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Abstract
Motivation: The primary goal of drug design is to develop potent small molecules that can
inhibit the target protein with high selectivity. In the early stage of drug discovery, various
experimental  and computational  methods are used to measure the target-specificity of
small molecules against the target protein of interest. The selectivity of the small molecule
remains a challenge, especially when the target protein belongs to a homologous family,
which can often lead to off-target side effects.
Results: We have developed a multi-task deep learning model for predicting the selectivity
of small molecules on the closely related homologs of the target protein. The multi-task
model, which can learn from training data of the related tasks has been tested on the
Janus kinase (JAK) and dopamine receptor  family  of  proteins.  To decipher  the model
decision  on selectivity,  the  important  fragments  associated  with  each  homolog protein
were identified using SHapley Additive exPlanations (SHAP) method. The performance of
the multi-task model was evaluated using various representation of small molecules such
as fingerprints (ECFP4) and molecular graph representations. It  was observed that the
feature-based  representation  (ECFP4)  with  the  XGBoost  performed  marginally  better
when compared to deep neural network models in most of the evaluation metrics. Both the
models outperformed the graph-based models. The identification of important fragments
associated with each proteins of the homolog family using SHAP method, explains the
factors  that  governed  the  decision  of  the  multi-task  predictive  model.  The  proposed
method can be used post hit generation.
Contact: roy.arijit3@tcs.com 

1 Introduction 

One of the crucial steps for the success of drug discovery is to find a molecule that can
bind to the target protein with high affinity and selectivity. The selectivity is often difficult to
achieve,  especially  for  the  targets  that  belong  to  large  families  of  structurally  and/or
functionally related proteins. Lack of selectivity can lead to off-target side effects, which is
one of the reasons for the high attrition rate of drug molecules.
A majority  of  the  current  druggable  targets  in  humans  are  confined  to  a  few  protein
families. A study in 2017 identified 667 human proteins as druggable targets, among which
44% are from four homologous families alone (Santos et al., 2017). Examples of common
druggable homologous protein families include protein kinases, ion channels, Rhodopsin-
like G protein-coupled receptors (GPCRs), and nuclear hormone receptors (Santos et al.,
2017). A more specific case is of the four kinases, JAK1, JAK2, JAK3 and tyrosine kinase
2 (TYK2), which form the Janus kinase (JAKs) family, and are centrally implicated in the
cytokine receptor-mediated cell signaling process. Each of these druggable proteins play



different roles in cytokine-induced cell signaling (Dymock et al., 2013, Dymock et al., 2014)
and therefore, selective inhibitors against individual proteins are now a key goal (Dymock
et  al.,  2014).  Several  selective  inhibitors  against  JAK1  (Norman  et  al.,  2012),  JAK2
(Dymock et al., 2014; Dymock et al., 2013), JAK3 (Pei et al., 2018), TYK2 (Norman et al.,
2012) have been identified and used for  treating specific  diseases.  For examples,  the
JAK2-specific inhibitors have been used to treat myeloproliferative neoplasms and are now
being extended to treat leukemia, lymphoma and solid tumors (Dymock et al., 2013). The
JAK3-specific inhibitors are used in immune-inflammatory diseases, such as rheumatoid
arthritis and psoriasis (Pei et al., 2018). Similarly, the proteins of the dopamine receptor
family  have  different  functions  and  there  are  ongoing  attempts  to  prepare  selective
inhibitors against the individual proteins (Keck et al., 2019; Mishra et al., 2018).

Figure 1. A multi-task machine learning model can screen the hit molecules to check the
selectivity against the target protein from the structurally related family of proteins. In the
above toy example, all the molecules were found to inhibit protein 4 during experiments,
but only Mol2 and Mol5 were found to be selective. By monitoring the selectivity at an early
stage, only selective molecules can be considered for further drug development.

Various in silico methods have been developed for improving the selectivity and has been
extensively discussed in few review articles (Huggins et al., 2012; Chaudhari et al., 2020).
There are attempts to develop databases of small molecules associated with their targets
so that users can query about a new molecule based on structural similarity (Allaway et al.,
2018; Chen et al., 2017).  Peón et. al. has developed a webserver, MolTarPred, to predict
the targets of a molecule (Peón et al.,  2019). Similarly, structure-based approaches like
docking or 3D-QSAR methods were also found to be useful for improving the selectivity
(Huggins et al.,  2012).  There are also attempts to develop network-based approaches
which can identify off-target effects (Moya-García  and  Ranea, 2013). While there have
been various attempts to address the problem of selectivity, it still remains a challenge. 
Recently, artificial intelligence has been used in various fields of science and technology
including drug design and development (Schneider et al.  2020). Recent deep learning-
based generative models (Krishnan et  al.,  2021a;  Krishnan et  al.,  2021b;  Bung et  al.,
2021;  Olivecrona et  al.,  2017;  Segler  et  al.,  2018;  Popova  et  al.,  2018)  have helped
explore  the  vast  chemical  space while  optimizing  various physico-chemical  properties.
These methods have helped to drastically reduce the time required for hit identification
(Zhavoronkov  et  al.,  2019).  However,  none  of  the  above  approach  addresses  the
challenge of selectivity during molecule generation.



The selectivity of small molecules in in vitro experiments is usually addressed by screening
them against a subset of proteins, which are part of the same homologous family of the
target protein. Kinase inhibitors are most often tested for selectivity due to the presence of
a large number of kinases during drug discovery and development (Santos et al., 2017; Li
et al., 2019). To mimic the experimental setup, various machine learning models can be
trained to predict  the effect of  small  molecules on the closely related homologs of the
target protein which belong to the same family (Fig. 1). Multi-task learning models can be
useful to address the question of selectivity since it can learn from the joint training signals
of related tasks (selectivity towards multiple proteins) and generalize better than a single
task (selectivity prediction for a single protein) (Caruana 1998). Multi-task learning has
been used successfully applied to number of machine learning applications including drug
discovery (Ramsundar 2015).
As a test case, we have trained multi-task predictive models on the Janus kinase (JAK)
and  dopamine  receptor  (DRD)  family  of  proteins.  Various  small  molecular  input
representations such as SMILES, ECFP4 fingerprint and molecular graph were tested to
identify the most suitable representation for predicting target selectivity.

2 Methods

2.1 Dataset Curation

The  dataset  for  human  Janus  kinase  (JAK1,  JAK2,  JAK3  and  TYK2)  and  dopamine
receptor (DRD1, DRD2, DRD3, DRD4 and DRD5) family of proteins was curated using
ExCAPE-DB (Sun et  al.,  2017)  and ChEMBL (Gaulton  et  al.,  2012),  respectively.  The
dataset  for  each  protein  was  downloaded  and  canonicalized  using  RDKit
(https://www.rdkit.org) (Table 1). There were 481, 2165, 1674 and 908 molecules in the
JAK1, JAK2, JAK3 and TYK2 specific datasets, respectively. For DRD1, DRD2, DRD3,
DRD4  and  DRD5  receptor  there  were  1072,  6498,  4385,  2248  and  308  molecules,
respectively. The activity of all molecules was reported in pXC50, which is the half-maximal
inhibitory concentration of molecules from various comparable methods and converted to
negative log scale.  Based on the pXC50 values, the molecules were classified as active
(pXC50 >= 6) and inactive (pXC50 < 6). The four JAK family datasets were merged to
obtain the curated multi-task dataset consisting of 2619 unique molecules, while for DRD
family there were 8003 unique molecules.

Table 1. Details of the dataset used for modeling the selectivity of JAK and DRD family of 
proteins.

Janus Kinase Family

Protein Total Molecules Actives Inactives
JAK1 481 223 258
JAK2 2537 821 1716
JAK3 1492 226 1266
TYK2 722 68 654

https://www.rdkit.org/


Dopamine receptor family

Protein Total Molecules Actives Inactives

DRD1 1072 793 279

DRD2 6498 5184 1350

DRD3 4385 3837 548

DRD4 2248 1962 322

DRD5 308 186 122

2.2 Building the multi-task predictive models

The task in this study is to classify the small molecules as active or inactive against a
family of homologous proteins. A multi-task predictive model can be ideal for the same,
which can simultaneously predict the activity of a small molecule against a family of related
proteins  (Figure  1).  Recent  studies  have  shown that  multi-task  predictive  models  can
outperform single-task models, as the hidden layers are shared among all tasks and helps
the model to learn a task-agnostic representation (Rodríguez-Per ́ez et al., 2019) . Various
machine learning models such as Extreme Gradient  Boosting (XGBoost)  (Chen et  al.,
2016), Deep Neural Networks (DNN) (Rodríguez-Per ́ez et al.,  2019) and graph-based
models (GCN and GAT) (Kipf et al., 2017;  Veličković et al. 2017) were trained to predict
the selectivity of small molecules towards the proteins that belong to the same family. The
input representation for the small molecule was chosen according to the algorithm used for
the machine learning model, to harness the maximum possible chemical information. For
the  current  study,  two  different  input  representations  were  explored:  1)  Extended
connectivity fingerprint (ECFP4) (Rogers et al., 2010) and 2) Molecular graph (Duvenaud
et al., 2015). Based on the above input representations, five different predictive models
were trained.

2.2.1 Extreme Gradient Boosting (XGBoost)

XGBoost (Chen et al., 2016)  is an open-source implementation of the gradient boosted
tree algorithm and has been widely used for prediction of several molecular properties
(Leiet  al.,  2017;  Yang  et  al.,  2019;  Jiang  et  al.,  2021).  However,  there  is  no  direct
implementation of XGBoost that can perform multi-task output prediction. To mitigate this
issue, a binary bit vector, with length equal to the number of targets considered for multi-
task  prediction  and  was  concatenated  with  the  ECFP4-based  fingerprint  of  1024  bits
length (li  et  al.)  (Fig.  1).  For  the current  study,  the length of  input  feature vector  was
considered as 1024+m, where m is the number of proteins in a family against which the
selectivity needs to be checked. By appending the m-bit vector, the multi-task model was
converted into a binary classification model, where the on bit corresponds to each of the
protein/homolog  being  predicted  (Rodríguez-Per  éz  et  al.,  2019) (Fig.  1).  The
implementation  of  XGBoost  from  scikit-learn  (Pedregosa  et  al.  2011)  was  used  and
extensive  hyperparameter  tuning  was  performed.  During  hyperparameter  tuning,  the
parameters like learning rate (0.1, 0.01, 0.001), gamma (0.1, 0.2, 0.3, 0.5, 1, 2, 4, 8, 16,

https://petar-v.com/


32), max_depth (14-30) and n_estimators (from=5, to=100, step=5) were optimized using
grid search.

2.2.2 Deep neural networks (DNN)

DNN algorithms have achieved excellent performance in several drug discovery problems
(Goh et al., 2017; Hamadache et al., 2017). In the most simplistic model, a DNN consists
of at least two hidden layers of neurons apart from the input and output layers (Rodríguez-
Per ́ez et al., 2019). The ECFP4-based fingerprint was used as an input to the first layer,
and to the subsequent layer, the output from the previous layer was used as input.  The
final layer consists of m dimensions, where m corresponds to number of proteins in a
family, against which selectivity was queried. For each of the intermediate layers the ReLU
activation function was used, while the sigmoid activation function was used for the final
layer. As the performance of a DNN is sensitive to hyperparameters, a grid search on the
layer sizes (32, 64, 128, 256, 512), learning rate (0.01, 0.001, 0.005, 0.0001) and dropout
rate (0.25, 0.5) were performed to find the best combination of hyperparameters.

2.2.3 Graph convolution network (GCN)

The GCN, which was originally introduced by Kipf and Welling. (Kipf et al., 2017), have
shown promising results for predicting various molecular properties (Weider et al., 2020). A
graph is usually defined as G=(V,E), where the atoms are represented as nodes (V) and
the bonds between them as edges (E). A GCN with message passing layer transforms the
embedding  of  each  node  in  the  following  way:  1)  aggregates  the  information  from
neighbouring nodes (or atoms) where it take help from an adjacency matrix A ∈ {0, 1}n×n

and a node feature matrix X ∈ Rn×d. Here, n represents the number of nodes and d, the
dimension of node feature vector (Buffelli  et a.,  2020). 2) Apply a non-linear activation
function on the aggregated embedding (Buffelli et a., 2020). The GCN was implemented
using the DeepChem library (Ramsundar et al., 2019). The default node and edge features
were used to construct the graph. The learning rate (0.1, 0.01, 0.001), number of layers (1,
2) and size of layers (32, 64, 128, 256) were tuned during the training. The GCN layers
were followed by a single dense layer of size 128 before the final output layer with sigmoid
activation.

2.2.4 Graph Attention Networks (GAT)

Graph Attention Networks (GAT) use masked self-attention layers to provide improvement
over the previous GCN methods (Veličković et al. 2017). The attention mechanism in GAT
model can aggregate node information from neighbors effectively by assigning different
importance to nodes of the same neighbourhood, enabling a leap in model capacity. 
The GAT model consist of four steps: 1) Linear transformation: The input node features are
transformed to output features using a learnable weight matrix W (eq. 1); 2) Computing
attention coefficients: The pair-wise attention score between all neighbouring nodes in the
graph are computed (eq. 2); 3) Normalization: The softmax function is applied over all the
neighbouring nodes attention scores to get normalized scores (eq. 3); 4) Aggregation: In
this  final  step,  embeddings  from  the  neighbouring  nodes  are  multiplied  with  their
respective attention score followed by aggregation to obtain the new node embedding (eq.
4). Apart from the hyperparameters used for GCN, an additional parameter, the number of
attention heads (2, 4 and 8), was tuned while model training.

https://petar-v.com/
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2.2.5 MolMapNet

MolMapNet uses a convolutional neural network-based approach to incorporate 2D feature
maps (MolMaps)  based on molecular  descriptors  and fingerprints  (Shen et  al.,  2021).
Recently, this method has been shown to perform well compared to graph-based method
against  26 pharmaceutically relevant benchmark datasets (Shen et al., 2021). The pre-
trained model provided by Shen et al., was used to train the multi-task model to predict the
selectivity of small molecules. The hyperparameters such as learning rate (0.01, 0.001,
0.0001), number of layers (1, 2) and size of layers (32, 64, 128) were tuned during model
training.

2.3 Training and evaluation metrics

From the curated dataset, 80% of the data was used for training, while the remaining 20%
for  testing.  For  all  the  models  mentioned above the  binary  cross-entropy loss  (eq.  5)
between ground truth values (yij) and predicted values (yij_cap) is calculated for each task
and the combined loss is backpropagated to update the weights of neurons in each layer.

Loss=
−1
N

∑
i=1

M

∑
j=1

N

y ij log ( ŷ ij)+(1− y ij) log (1− ŷ ij)                          (5)

where, N is total number of samples in the dataset and M corresponds to the number of
tasks.

The performance of the models was measured using the auROC score. Since the number
of actives is less than the number of inactives in the curated dataset, the precision (eq. 6),
recall (eq. 7) and f1-score (eq. 8) were also computed for the test and external datasets.

Precision=
TP

TP+FP
                                                  (6)

recall=
TP

TP+FN
                                                    (7)

F1Score=
2∗precision∗recall
precision+recall

                                      (8)

2.4 Interpreting the selectivity of JAK inhibitors

Given the state-of-the-art accuracy of the predictive models for the various properties, the
need for interpreting such models is essential such that it can provide rationales behind
the model  decision. To address the issue of interpreting the machine learning models,



Lundberg  et  al.  proposed  a  unified  framework  called  SHAP  (SHapley  Additive
exPlanations) which assigns every feature an importance score for all the predictions of
the model (Lundberg et al., 2017).

In  the  current  study,  the  predictions  of  the  best  performing  method,  XGBoost  was
interpreted for inhibitors of JAK and Dopamine Receptor family of proteins. To accomplish
this, TreeExplainer (Lundberg et al., 2020) was used, which is a version of SHAP method
designed for tree-based algorithms from the SHAP python package. Top few fragments
ranked based on SHAP were further analyzed. For each of the top 10 ECFP4 fragments,
the ratio of positives (Rp, equation 9) and negatives (Rn, equation 10) were computed to
identify the substructures that are prominent in JAK family of proteins (Pope et al., 2018). 

Ratio of positives (Rp )=
Na

N a+N i
                                             (9)

Ratio of negatives (Rn )=
N i

N a+N i
                                           (10)

Where Na, Ni corresponds to number of times a particular substructure occurs in actives
and inactive. 

3 Results and Discussion

3.1 Modeling selectivity of JAK inhibitors

Various multi-task models were trained using different input representations and machine
learning algorithms to  predict  the  selectivity  of  small  molecules  among closely  related
homologs. After extensive hyperparameter tuning, the performance of the best models for
JAK inhibitors has been summarized in  Table 1.  The XGBoost,  DNN, GCN, GAT and
MolMapNet models showed an auROC of 0.9223, 0.8893, 0.8869,  0.8625 and 0.9067
respectively (Table 1). Based on the auROC score, the XGBoost model performed slightly
better than the other machine learning models. The DNN and MolMapNet models were
close to the best performing XGBoost model. Apart from the auROC, the precision, recall,
and f1-score were also calculated for each of the models (Table 1). High precision value
indicates that the model is predicting minimum number of false positives. A comparison of
precision values across the various models shows that XGBoost and MolMapNet models
performed better  than  the  rest  of  the  models.  Further,  the  recall  metric  indicates  the
fraction of active samples that are correctly classified. The XGBoost has a better recall
with 0.6309 when compared to the other models. Overall, the XGBoost model performed
better than the other models based on different metrics used to evaluate the performance
of the multi-task predictive models. 

Table 2. Performance metric of five different machine learning algorithms for JAK proteins.

Algorithm

Train Test

auROC auROC precision recall F1-score

XGBoost 0.9998 0.9233 0.8508 0.6309 0.7143
DNN 0.9798 0.8893 0.8348 0.5934 0.6809



GCN 0.9638 0.8869 0.7649 0.4599 0.5301
GAT 0.8902 0.8625 0.7673 0.4002 0.4671

MolMapNet 0.9298 0.9067 0.8305 0.5675 0.6422

Figure 2. Bar plot showing the performance of different multi-task predictive models on the
three external datasets of the Janus kinase family.

3.2 Evaluation of models on external datasets

The  performances  of  the  predictive  models  were  tested  on  three  different  external
datasets, Anastassiadis (Anastassiadis et al., 2011), KIBA (Tang et al., 2014) and PKIS2
(Drewry et al., 2017). All the three external datasets consisted of datapoints for various
kinases  from which,  only  the  datapoints  corresponding  to  the  Janus  kinase  family  of
proteins were extracted and converted to a classification task. The active and inactive
molecules from KIBA dataset were identified through the pX50 values as mentioned in the
Methods  section.  The  Anastassiadis  and  PKIS2  dataset  measured  the  activity  of  the
protein at a fixed concentration of the small molecule. For the Anastassiadis and PKIS2
dataset, a small molecule was considered active, if the reported value of protein activity is
less than 50%, else it was considered inactive. For all the three external datasets, any
small molecule-protein pair that was present in the training dataset were removed. The
final curated dataset consisted of 60, 292 and 599 molecules for Anastassiadis, KIBA and
PKIS2 datasets, respectively. Based on the auROC values, the XGBoost model performed
better for the Anastassiadis and KIBA datasets (Fig. 2). For the PKIS2 dataset the DNN
model performed marginally better when compared to the XGBoost model. However, the
performance of all the five multitask models on PIKS2 dataset is low when compared to
other external and test dataset due to very less similarity of molecules when compared to
training dataset (Li et al., 2019). The high performance of multi-task predictive models on
external  datasets,  Anastassiadis  and  KIBA,  further  adds confidence  to  the  predictions
made by the machine learning models.

Figure  3.  Performance  of  XGBoost  and  DNN models  by  varying  the  size  of  training
dataset JAK family of proteins.



3.3 Performance of the model depends on the dataset size

From the above two case studies on the Janus kinase and DRD family of proteins, it was

observed that both XGBoost and DNN models perform better when compared to the other
deep learning models. Next, we examined the effect of training dataset size on the model
performance.  To  evaluate  the  effect  of  training  dataset  only  a  fraction  of  the  training
dataset was randomly used to train the models. However, the test dataset was uniform
across all the evaluations. The test dataset for JAK and DRD consists of 524 and 1600
molecules, respectively. While the size of complete training dataset for JAK and DRD was
2093 and 6402 molecules, respectively. With varying training data size, the auROC of JAK
models ranged from 0.78 to 0.92 (Fig. 3). For JAK dataset, the XGBoost model performed
better  than  the  DNN model  for  dataset  size  larger  than  0.4  of  the  complete  training
datasets (Fig. 3). Overall, with decreasing sizes of the training dataset, the performance
decreased considerably for both the XGBoost and DNN models.

3.4 Model distinguishes structurally similar molecules

The predictions obtained from the XGBoost model were analyzed to check if the model
was  able  to  distinguish  closely  related  molecules  with  common scaffold  and  correctly
classify them into the respective classes. Two such representative pairs are discussed
here.  The first  pair  of  molecules,  CHEMBL584322 and CHEMBL570890 are similar  in
structure  with  substitution  at  one  end.  The  substitution  makes  the  CHEMBL584322
selective towards JAK2, while CHEMBL570890 is active against both JAK2 and JAK3. The
current analysis correctly predicted the selectivity of the two molecules in accordance with
the observed experimental values (Fig. 4a). Similarly, the model was able to distinguish
between the molecules, CHEMBL2208034 and CHEMBL1078370, where a substitution at
one site results in the molecule CHEMBL1078370 to be inactive (Fig. 4b). The ability of
such selectivity prediction for molecules with common scaffold, but varying substituents
(Fig.  4) demonstrates the usefulness of the machine learning models proposed in this
work.



Figure 4.  Selectivity prediction of structurally similar molecules in the test set and their
validation  from the  experimental  results.  The  active  and  inactive  molecules  against  a
protein are colored in green and red, respectively.

3.5 Modeling selectivity of dopamine receptor inhibitors

The method proposed in the current work was also used to model the selectivity of small
molecules against the proteins of the dopamine receptor family. The dopamine receptors
are a class of G protein-coupled receptors, mainly present in the central nervous system.
They are responsible for  various neurological  processes such as pleasure,  motivation,
memory, cognition, learning and also control of fine motor skills (Girault et al. 2004). Each
of the five dopamine receptors (DRD1. DRD2, DRD3, DRD4 and DRD5) has different
function. Based on the auROC metric the XGBoost model performs better than other deep
learning models, followed by DNN model (Table 2). The auROC of XGBoost (auROC –
0.8857) model is slightly better than that of the DNN-based model (auROC – 0.8729).
While the XGBoost model performs better in the recall metric, the DNN model performs
better in the precision metric for the same test set. However, the f1-score which is the
harmonic mean of precision and recall, is similar for both the XGBoost and DNN models.
Based on the results it can be inferred that the performance of both the XGBoost and DNN
models are marginally better than the MolMapNet  and graph-based models for the DRD
family.
To our surprise, few of the simplest feature-based XGBoost and DNN models performed
better in the classification task when compared to graph-based and other image-based
convolution methods. A recent study (Jiang et al., 2021) corroborates well with the findings
of the current work, where it was shown that the feature-based methods like XGBoost and
random  forest  (RF)  perform  better  when  compared  to  graph-based  methods  on
classification tasks (Jiang et al., 2021). 

Table 3. Performance metric of five different machine learning algorithms for selectivity 
prediction of small molecules against DRD family of proteins.



Algorithm

Train Test

auROC auROC precision recall F1-score

XGBoost 0.9891 0.8857 0.8704 0.9674 0.9160
DNN 0.9692 0.8729 0.8951 0.9448 0.9193
GCN 0.9048 0.8189 0.8371 0.8443 0.8373
GAT 0.7908 0.7361 0.8052 0.9187 0.8558

MolMapNet 0.9624 0.8282 0.8359 0.9409 0.8849

3.6 Explainability of machine learning models

To further understand the features that render selectivity to both the JAK and DRD family
of proteins, the SHAP scores were computed and analyzed (see Methods).  Figure 5A
shows the distribution of mean SHAP values for top 20 ECFP4 bits for JAK inhibitors. The
bits corresponding to JAK2, JAK3 and TYK2 were indeed in the top 20 fragments ranked
according to the SHAP values (Fig.  5A).  These further provides a confidence that the
model indeed looks at those bits during classification. To determine the number of features
that  contribute  towards  model  prediction,  the  cumulative  feature  contributions  were
computed.  Figure  5b  shows  the  cumulative  SHAP percentage  values  for  top  ranked
features. While top 220 features contribute to 80% to the overall predictive performance of
the model, around 600 features with low SHAP values contributed less than 0.01%. This
indicates that the presence of these 600 features do not affect the performance of the
model.
Figure  5:  A. Mean  SHAP values  for  top  20  features  corresponding  to  JAK  dataset
obtained  from  XGBoost  model.  B. Distribution  of  cumulative  SHAP  percentage  with
respect to top ranked features.
To further analyse the results from the SHAP method, the substructures of the top 10
ECFP4 bits of all the four targets (JAK1, JAK2, JAK3, and TYK2) were analyzed. The ratio
of positives (Rp) was calculated for each protein of the JAK family. A high Rp value for a
fragment indicates that the fragment is preferred in the active molecules when compared

to inactive molecules, while a high Rn value would mean otherwise. As these ratios can be



sensitive to substructures whose count is less, a cut-off of 10 was considered (Pope et. al.,
2018). The top 10 substructures from each of the target (after removing the redundant &
merging  the  common  substructures)  are  shown  in  Table  4.  If  the  Rp  score  of  a
substructure is  significantly high for  a particular target protein,  then the presence of  it
makes the small molecule more selective towards that protein. If the score is similar for
more than one protein, then presence of it will make the molecule selective towards all
those proteins. Few of the fragments like  cnc(c(c)F)N(C)C (Rp= 0.947) and cnc(Nc)c(c)F
(Rp=  0.906)  are mostly  found  in  small  molecules  against  JAK2,  while  fragment
ccc(c(c)n)c(n)[nH] was highly found in small molecules against JAK1 when compared to
other homologes (Table 4, Fig. 6). Few  fragments were found to be important for more
than one protein, such as CC(C)C#N, which was equally observed in the small molecules
that are active against JAK1 (Rp= 0.775), JAK2 (Rp= 0.679) and JAK3 (Rp= 0.725) proteins
(Table 4).  Surprisingly, we could not find any preferred fragment for the actives of TYK2
protein, at least from the top 10 ECFP4 bits. This could be due to poor data size for TYK2
protein (Table 1). A similar analysis was carried out for the homologs of the dopamine
receptor  family  (see  Supporting  information  fig.  S1  and  Table  S2),  where  active  and
inactive fragments were identified for all the five homologs.

Figure 6. The prevalent fragments of JAK1, JAK2, and JAK3 actives obtained from top 10
ECFP4 bits. The ratio of positives (Rp) value for each of the fragments is also provided. 

Table 4. Rp of Fragments that are preferred for active small molecules of JAK1, JAK2,
JAK3 and TYK2.

Fragments JAK1 JAK2 JAK3 TYK2 

cnc(c(c)F)N(C)C - 0.947 - -

cnc(Nc)c(c)F - 0.906 0.5

cc([nH])Nc(n)n - 0.792 - -

ccc(c(c)n)c(n)[nH] 0.954 0.719 0.632 -

ccc(c(c)c)c(c)n - 0.689 - 0.397
CC(C)C#N 0.775 0.679 0.725 -



cn[nH]c(c)C - 0.565 - -
cc(c)Nc(n)n - 0.559 - 0.286

ccc(-c(c)[nH])c(c)N - 0.55 - -

cc(n)N(CC)CC - 0.544 - -

ccnc(c)[nH] 0.767 - 0.35 -
cc(n)[nH] 0.759 - 0.332 -
cc(n)[nH] 0.759 - 0.332 -
CC(C)O 0.691 - - -
cC(c)N 0.687 - - 0.15
CCCC(C)N 0.667 - 0.375 0.28
ccnn(c)C 0.655 - - -
CNCC(C)N - - 0.548 -

As mentioned above, a high Rn score would mean that the fragment is dominantly present
in the inactives of a given target protein. Figure 7 shows the distribution of fragments in the
inactives, which have high SHAP value. The fragments obtained from the SHAP value and
further  ranked based on Rp score could be used to  design selective small  molecules
against the target. Also, the presence of fragment predominantly in the inactives provide
us knowledge on fragments that could be avoided during the design of small molecules.

4 Conclusion

Selectivity of small molecules against homologous protein family remains a challenging
problem. This can lead to off-target side effect if the function of the homologous proteins is
considerably different. In this work, five machine learning methods were used to identify
the  selectivity  of  small  molecules.  These  models,  XGBoost,  DNN,  GCN,  GAT  and
MolMapNet were chosen based on their previous performance on various predictive tasks
on  biological  data.  Although,  the  performance  of  XGBoost  and  DNN  models  were
comparable, overall, the XGBoost method performed better in terms of all the metrices.
Both these models outperformed other graph-based models. As a case study, we used two
well-known family of proteins, JAK and DRD receptors. In both the cases, a similar trend of
model performance was observed. The rationales obtained from SHAP values explained
the molecular fragments that are responsible for differentiating the affinity towards multiple
proteins of the homologous protein family. While the current work can be used to screen
molecules for selectivity before experimental testing, it can also be integrated with deep
learning-based molecule generation models (Krishnan et al., 2021). The method proposed
in  this  work  can be extended to  understand the  selectivity  of  existing drug molecules
against all druggable protein targets and identify the off-target side effects. Such a model
can be potentially used for drug repurposing.
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