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Abstract

Molecular dynamics (MD) computer simulations are used routinely to compute atom-

istic trajectories of complex systems. Systems are simulated in various ensembles,

depending on the experimental conditions one aims to mimic. While constant energy,

temperature, volume, and pressure are rather straightforward to model, pH, which is

an equally important parameter in experiments, is more difficult to account for in sim-

ulations. Although a constant pH algorithm based on the λ-dynamics approach by

Brooks and co-workers was implemented in a fork of the GROMACS molecular dynam-

ics program, uptake has been rather limited, presumably due to the poor scaling of that

code with respect to the number of titratable sites. To overcome this limitation, we

implemented an alternative scheme for interpolating the Hamiltonians of the protona-

tion states that makes the constant pH molecular dynamics simulations almost as fast

as a normal MD simulation with GROMACS. In addition, we implemented a simpler

scheme, called multisite representation, for modeling side chains with multiple titrat-

able sites, such as imidazole rings. This scheme, which is based on constraining the
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sum of the λ-coordinates, not only reduces the complexity associated with parameter-

izing the intra-molecular interactions between the sites, but is also easily extendable to

other molecules with multiple titratable sites. With the combination of a more efficient

interpolation scheme and multisite representation of titratable groups, we anticipate a

rapid uptake of constant pH molecular dynamics simulations within the GROMACS

user community.

Introduction

Since their introduction more than four decades ago, molecular dynamics (MD) computer

simulations have come of age.1 Thanks to improvements in computer hardware, algorithmic

developments, as well as increased accuracy of force fields, MD simulation has evolved into

a predictive technique that can complement experiment by providing atomistic insights into

the dynamics of complex systems.1,2 While many experimental conditions can be modelled

with good accuracy, the aqueous proton concentration, or pH, is typically accounted for

indirectly by constraining the protonation states of titratable residues to their, presumed,

most probable form at the start of the simulation. Because the electrostatic interactions

depend critically on the protonation state of the residues, the pH affects the conformational

ensemble. Conversely, because the conformation can influence the proton affinity of the

residues, or pKa, a direct correlation exists between pH and conformational dynamics, which

cannot be captured if protonation state is kept fixed in the simulation.3

To overcome this limitation in classical MD simulations and include the effect of pH

on the conformational sampling directly, several solutions have been proposed in the last

decades.4,5 These solutions can be roughly divided into a category that relies on discrete

changes in protonation states,6–12 and a second category, in which a protonation state can

change continuously.13–25 More recently, a third category that relies on the transfer of proton-

like particles between titratable sites, including protein residues and solvent molecules, was

proposed for the Martini force field.26
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In the discrete constant pH approaches, the protonation state of a residue can change at

regular intervals of the simulation according to a Metropolis Monte Carlo criterion.10,11,21,27,28

To avoid a low acceptance rate due to unfavourable solvent configurations, the Monte Carlo

step is performed based on free energies calculated using the approximation of either an

implicit solvent representation,7,9 or a short all-atom thermodynamic integration.8,29

Most continuous approaches for MD at constant pH are based on the λ-dynamics tech-

nique developed by Brooks and co-workers.30 A one-dimensional λ-coordinate with fictitious

mass mλ is introduced for each titratable site, and the equations of motion for these addi-

tional degrees of freedom are integrated along with the Cartesian positions of the atoms.14

The λ-coordinate defines the protonation state of the residue: at λ = 0 the residue is proto-

nated and interacts with the rest of the system as such, while at λ = 1 it is deprotonated.

The energy function that acts on the λ-coordinates depends on (i) the intrinsic proton affin-

ity (reference pKa) of the titratable site in water, (ii) the interactions with the environment,

which are mostly electrostatic,31 and (iii) the pH of the solvent, which is set by the user.

In addition, potentials are introduced to bias sampling towards the physical states at λ = 0

and λ = 1. Protons are not transferred directly between the titratable residues and the

solvent molecules, but rather exchanged with an external proton bath. Because the chem-

ical potential of this bath is determined by the proton concentration (pH) of the aqueous

solution, constant pH MD (CpHMD) simulations based on λ-dynamics are performed in a

grand canonical ensemble for the proton degrees of freedom.

While λ-dynamics based constant pH approaches were originally developed for implicit

solvent simulations,14 they have since then been adapted for explicit solvent simulations

as well.12,16–19,21,23 The key computational challenge for explicit solvent implementations is

the long-range electrostatic interaction, for which multiple solutions have been suggested,

including a shifted cut-off scheme,19 a hybrid scheme combining the particle mesh Ewald

(PME) treatment for the Cartesian coordinates with the generalized Born model for the λ

particles,17,32 and a fully consistent PME treatment for both λ and Cartesian degrees of
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freedom.16,23

In addition to an accurate modeling of the long-range electrostatic interactions, also

sampling can pose a serious challenge to simulations at constant pH. While the choice for

the PME method in the original implementation of λ-dynamics in the fork of GROMACS

3.3 release16 was motivated by its accurate description of long-range electrostatics, the linear

increase of the computational effort with the number of titratable sites limited the sampling

efficiency, which meant that systems with many titratable sites could not be studied in

practice.

To remove this bottleneck and enable constant pH MD with GROMACS at modest extra

cost compared to a standard simulation, we switch to an alternative scheme for computing the

long-range electrostatic interactions of the λ-particles under periodic boundary conditions.

The alternative scheme is based on a linear interpolation of partial charges,14 rather than

the potential energy functions as in the original implementation of constant pH MD in a

GROMACS fork.16

Although the previous implementation of constant pH in a GROMACS fork was docu-

mented and shared with the community as an open-source program, there has been some

misunderstanding about how electrostatic interactions were computed for λ-particles.17,18,23

To resolve this, we first explain in detail how the electrostatic interactions were calculated in

the previous GROMACS implementation of constant pH MD. We next contrast this linear

interpolation between the potential energy functions of the protonated and deprotonated

states of a residue, with the interpolation between the partial charges of both states,14 and

show why the latter is computationally much more efficient. We then demonstrate the su-

perior performance of the charge-interpolation scheme by running a series of constant pH

MD simulations of amino acids and proteins. To emphasize that the new constant pH im-

plementation in GROMACS is not linked to a specific force field or method for evaluating

electrostatic interactions, we also show the results of constant pH MD simulations with the

Martini coarse-grained force field.33 Because of GROMACS’ large user community, we expect
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our work to increase popularity of constant pH MD simulations.

Theory

Before discussing the differences between linear interpolating of the potential energy func-

tions on the one hand,16 and of partial charges on the other hand,14 for computing the

potential energy landscape of the titration coordinates, we briefly review the λ-dynamics

approach30 that forms the basis for the constant pH molecular dynamics algorithm in GRO-

MACS.16

λ-dynamics based constant pH MD simulations

A titratable site i can exist in a protonated or deprotonated state. The protonation state

affects the interactions between the site and the rest of the system. In constant pH MD

simulations based on λ-dynamics,30 an additional coordinate λi is introduced for each site i,

and the potential energy function of the total system is continuously interpolated between the

two protonation states along this coordinate i.e., V (λi).14 A fictitious mass mλ is assigned to

each λi-coordinate, and the coordinates evolve along with the Cartesian degrees of freedom of

all atoms in the system, based on Newton’s equations of motion. Thus, the total Hamiltonian

of the system is

H(R,λ) =

Nsites∑
i

mλ

2
λ̇2i +

Natoms∑
j

mj

2
ṙ2j + V (R,λ) (1)

where R is the vector of the Cartesian coordinates rj of all Natoms atoms with mass mj, and

λ is the vector of the λi coordinates of all Nsites titratable sites.

λ-dependent potential energy function

In addition to the interpolation between the potentials of the protonated VA(R) and depro-

tonated states VB(R), three more λ-dependent terms are included in the potential energy
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function of the total system V (R,λ), as illustrated in Figure 1: (i) a correction potential

V MM
i (λi) to compensate for missing quantum mechanical contributions to proton affinities

(Figure 1B); (ii) a biasing potential V bias
i (λi) that enhances sampling of the physical end

states at λi = 0 and λi = 1 (Figure 1C); and (iii) a pH-dependent term V pH(λi) to model

the chemical potential of protons in water (Figure 1D).

The purpose of adding the correction term V MM
i (λi) (Figure 1B) is to make the inter-

polated potential function flat if the titratable site i is in its reference state, for which the

proton affinity is known experimentally, at pH = pKa,i. This potential is determined by

evaluating the deprotonation free energy of the single residue in water (reference state) at

the force field level by thermodynamic integration along the λ-coordinate (Figure 1A):

V MM
i (λi) = −∆GMM

i (λi) (2)

To prevent sampling of the non-physical states between λi = 0 and λi = 1 on this

flat potential energy surface while still enabling sufficient transitions between the physical

end-states to sample both protonation states with the correct thermodynamic weight, we

introduce the biasing potential V bias
i (λi) suggested by Donnini et al.34 (Figure 1C).

The pH dependent term V pH(λ) (Figure 1D) is a correction to include the effect of the

solution pH on the free energy difference between the protonated and deprotonated states,

such that this difference is

V pH(λi = 1)− V pH(λi = 0) = RT ln(10) [pKa,i − pH] (3)

where we use the experimentally determined pKa,i values of residue i in its reference state.

Although various forms for this potential have been suggested,22,34,35 we propose a smooth
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step-function-based potential:

V pH(λi) = RT ln(10) [pKa,i − pH]
1

1 + exp(−2k1(λi − 1 + x0)
, if pH > pKa

V pH(λi) = RT ln(10) [pKa,i − pH]
1

1 + exp(−2k1(λi − x0)
, if pH ≤ pKa, (4)

where k1 and x0 define the steepness and kink position of the step function. In this form,

illustrated in Figure 1D, the pH dependent potential also aids in preventing the sampling of

non-physical states, i. e., 0.1 < λ < 0.9.

Figure 1: Illustration of the additional λ-dependent potential energy terms (B-D). Panel A
shows the protonation free energy of a titratable residue in its reference state obtained at
the force field level, ∆GMM

i (λ). To compensate for the shortcomings of the force field and
obtain a zero free energy difference between the two protonation states (A+B), we add the
correction potential, V MM

i (λ), shown in panel B. A biasing potential, V bias(λ),34 is introduced
to avoid sampling of non-physical states (panel C). To model the proton chemical potential
(pH), we add a pH dependent term, V pH(λi) (panel D). For a titratable residue at pH 6= pKa,
the total λ-dependent potential, including the interpolated force field functions and the three
additional terms, is illustrated in panel (A+B+C+D).
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Linear interpolation of potential energy functions

In the previous implementation of constant pH MD in GROMACS’ fork, the smooth interpo-

lation of the force field potential energy function between the protonated and deprotonated

states was achieved by linearly interpolating the force field potentials of these states.16 Thus,

for a single titratable site, the λ-dependent potential is given by

V (R, λ) = (1− λ)VA(R) + λVB(R) + V MM(λ) + V bias(λ) + V pH(λ) (5)

with V MM(R, λ), V bias(λ) and V pH(λ) the correction, biasing, and pH dependent potentials,

respectively, that were briefly discussed above, and with a short-hand notations for

VA(R) = V (R, λ = 0)

VB(R) = V (R, λ = 1)

The gradient required for updating λ according to Newton’s equations of motion is

∂V (R, λ)

∂λ
= VB(R)− VA(R) +

∂

∂λ
V MM(R, λ) +

∂

∂λ
V bias(λ) +

∂

∂λ
V pH(λ) (6)

Thus, the evaluation of the force on the λ-particle requires that the potential energy, includ-

ing the long-range electrostatic interactions, is computed twice: once for λ = 0 (i.e., VA) and

once more for λ = 1 (i.e. VB). If the Particle-Mesh-Ewald (PME) method is used to com-

pute those long-range electrostatic interactions,36,37 separate PME grid builds are needed,

because the charge distributions are not identical in states A and B.

For systems with many titratable sites, multiple λ-groups are introduced. Because the

analytical expressions for the correction, biasing and pH dependent terms in equation 5 are

additive, we no longer consider them explicitly in what follows and focus exclusively on the

interpolation of the force field potential energies between the multiple protonation states of

the system. For N λ-coordinates, there are 2N such states and the interpolation generalizes
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to:13

V (R,λ) =
2N∑
l

V (R, l)ΠN
i λ

(li)
i (1− λi)1−li (7)

Here, we represent the N λi-coordinates as an N -dimensional vector λ. The 2N possible

protonation states of the system are represented by the N -dimensional vector l with elements

li equal to 0 or 1 that indicate whether a site i is protonated (λi = 0) or deprotonated (λi = 1).

The sum runs over all 2N possible combinations of li = 0 and li = 1. The gradient required

for updating λi is obtained by deriving the interpolated potential, V (R,λ), with respect to

λi:
∂
∂λi
V (R,λ) = ∂

∂λi

[∑2N

l V (R, l)ΠN
k λ

(lk)
k (1− λk)1−lk

]

= ∂
∂λi

[
∑2N−1

l′,li=0 V (R, l)ΠN
k λ

(lk)
k (1− λk)1−lk(1− λi)

+
∑2N−1

l′,li=1 V (R, l)ΠN
k λ

(lk)
k (1− λk)1−lkλi]

=
∑2N−1

l′,li=1 V (R, l)ΠN
k λ

(lk)
k (1− λk)1−lk

−
∑2N−1

l′,li=0 V (R, l′)ΠN
k λ

(lk)
k (1− λk)1−lk

= V (R,λ′, λi = 1)− V (R,λ′, λi = 0)

(8)

where the ′ indicates that λi is omitted from vector λ. Note that, as we focus only on the

interpolated potentials, the biasing, correction and pH-dependent terms are left out.

In general, the number of terms in the potential (Equation 7) increases exponentially

with the number of titratable sites. However, for pair-wise interactions involving titratable

sites whose non-bonded force field parameters do not depend on the protonation state of

the other sites (chemically uncoupled sites), the number of terms required to evaluate the

interpolated potential scales linearly. For systems with such "chemically", or "topologically"
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uncoupled sites, the interpolated potential contains four types of interactions

V (R,λ) = V rest-rest(R) + V λ-rest(R,λ) + V λ-λ(R,λ) + V λ(R,λ) (9)

For pair-wise electrostatic interactions, the terms on the right-hand side are defined as:

1. Interactions between atoms that are not part of any λ-group, and hence independent

of the λi’s:

V rest-rest(R) =
1

2

nrest∑
i

nrest∑
j

qiqj
4πε0rij

(10)

where the sums run over all nrest atoms that are not part of a λ group.

2. Interpolated interactions between atoms of each λ-group with atoms that are not part

of any λ-group:

V λ-rest(R,λ) =

Nsites∑
k

nk∑
i

nrest∑
j

(1− λk)
qAi qj

4πε0rij
+ λk

qBi qj
4πε0rij

(11)

where the first sum runs over all titratable sites, the second one runs over all nk atoms

of the k-th λ-group and final sum runs over all atoms that are not part of any λ group.

3. Interpolated interactions between atoms belonging to two different λ-groups:

V λ-λ(R,λ) =
∑Nsites

k

[
(1− λk)

∑Nsites
m,m 6=k

∑nk
i

∑nm
j

[
(1− λm)

qAi q
A
j

4πε0rij
+ λm

qAi q
B
j

4πε0rij

]

+ λk
∑Nsites

m,m 6=k
∑nk

i

∑nm
j

[
(1− λm)

qBi q
A
j

4πε0rij
+ λm

qBi q
B
j

4πε0rij

]]

=
∑Nsites

k

∑Nsites
m,m 6=k

∑nk
i

∑nm
j

[(1−λk)qAi +λkq
B
i ][(1−λm)qAj +λmqBj ]
4πε0rij

(12)
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4. Interpolated interactions within each of the λ-groups:

V λ(R,λ) =
1

2

Nsites∑
k

nk∑
i

nk∑
j

(1− λk)
qAi q

A
j

4πε0rij
+ λk

qBi q
B
j

4πε0rij
(13)

From equation 8 the gradient with respect to λk is:

∂
∂λk

VCoul(R,λ) = VCoul(R,λ
′, λk = 1)− VCoul(R,λ′, λk = 0)

=
∑nk

i

∑nrest
j

qBi qj
4πε0rij

− qAi qj
4πε0rij

+
∑Nsites

m

∑nk
i

∑nm
j

qBi [(1−λm)qAj +λmqBj ]
4πε0rij

− qAi [(1−λm)qAj +λmqBj ]
4πε0rij

+1
2

∑nk
i

∑nk
j

qBi q
B
j

4πε0rij
− qAi q

A
j

4πε0rij

(14)

Thus, the evaluation of the Coulomb contribution to the gradient for each λk-group requires

two electrostatic computations, with the interpolated partial charges of the other λm sites

(i.e., qj(λm) = (1− λm)qAj + λmq
B
j ):

∂
∂λk

VCoul(R,λ) =
∑nk

i qBi ×
[∑nrest

a
qa

4πε0ria

+
∑Nsites

m

∑nm
j

(1−λm)qAj +λmqBj
4πε0rij

+ 1
2

∑nk
j

qBj
4πε0rij

]

−
∑nk

i qAi ×
[∑nrest

a
qa

4πε0ria

+
∑Nsites

m

∑nm
j

(1−λm)qAj +λmqBj
4πε0rij

+ 1
2

∑nk
j

qAj
4πε0rij

]

=
∑nk

i qBi ΦB
k (Ri,λ

′)−
∑nk

i qAi ΦA
k (Ri,λ

′)

(15)

Here, we introduced the electrostatic potential ΦA
k (Ri,λ

′) of the system with partial charges
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of λ-group k in the protonated state (qAi ) and interpolated charges for all other λ-groups. As

before, λ′ is the vector with all λm’s except λk. Likewise, electrostatic potential ΦB
k (Ri,λ

′)

is evaluated with the partial charges of λ-group k in the deprotonated state (qBi ) and the

same interpolated charges for all other λ-groups. Thus, 2Nsites computations are needed

to evaluate the gradients for all titratable sites. The same arguments apply to pair-wise

Lennard-Jones interactions, but because the contribution of Lennard-Jones interaction to

pKa shift is minor, we neglected them in this work (see Supporting Information).

Linear interpolation of partial charges

While the linear scaling of the gradients for the pair-wise potentials in equation 15 in principle

is a great improvement over the formal exponential scaling in equation 8, the requirement

of performing 2Nsites calculations per MD step still poses a computational bottleneck, in

particular for larger systems. To overcome this bottleneck for electrostatic interactions, we

follow the suggestion by Brooks and co-workers to interpolate charges rather than interaction

functions.14 When interpolating the partial charges between the protonation states of Nsites

chemically uncoupled titratable sites, the λ-dependent Coulomb energy becomes:

Vcoul(R,λ) = V rest-rest(R) + V λ-rest(R,λ) + V λ-λ(R,λ) + V λ(R,λ)

= 1
2

∑nrest
i

∑nrest
j

qiqj
4πε0rij

+
∑Nsites

k

∑nk
i

∑nrest
i

((1−λk)qAi +λkq
B
i )qj

4πε0rij

+
∑Nsites

k

∑Nsites
m;m6=k

∑nk
i

∑nm
j

[(1−λk)qAi +λkq
B
i ][(1−λm)qAj +λmqBj ]
4πε0rij

+1
2

∑Nsites
k

∑nk
i

∑nk
j

[(1−λk)qAi +λkq
B
i ][(1−λk)qAj +λkq

B
j ]

4πε0rij

(16)
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The gradient of the potential energy with respect to λk is

∂Vcoul(R,λ)
∂λk

=
∑nk

i

∑nrest
j

(qBi −qAi )qj
4πε0rij

+
∑Nsites

m=1;m 6=k
∑nk

i

∑nm
j

(qBi −qAi )[(1−λm)qAj +λmqBj ]
4πε0rij

+
∑nk

i

∑nk
j

(qBi −qAi )[(1−λk)qAj +λkq
B
j ]

4πε0rij

=
∑nk

i

∑nrest
j

(qBi −qAi )qj
4πε0rij

+
∑Nsites

m=1

∑nk
i

∑nm
j

(qBi −qAi )[(1−λm)qAj +λmqBj ]
4πε0rij

=
∑nk

i Φ(Ri,λ)∆qi

(17)

where Φ(Ri,λ) is the electrostatic potential at the position of atom i due to the charge

distribution of all other atoms in the system, including the atoms of all titratable sites, for

which the partial charges are interpolated:

Φ(Ri,λ) =
nrest∑
j

qj
4πε0rij

+

Nsites∑
m

nm∑
j

(1− λm)qAj + λmq
B
j

4πε0rij

and ∆qi is the difference between the atomic charges of titratable residue i in the protonated

(A) and deprotonated (B) states:

∆qi = qBi − qAi

In contrast to when potential energy functions are interpolated, the same electrostatic poten-

tial is used to evaluate the electrostatic forces on both the atoms and the λ-particles. There-

fore, a single electrostatic calculation per time step suffices. If the electrostatic interactions

are modeled with the smooth Particle Mesh Ewald method,36,37 the short-range real-space

interactions and long-range reciprocal-space interactions are computed separately. For the
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pair-wise short-range interactions in real space an additional calculation for each interacting

pair and a subsequent accumulation of the potential at each atom is needed. Whereas this

calculation comes at no extra computational cost if the standard pair interaction kernels are

used, the accumulation leads to a measurable computational overhead, as we will show later.

For the mesh part of the PME calculation, a gathering of potentials from the grid is required

for charges in λ-groups only, but this also comes at a negligible computational overhead.

Because the extra effort required to compute the gradients on the λ particles is rather small,

a constant pH MD implementation based on charge interpolation is computationally not

much more expensive than a normal MD simulation, which is a major improvement with

respect to the previous CpHMD implementation in GROMACS.16

Multisite representation of chemically coupled titratable sites

If titratable sites are "chemically" or "topologically" coupled, the force field parameters of

one site depend on the value of the λ coordinate of the other site, and vice versa. For

example, histidine can exist in three protonation states, as shown in Figure 2. In most force

fields, the partial charges of all atoms in the His side chain, including the two sites, depend

on the protonation state. Hence, if the Nδ site changes protonation, also the electrostatic

interactions of the Nε site are affected.

To model the chemically coupled sites in the histidine side chain, Khandogin and Brooks

introduced two λ-coordinates:15 one that interpolates between the double and single pro-

tonated forms and a second coordinate switching between protonation at the Nδ and the

Nε atoms. Donnini et al. introduced separate λ-coordinates for Nδ and Nε.16 In both solu-

tions, the coupling between the coordinates is achieved with a two-dimensional correction

potential.

Because extending the dimensionality beyond two coordinates is difficult from both the

implementation and parameterization perspective, Brooks and co-workers introduced a mul-

tisite representation,38,39 where a separate λi,k-coordinate is assigned to each physical state
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k of a titratable group i. For a residue with multiple "chemically"-coupled titratable sites

each λi,k-coordinate has the same state at λi,k = 0, while at λi,k = 1 the group is in one of

the ni possible protonation states (i.e., state k) of residue i. The state at λi,k = 0 (for all

coordinates k of residue i) is the same for all λ-coordinates but does not correspond to a

physical protonation state of the residue, and neither do states for which the sum of the λi,k-s

is not equal to 1 (Figure 2). To restrict sampling to the (hyper-)plane connecting the physical

states, the sum of λi,k-s is constrained (
∑

k λi,k = 1). Since the λ-dynamics implementation

in a fork of GROMACS relies on linear λ-coordinates, rather than the auxiliary circular

coordinates that would fulfill the constraints by construction,38 we apply a constraint on

the sum of λ-s. To efficiently apply this constraint we use an analytical expression to solve

a generalized version of charge constraint introduced by Donnini et al.34 (see Appendix).

While an atom can be part of multiple λi,k coordinates in residue i, each affecting its charge,

we show in SI that the expression for the contribution of this atom to the total Coulomb

energy is identical to that of an uncoupled site (equation 17).

In the multisite representation, each λ-coordinate is independent of the others and thus

evolves on a one dimensional potential (equation 4), similar to that of "chemically" uncoupled

sites. However, in contrast to the uncoupled sites, the correction potential V MM is multi-

dimensional as its value depends on all λi,k coordinates representing each of the possible

protonation states of residue i. These potentials are obtained through a least-square fit of

a multi-dimensional polynomial to the ensemble-averaged gradients of the potentials with

respect to λi,k evaluated on the (ni − 1)-dimensional grid of the ni coupled λ-s, i. e.:

〈∂V/∂λi,k〉λ1...λni . The fitting procedure is explained in detail in the SI.

The multisite representation can be applied to residues with any number of titrat-

able sites, including residues with only a single titratable site. In the latter case, two λ-

coordinates, corresponding to the protonated state (λi,1 = 1, λi,2 = 0) and deprotonated

state (λi,1 = 0, λi,2 = 1) are introduced with a constraint on their sum (λi,1 + λi,2 = 1).
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Figure 2: Multisite representation illustrated for a histidine side chain. Each possible pro-
tonation state is represented by its own λ-coordinate. HSP refers to doubly protonated
histidine, HSD and HSE to histidine singly protonated at the Nδ or Nε respectively. HS0 is a
common, non-physical state of the residue. To restrict the sampling to the plane connecting
the physical states, a constraint λ1 +λ2 +λ3 = 1 is applied (gray plane). A biasing potential
is also applied to enhance sampling at the end states, where one of the λ-coordinates is close
to one, while the other coordinates are close to zero.

Methods

We have implemented the algorithms for CpHMD with charge interpolation in a fork of

GROMACS software package (2021 release).40 The code and manuals are available for free

at https://gitlab.com/gromacs-constantph/constantph. Here we verify the validity of our

implementation for reproducing pKa values of peptides and proteins. To demonstrate that

the linear interpolation of charges (equation 17) scales better with the number of titratable

sites in the system than the linear interpolation of interaction functions (equation 15), we

compared the scaling between our new implementation, which is based on linear charge
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interpolation on the one hand, and a previous implementation in a fork of the GROMACS

3.3 release, which is based on linear interpolation of the force field potentials on the other

hand.16 To estimate the additional computational effort required for performing CpHMD

with the new implementation, we also compared the performance of a CpHMD simulation

to that of a normal MD simulations on both CPUs and GPUs.

Simulated systems

To test the implementation, we performed constant pH MD simulations of the following

systems:

1. Glutamic acid (Glu)

2. Aspartic acid (Asp)

3. Histidine (His)

4. Cardiotoxin V (PDB ID: 1CVO41)

5. Hen egg white lyzozyme (HEWL, PDB ID: 2LZT42)

6. The GLIC pentameric Ligand-Gated Ion Channel (PDB ID: 4HFI43)

7. Turkey ovomucoid inhibitor (PDB ID: 2GKR44)

In systems 1-6 the interactions were modelled with the CHARMM3645 all-atom (AA)

force field, with some modifications in the torsion parameters to accelerate the convergence.

These modifications are presented and validated in an accompanying paper.46 Systems 1-5

were also simulated with the Martini 2.0 coarse grained (CG) force field.33 The martinize.py

script was used to automatically generate the CG representation of these systems.47 System 7

was simulated to compare the efficiency of interpolating charges and potentials. The inter-

actions in this system were modeled with the OPLS force field,48 because the GROMACS

17



3.3 release, on which the linear interpolation of potentials implementation was based, does

not support the CMAP correction that is needed for the CHARMM36 force field.49

The amino acids Glu, Asp and His were modelled as tripeptides Ala-X-Ala with acetylated

N-terminus (ACE) and N-methylamidated C-terminus (CT3). The proteins were simulated

with charged termini. The tripeptides were placed in a periodic rectangular box of dimensions

5×5×5 nm3 with approximately 4000 CHARMM TIP3P50,51 water molecules for the AA

simulations and 950 polarizable water particles for the CG simulations.52 The water soluble

protein cardiotoxin V was placed in a periodic rectangular box of 7.9×7.9×7.9 nm3 and

filled with 16500 CHARMM TIP3P water molecules for the AA simulations. For the CG

simulations, the protein was placed inside a periodic rectangular box of 5.7×5.7×5.7 nm3

and filled with 1800 polarizable water particles. The larger water soluble protein HEWL was

placed in a periodic rectangular box of 8.9×8.9×8.9 nm3 and filled with 23000 CHARMM

TIP3P water molecules for the AA simulations and 5400 polarizable water particles for the

CG simulations. Na+ and Cl− ions were added to all systems at 0.15 M concentration to

neutralize the protein systems. The turkey ovomucoid inhibitor protein was placed in a box

of 4.9 × 4.9 × 4.9 nm3 with 3086 SPC53 water molecules. The GLIC protein was embedded

into a bilayer membrane containing 498 phosphatidylcholine (POPC) lipids, placed in a box

of 14.0 × 14.0 × 15.9 nm3, and filled with 66494 CHARMM TIP3P waters, 58 Na+, 123

Cl− ions. The system contained 292135 atoms in total. The simulation of this system was

performed with the GROMACS 2021.4 release as reference. The GLIC bencnhmarks were

run with default settings on an Intel i9-7920X 12-core CPU and an Nvidia RTX 2080 Ti

GPU. All input configurations are provided as Supporting Information.

In the AA simulations, Coulomb interactions were modeled with the smooth PMEmethod

with a real-space cut-off of 1.2 nm and a grid spacing of 0.14 nm,36,37 while Lennard-Jones

interactions were smoothly switched to zero in range from 1.0 to 1.2 nm. In the CG sim-

ulations, Coulomb interactions were modeled by a Reaction Field potential with a 1.1 nm

cut-off, εr = 2.5, and εRF =∞, while Lennard-Jones interactions were truncated at 1.1 nm.54
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To keep the temperature constant at 300 K, we used the v-rescale thermostat55 with time

constants of 0.5 and 1.0 ps−1 for AA and CG simulations, respectively. The pressure was

kept constant at 1 bar with the Parrinello-Rahman barostat56 with relaxation times of 2.0

and 12.0 ps for AA and CG simulations, respectively. A leapfrog integrator was used with

an integration steps of 2 an 20 fs for AA and CG simulations, respectively. In the AA sim-

ulations, the LINCS algorithm57 was used to constrain bond lengths of the solutes, while

the SETTLE58 algorithm was used to constrain internal degrees of freedom of the water

molecules. Prior to the constant pH MD simulations, the potential energy of each system

was minimized using the steepest descent method, followed by 1 ns of equilibration.

Constant pH MD simulation setups

In the atomistic simulations the multisite representation was used to model the protonation

states of titratable residues. Two λ-coordinates were introduced to model the two forms of

the carboxylic acid side chain in Asp and Glu, while three coordinates were used to describe

the three protonation states of the imidazole sidechain in His. In the CG simulations, the

single-site representation was used, in which the A and B states represent the protonated and

deprotonated states of the titratable beads. Because, in contrast to AA force fields, there

is no distinction between the two neutral forms of the His sidechain in the Martini force

field, the single-site description for HIS suffices in the CG simulations. In both atomistic

and coarse-grained simulations, the transformations between the different protonation states

were achieved by changing the charges of the ionizable groups. The Lennard-Jones and

bonded terms (bonds, angles, and torsions) were kept in the protonated and deprotonated

state in AA and CG simulations, respectively (see Supplementary Information, Fig. S3). We

show in SI that the contribution of these terms is sufficiently small to be neglected without

significant error. Note, that these terms can be made λ-dependent as well, but this is beyond

the scope of the current work since the efforts to implement this are high.

The mass of the λ-particles was set to 5 atomic units, and their temperature was main-
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tained at 300 K by using a separate v-rescale thermostat for the λ coordinates with a time

constant of 2.0 ps−1. For all λ-coordinates the biasing potential V bias
i (λi) was defined by

equation S1 in the SI. The barrier height of the double well potential was set to 5.0 and

7.5 kJ/mol for AA and CG simulations, respectively. The parameters for the double well

potential and the pH dependent potential (Equation 4) are provided in Table S1 in the SI.

For the tripeptides, we calculated five independent CpHMD trajectories of 20 ns each

at 13 pH values, ranging from 1.0 to 7.0 for the peptides with Glu and Asp, and from

4.0 to 10.0 for the peptides with His. For the cardiotoxin V protein (three Asp and one

His titratable residues), we performed five independent CpHMD simulations of 50 ns at

15 pH values between 1.0 to 8.0. For the HEWL protein (seven Asp, two Glu and one His

titratable residues), we performed five independent CpHMD simulations of 75 ns at 21 pH

values between −1.0 to 9.0. The values of the λ-coordinates were written to file with a

frequency of 1 ps−1.

Reference states and force field correction potentials

The constant pH simulations of the aforementioned systems require reference states for Asp,

Glu and His, in which the proton affinity (pKa) is known from experiment. The measured

and calculated (force field) deprotonation free energies of these reference states were used

to include the effect of the pH bath, as well as the effects of the breaking and forming of

chemical bonds in the simulation, i.e., V MM in Equation 2. The measured reference pKa

values used in this work are included in Table 1. Note that the experimental values were

obtained for pentapeptides, while tripeptides were used for computing V MM. This however

did not affect the results, as shown in Figure S2 of SI.

Thermodynamic integration was used to compute the reference free energies as follows:

The partial charges in tripeptide systems representing the reference states of Glu, Asp, His

were linearly interpolated between λ = −0.1 and λ = 1.1 with a step of 0.05 under the

constraint λ1 + λ2 = 1 for Glu and Asp, while for His, the constraint was λ1 + λ2 + λ3 = 1.
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For each set of λ values, called a grid point, a 10 ns MD simulation was performed. ∂V/∂λi

were saved every ps, which is approximately equal to the auto-correlation times for the

λ-coordinates. The total charge of the system was kept neutral by simultaneously changing

the charge of a single buffer particle, discussed below. The ∂V/∂λi values were averaged over

the last 9 ns of the trajectories. To obtain an analytical expression for V MM a fifth order

polynomial was fitted to these averages for Asp and Glu, while an eighth order polynomial

was fitted for His, taking into account possible linear dependencies of the coefficients (see

Supplementary Information). Fitting errors were below 0.5 kJ/mol for Asp and Glu and

below 1 kJ/mol for His, which are of similar magnitude as the statistical accuracy of the

derivatives.

Buffer particles

Dynamically changing partial charges can affect the total charge of the simulation unit cell,

which can lead to artifacts, as documented for instance in Hub et al. for Ewald-based meth-

ods.59 To avoid such artifacts, it is essential to keep the total charge of the unit cell constant.

Two approaches have been proposed: (i) direct coupling between each titratable residue and

a water,20 or ion,18 and (ii) titratable buffers that collectively compensate changes in charge

of all titratable residues.34

Here, we follow the latter approach, but with several improvements for all-atom simula-

tions. Firstly, to avoid restraints, which were needed to minimize interactions between the

buffers and the titrable sites in previous work,34 we introduced buffer particles with both

small LJ radius and small partial charges of maximal |0.5| e, such that they do not disturb the

hydrogen bond network, nor interact too strongly with the titratable sites or other buffers.

Secondly, to also prevent strong interactions with hydrophobic regions in the system, the C6

dispersion parameter with anything other than water was set to zero, including the other

buffers. The latter also avoids clustering of buffers during the simulation. Further details on

buffer parameterization are provided in the accompanying paper.46 Thus, the buffer particles
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have an σ of 0.25 nm and an ε of 4 kJmol−1. In coarse-grained simulations, standard Na+

ions were used as buffer particles.

As in Donnini et al.,34 the buffers were collectively coupled to the titratable sites in

the system via a charge constraint. The charges of all buffers were thus simultaneously

interpolated between −0.5 e and 0.5 e, keeping the simulation box neutral. For all peptide

simulations, 10 such buffers were introduced into the system, while 20 buffers were added

to the simulation boxes with the proteins (systems 4-5), in both AA and CG models. 185

buffer particles were used in GLIC simulations.

Analysis of the constant pH trajectories

To estimate the pKa values of titratable groups from multiple simulations at various pH

values, we computed the average fraction of deprotonated frames (Sdeprot) over all replicas.

For a group with a single titratable site, this average was obtained as

Sdeprot(pH) =
Ndeprot

Nprot +Ndeprot (18)

where Nprot and Ndeprot are the total number of frames in which the site is protonated and

deprotonated, respectively. For titratable sites modeled in the single-site representation, we

considered it protonated if λ is below 0.2, and deprotonated if λ is above 0.8. For sites

that are described with the multisite description, we considered a state protonated if the λ

associated with the protonated form of the residue is above 0.8, and deprotonated if the λ

associated with the deprotonated form of the residue is above 0.8.

To estimate the macroscopic pKa values of histidine, which contains two titratable sites

Nε and Nδ, we calculated for each pH value the average fraction of frames in which the

residue is deprotonated at either of the two sites:

Sdeprot
macro (pH) = 1− Nλp

Nλp +Nλε +Nλδ
(19)
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where Nλp , Nλε and Nλδ are the numbers of frames in which λp > 0.8, λε > 0.8 and λδ > 0.8

(Figure 2). To estimate the microscopic pKa values for the two sites of His, we calculated

for each site the average fraction of frames in which that site was deprotonated:

Sdeprot
micro(δ/ε)(pH) =

Nλδ/λε

Nλp +Nλε/λδ
(20)

Errors were estimated from the standard error of the mean for the different replicas.

The averaged fractions at each pH value were fitted to the Henderson-Hasselbalch equa-

tion:

Sdeprot =
1

10(pKa−pH) + 1
(21)

which yielded the pKa values as fitting parameters. The error in the pKa was estimated from

95% confidence interval for the non-linear least squares fit to the average (Sdeprot) values.

Results and Discussion

Here we discuss the results obtained with our new implementation of constant pH into the

fork of GROMACS 2021 release.40

Titration of single amino acids

In Figure 3 we show the titration curves for AlaAspAla, AlaGluAla and AlaHisAla tripep-

tides, obtained from simulations with the modified all-atom CHARMM3646 and coarse-

grained Martini 2.0 force fields.33 Fitting the deprotonated fractions as a function of pH

value to the Henderson-Hasselbalch equation (dashed lines in Figure 3) yields pKa values

for the tripeptides that are within 0.1 pKa units from the reference values. Comparing the

titration curves obtained with the Martini 2.0 force field in our implementation to those com-

puted with the constant pH approach developed explicitly for this coarse-grained model,26

our results suggest a much better agreement with experiment than the latter. We attribute
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this difference to the more sophisticated explicit treatment of proton-like particles in the

Martini constant pH approach. The rather good agreement between the titration curves

obtained for both force fields on the one hand and experiment on the other hand suggests

that our implementation has little to no dependency on the force field, in line with the

GROMACS philosophy of supporting a wide range of popular force fields.

Figure 3: Titrations of tripeptide amino acids (Glu, Asp, His) in water. The top and bottom
rows show titrations performed with the modified AA CHARMM3646 and CGMartini33 force
fields, respectively. In all simulations neutrality was maintained by including ten buffer
particles in combination with the charge constraint. Dots show the fraction of frames in
which the residue is deprotonated, and the dashed lines represent the fits to the Henderson-
Hasselbalch equation. For His, blue color represents the macroscopic pKa, while yellow and
red represent the microscopic pKa values for HSD (proton on Nδ) and HSE (proton on Nε),
respectively. In the Martini 2.0 model, HSD and HSE are indistinguishable and hence only
the macroscopic titration curve is shown. From the fits the pKa values were estimated and
listed in Table 1.

Titration of proteins

The titration curves of cardiotoxin V and HEWL proteins are shown in Figures 4 and 5, re-

spectively. The pKa values obtained from fitting the Henderson-Hasselbalch equation to the

degree of deprotonation in the all-atom simulations of both proteins with the CHARMM36
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Table 1: pKa values obtained from titration simulations. The reference pKa values for
tripeptides are given in the last column that contains the experimental pKa values. The
values for Asp and Glu are taken from,60 while the microscopic and macroscopic pKa values
for His are taken from.61 Experimentally obtained pKa values for cardiotoxin V are from62,63

and for HEWL from.64

pKa values
Amino acid CHARMM36 MARTINI Exp.

Tripeptide simulations60,61

Asp 3.61± 0.03 3.69± 0.02 3.65
Glu 4.26± 0.04 4.30± 0.03 4.25
His macroscopic 6.34± 0.08 6.40± 0.03 6.42
His HSD 6.56± 0.06 6.53
His HSE 6.90± 0.05 6.94

Simulation of cardiotoxin V62,63

His-4 5.14± 0.16 4.54± 0.09 5.5
Glu-17 4.08± 0.08 4.36± 0.04 4
Asp-42 4.02± 0.10 4.30± 0.05 3.2
Asp-59 2.41± 0.07 1.45± 0.03 < 2

Simulation of HEWL64

Glu-7 2.82± 0.07 4.86± 0.05 2.6
His-15 4.84± 0.05 5.42± 0.05 5.5
Asp-18 3.35± 0.05 3.31± 0.03 2.8
Glu-35 7.64± 0.13 6.36± 0.05 6.1
Asp-48 0.99± 0.07 3.36± 0.05 1.4
Asp-52 5.69± 0.12 7.18± 0.10 3.6
Asp-66 1.70± 0.10 5.22± 0.05 1.2
Asp-87 1.73± 0.03 3.47± 0.05 2.2
Asp-101 5.43± 0.11 4.20± 0.06 4.5
Asp-119 2.77± 0.05 3.80± 0.05 3.5

force field, listed in Table 1, are in good agreement with previous constant pH MD sim-

ulations,23,65 and in reasonable agreement with experimental estimates from NMR spec-

troscopy.62–64 In particular, the trends in the pKa shifts are well reproduced, including the

downshift of Asp-59 in cardiotoxin V, and, with the exception of Glu-35 and Asp-52 in

HEWL, the deviations are below 1 pKa unit. We note that also in previous constant pH

simulations with the CHARMM force field,15,23 similar deviations were found for these two

residues (see Figure S5). This suggests that the origin of the discrepancy might lie beyond

the implementation, and could be due to either a lack of sampling, or systematic shortcom-
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ings in the force field. The pKa values estimated from the Martini 2.0 force field simulations

of these proteins do not agree as well to experiment as those derived from the all-atom

simulations. We speculate that the larger deviation of the pKa’s in the coarse-grained con-

stant pH simulations could be due to the lower accuracy of the electrostatic interactions.

Although we still consider the results obtained with the Martini simulations reasonable, in

particular for the peptides, the discrepancies for the titratable residues in proteins suggest

that additional parameterization efforts may be required to systematically improve the force

field for constant pH MD simulations based on λ-dynamics. Such improvements would be

particularly worthwhile considering coarse grained simulations pave the way to perform MD

simulations of complete organelles,66 in which many processes have a strong pH dependence.

Figure 4: Titration curves of the cardiotoxin V protein obtained from constant pH MD
simulations with the CHARMM36 (top) and Martini 2.0 force fields (bottom). For each
of the four titratable residues in this protein the dots show the fraction of frames in which
the residue is deprotonated. The lines show the best fits to the Henderson-Hasselbalch
equation. The pKa values for each titratable residue were estimated from these fits, and
listed in Table 1. The right panel shows the protein structure with the four titratable
residues highlighted in stick representation.
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Figure 5: Titration curves of the HEWL protein obtained from constant pH MD simulations
with the CHARMM36 (top) and Martini 2.0 force fields (bottom). For each of the ten
titratable residues, the dots show the fraction of frames in which that residue is deprotonated.
The lines show the best fit to the Hendersen-Hasselbach equation. The pKa values for each
titratable residue were estimated from these fits, and listed in Table 1. The right panel shows
the protein structure with the ten titratable residues highlighted in stick representation.

Efficiency of the implementation

To demonstrate that linear interpolation of charges is computationally more efficient than lin-

ear interpolation of the potential energy functions for systems with many titratable sites, we

investigated how the computational cost of a simulation scales with the number of titratabe

sites in the system for both approaches. Because we have implemented interpolation of

the charges rather than potentials into the fork of GROMACS 2021 release, whereas the

potential interpolation was implemented in a fork of GROMACS 3.3 release, we compare

the relative performances of both codes for an increasing number of titratable sites in the

system. We define the relative performance as the ratio between the average wall-clock time

per integration step for a simulation with constant pH on the one hand and the average

wall-clock time per integration step for a normal simulation without constant pH on the

other hand.
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Figure 6A shows that relative performance of constant pH simulations with charge in-

terpolation does not decrease when the number of titratable sites included in the simulation

increases. Most of the 30-40% drop in performance compared to a normal MD simulation

with the same version of GROMACS is caused by the additional calculations and reductions

in the non-bonded pair-interaction kernels that are required to obtain the real-space part of

the electrostatic potential (Φ(Ri,λ) in Equation 17).

In contrast, the relative performance of constant pH simulations based on the linear

interpolation of potential energy functions, decreases with the number of titratable sites in

the system. This comparison thus demonstrates that by replacing linear interpolation of

potentials by linear interpolation of partial charges, we have overcome the major bottleneck

in the earlier constant pH implementation in the fork of GROMACS 3.3 release, and paved

the way towards simulations of large biomolecular systems at constant pH. An example of

such a large system is the proton-gated ion channel GLIC, a membrane protein with 185

titratable residues. Figure 6B shows the performance of the new implementation for this

large system when running the simulation on CPU and on a combination of CPU and GPU.

While the computational overhead is somewhat larger when using a GPU in addition to a

CPU, the overall performance still improves significantly when adding a GPU.

Conclusions

We have presented and validated a new implementation of λ-dynamics based constant pH

molecular dynamics in the GROMACS software. Our implementation combines several de-

velopments in this field into a single MD program, including the multisite representation of

titratable groups,38 charge interpolation,14 Particle Mesh Ewald electrostatics,23 and charge

constraints.34 Test calculations on amino acids and proteins suggest that the new imple-

mentation is efficient, accurate and agnostic to force fields. Combined with user-friendly

parameterization protocols, presented in the accompanying paper,46 we expect that this im-
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Figure 6: (A) Relative performance of interpolating potentials in a previous implementation
of CpHMD into a fork of GROMACS 3.3 release (blue) and of charge interpolation in our
new implementation (red) as a function of the number of titratable sites. The simulations
were performed for the turkey ovomucoid inhibitor protein (PDB ID: 2GKR44), shown in the
inset, where the titratable sites are highlighted in stick representation. (B) Comparison of
the performance between CPU-only and CPU+GPU implementations for the ligand-gated
ion channel GLIC (PDB ID: 4HFI43) with 185 titratable sites. In total, the GLIC system
contained 292135 atoms.

plementation will pave the way towards routinely including the effect of pH in biomolecular

MD simulations.

Appendix A: Constraint algorithm

We use constraints to restrict sampling to the correct protonation states in the multisite

representation as well as to maintain a neutral charge of the simulation box. Both multisite

and charge constraints keep the linear combination of a subset of λ coordinates constant,

and are applied simultaneously. Thus, there are Nc constraint equations

σk(λ) =

Nsites∑
i=1

αki λi = Ck (22)

for k ≤ Nc. Here, λ is the vector of all λi-coordinates and Ck is the value of constraint k,

which can be zero. If σk(λ) is a multisite constraint, αki = 1 for λi-coordinates that represent

29



one of the protonation states of a residue, while αki = 0 for all other λi-coordinates. If σk(λ)

is a constraint for keeping the overall charge constant, αki =
∑N i

atoms
j qBj,i − qAj,i, with N i

atoms

the number of atoms whose charges change as a function of λi.

During a leap-frog integration step all λi-coordinates are first propagated without con-

straints to their unconstrained new values λui , which do not fulfill the constraints in Equation

22. To obtain the constrained λci values, we first connect the constrained and unconstrained

λi values using the definition of σk(λ):

σk(λc) = σk(λu) +

Nsites∑
i=1

αki [λci − λui ] (23)

Because the unconstrained and constrained λi-coordinates are also connected by the con-

straint forces Gk
i = −ζk ∂σk

∂λi
, we have in addition that

λci = λui +
Nc∑
k=1

Gk
i

∆t2

mi

= λui −
Nc∑
k=1

ζk
∂σk

∂λi

∆t2

mi

= λui −
Nc∑
k=1

ζkαki
∆t2

mi

(24)

where ζk is the Lagrange multiplier for constraint k, mi the fictitious mass of λi and ∆t the

integration time step. Substituting Equation 24 in 23 yields

σk(λc) = σk(λu)−
Nsites∑
i=1

αki

Nc∑
l=1

ζ lαli
∆t2

mi

(25)

which after rearranging can be expressed as

∆σk = σk(λu)− σk(λc) =
Nc∑
l=1

ζ l
Nsites∑
i=1

αki α
l
i

∆t2

mi

(26)

The last expression can be rewritten in matrix form

∆σ = (∆σ1, ...,∆σNc)T = Aζ (27)
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where ζ = (ζ1, ..., ζNc)T and

A =

(
Nsites∑
i=1

αki α
l
i

∆t2

mi

)
(28)

Because the αki coefficients remain the same, matrix A is computed once at the start of

the simulation. At each step, the elements ∆σk are evaluated as the difference between the

σk(λu) and σk(λc) = Ck:

∆σk = σk(λu)− Ck (29)

The Lagrange multipliers ζk are then obtained from Equation 27 and used to correct the

unconstrained λi values (Equation 24).
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scription of λ-potentials, effect of neglecting the interpolation of Lennard-Jones interactions,

titration results for Asp and Glu within the single-site representation, a comparison of pKa

values for HEWL obtained with various λ-dynamics-based constant pH methods, demon-

stration that charge interpolation requires a single evaluation of the electrostatic potential

for both single- and multisite representations, a Mathematica notebook with instructions

and routines to fit V MM.67 The fork of GROMACS 2021 with constant pH implemented as
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described here, is available for download free of charge from https://gitlab.com/gromacs-

constantph/constantph. In addition to the source code, also instructions on how to setup

and perform MD simulations are available.
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