sulfur remaining. Hence, 

it is clear that an inorganic fraction formed and iron from the steel balls cause the questions 

discussed above. Fe reacted with the polymer chain and causes structure change to the polymer 

resulting in insolubility, where Fe acts as a kind of crosslinker to link the polymer chain into 

the network. While, the FT-IR curves of some of the polymers in Figs. S16-20 show that partial 

reaction of C=C of monomer containing 2 or more vinyl groups causes those MS polymers to 

have lower Tg than the TS polymers. Whereas, some monomers which potentially form highly 

linear structured polymer, like styrene which has the least C=C so that it has high sulfur rank 

and high opportunity for Fe to attend the reaction to form high content of inorganic fractions, 

resulted in the formed polymer having higher Tg than the TS polymer.  

In addition, H2S gas measurements were done to evaluate the hydrogen adsorption in both of 

MS and TS polymerization. As it is hard to monitor the reaction during the reaction due to the 

practical limitations of the equipment, the products were used to analyse H2S generation tests. 

Polymers TS(S-DIB), TS(S-DCPD), TS(S-DVB) and TS(S-ENB) were chosen as the control 
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samples to compare with the MS polymers from the same crosslinker respectively, as they all 

are solid state at room temperature. From Fig. 3A, it can be seen that H2S is only generated 

under heating. Slight H2S concentration can be detected from some of MS products once the 

temperature reaches 80 °C, but a significant H2S concentration can be detected when the 

temperature is 140 °C no matter whether MS polymers or TS polymers. MS products show 

quicker H2S generation rate than TS products as they are smaller particles with higher surface 

area and shorter diffusion pathways. Even through the TS polymers are fully crosslinked 

polymers, there was significant H2S generation at high temperature. This suggests that H2S gas 

is likely released during the TS process thanks to the high reaction temperature (normally 

higher than 140 °C). Instead, it can be considered as that there is likely no/less H2S gas 

generated during the MS process due to absence of heating. Additionally, the H2S 

concentrations released from MS polymers are all higher than that from TS polymers (the data 

for every polymer can be found in Figs. S24-S31). In theory, less gas generated from the 

products suggests hydrogen abstraction may have already occurred during the synthesis process 

as the same monomers and ratio were used in synthesis. Therefore, for the reaction itself, there 

should be less or no H2S generated during the MS process, in comparison to the TS process. 

Moreover, scanning electron microscopy (SEM) images of the MS polymers (Figs. S32-S39) 

show all the polymers are relatively small size particles. Accordingly, the obtained polymer 

powders were considered as a sorbent in water remediation. Hence, mercury (Hg) uptake tests 

were carried out using all the MS polymers with the control samples of solid-state TS polymers 

and pure sulfur. The experimental procedures of Hg uptake can be found in the SI. As Figs. 3B 

show, all the MS polymers have higher Hg capture efficiency than the TS polymers as well as 

pure sulfur. The highest ratio 62% Hg was removed from 138 ppm HgCl2 solution by the 

polymer MS(S-Myrcene) in 24 hours and the highest capacity of 42.3 mg/g was obtained, 

which is higher than normally non porous sulfur polymers and even higher than some kinds of 
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porous polymers reported22, 40, 41, such as salt templated sulfur polymer which has the capacity 

of 2.27 mg/g.40 Additionally, the MS polymer powders can be processed furtherly by hot 

pressing into polymer thin film, as shown in Fig. 3C, despite their crosslinked structures. As 

the polymers contain disulfide bonds, the polymer thin film was expected to have potential for 

healing. It is known that dynamic reaction between the disulfide bonds can be introduced by 

heat42 and also ultraviolet (UV) light43. Thermally-induced healing properties of inverse 

vulcanized polymers has been widely investigated8, 9, but we demonstrate here first time that 

the inverse vulcanized polymer is able to be self-healed under UV light irradiation. Fig. 3D 

indicates that two pieces of MS(S-ENB) films were healed together after radiation using 285 

nm UV light for 40 minutes. The healed film shows a good elastic property as the video S1 

shows, where the film can be stretched and then the deformation can be recovered 

automatically once the force is released.   

 

Conclusion: 

It has been demonstrated that inverse vulcanized polymers can be synthesized using a 

mechanochemical method. In the conventional thermal synthesis of inverse vulcanised 

polymers, the choice of potential crosslinkers is constrained to those that are miscible with 

molten sulfur as well as having sufficiently high boiling points44. The mechanochemical route 

removes these constraints. It was proven that iron from steel balls can react with the sulfur 

polymer to form inorganic sections anchoring the polymers. The obtained polymers were 

demonstrated to show many modified properties such as high solvent resistance and high 

mercury uptake efficiency and capacity. The synthetic materials also show good processing 

ability which might be used to broaden applications not limited to UV-induced self-healing. 

Compared with the normal thermal synthesis, mechanochemical synthesis method of inverse 
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vulcanization is able to give broader monomer choice and promising product range simply 

starting from the by-product, sulfur, to wider applications.      
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Fig. 1. Reaction scheme of MS of inverse vulcanized polymers and monomers used. 
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Fig. 2. A) Synthesis of MS(S-Styrene) monitored by using FT-IR. B) SEM and EDS images of 

product MS(S-DIB) with same size bar (5 µm). Panels C) to F) show XPS spectra of MS(S-

Styrene); wide scan, and corresponding S 2p, C 1s, and Fe 2p spectra with associated curve 

fits. 

 

Fig. 3. A) H2S measurements on selected MS and TS polymers with ramping temperature at 

room temperature, 80 °C and 140 °C. B) The percentage mercury removed in solution after 24 

hours exposure to each of the materials listed. C) The capacity of mercury removing of each of 

the materials listed. D) Polymer MS(S-DIB) as an example to show the polymer film is able to 

be made from polymer powder.  E) Polymer MS(S-ENB) film as an example to show the UV-

induced self-healing ability of the MS polymer. 
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