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The effective fragment potential (EFP) is a polarizable force field whose physically-motivated func-
tional form is parameterized in an automated way from ab initio calculations, and whose dispersion
potential has been suggested as a correction for Hartree-Fock or density functional theory calcula-
tions. However, the parameter-free dispersion damping potentials that are currently used in EFP
do not follow from a rigorous derivation and do not satisfy simple limits for the dispersion energy.
We introduce several new damping expressions that correct these deficiencies, then evaluate their
performance alongside existing damping functions using a new database of ionic liquid constituents.
This data set, which we call IL195×8, consists of complete-basis coupled-cluster interaction energies
for 195 ion pairs at each of 8 different intermolecular separations. Ultimately, we recommend a new
parameter-free dispersion damping function as a replacement for the one that is currently used in
EFP.

1. Introduction

The effective fragment potential (EFP) method is
a widely used polarizable force field that is ob-
tained by automated parameterization of a physically-
motivated functional form, based on ab initio quan-
tum chemistry.1–4 It has been used in hybrid quantum
mechanics/molecular mechanics (QM/MM) calculations,
both in the ground state5–11 and for vertical excita-
tion spectra.12–16 Motivated by the success of empir-
ical dispersion potentials in density functional theory
(DFT),17,18 another potential application of EFP is to
use its dispersion component as a parameter-free correc-
tion for DFT or even Hartree-Fock (HF) theory.19,20 The
HF case is interesting insofar as dispersion-corrected HF
theory does not involve any double-counting of electron
correlation effects in the “middle-range” region, corre-
sponding to non-bonded close-contact distances in van
der Waals complexes, which is a concern in dispersion-
corrected DFT.17,21–23 Empirical dispersion corrections
have also been introduced in the context of second-order
Møller-Plesset perturbation theory (MP2),24,25 because
while MP2 does provide a first-principles description
of dispersion, it is not a quantitative method for that
purpose.25–32 Dispersion corrections have also been in-
troduced for the closely-related method of symmetry-
adapted perturbation theory (SAPT).31–40 It is in the
context that we had occasion to revisit EFP dispersion.

2. Theory

The dispersion component of the EFP energy is expressed
in terms of C6 coefficients that represent the leading-
order dipole–dipole contribution to dispersion.3 The C6
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coefficients are obtained from the well-known expression
involving frequency-dependent, isotropic atomic polar-
izabilities (αp) evaluated at imaginary frequencies.41–45

That expression, which is usually attributed to Casimir
and Polder,46 is given by44,47–51

C6,pq =
3~
π

∫ ∞
0

αp(iω) αq(iω) dω . (1)

The total dispersion energy is

Edisp = −
∑
p∈A

∑
q∈B

C6,pq

R6
pq

. (2)

In EFP, the centers p and q are not atoms but
rather centroids of localized molecular orbital (LMOs),
whose spherically-averaged polarizabilities αp are used
in Eq. (1). Like all other dispersion potentials of the
−C6/R

6 form, Eq. (2) exhibits a singularity as R → 0
and a damping function is required to avoid divergence
at short range.

In this work, we focus on the “parameter-free” version
of EFP, sometimes called EFP2 to distinguish it from an
earlier model that involved some fitting.4 The dispersion
damping function that is used in this version of EFP
is intended to be a modification of the Tang-Toennies
damping function,52

fn(Rpq) = 1− exp(−bRpq)
n∑
k=0

(bRpq)
k

k!
. (3)

The order n is taken to match R−npq in the dispersion
expression, meaning n = 6 for use with Eq. (2). The
exponential parameter b is often written in the form

b = a1R
vdW
pq + a2 (4)

where a1 and a2 are additional parameters and RvdW
pq

is an effective van der Waals (vdW) contact distance be-
tween centers p and q. Because EFP uses spherical Gaus-
sian LMOs, Slipchenko and Gordon (SG) introduced a
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Gaussian analogue of Eq. (3),53 namely

fn(Rpq) = 1− exp(−ζR2
pq)

n/2∑
k=0

(ζR2
pq)

k

k!
. (5)

As compared to the summation in Eq. (3), this modified
form contains only even powers of Rpq but it terminates
at the same order, Rnpq. This complements the denomina-

tor in the dispersion expression to all even powers R−2kpq .
Noting that the overlap integral for two spherical Gaus-

sian functions with exponents ζ and center-to-center dis-
tance Rpq is

Spq = exp(−ζR2
pq/2) , (6)

SG eliminate the parameter ζ in Eq. (5) by substituting
the exponent that is obtained during localization of the
canonical MOs. The resulting expression is written in
terms of the overlaps Spq between LMOs, rather than
the distance Rpq per se:53

forign (Spq) = 1− S2
pq

n/2∑
k=0

(−2 ln |Spq|)k

k!
. (7)

This eliminates any fitting parameters beyond the Gaus-
sian exponents that are taken from standard Gaussian
basis sets. In Ref. 53, however, the summation in Eq. (7)
is truncated at order (n− 2)/2 for n = 6, resulting in

forig6 (Spq) = 1− S2
pq

[
1− 2 ln |Spq|+ 2(ln |Spq|)2

]
. (8)

This is the form that the functions takes in the libEFP
library,54 and thus defines what we will call the “original”
version of the parameter-free EFP dispersion damping
function.

In order to be consistent with the TT damping func-
tion, or even its Gaussian modification in Eq. (5), the
damping function in Eq. (8) ought to contain one addi-
tional term. That way, the damping expression meets
the dispersion potential with a commensurate power of
Rnpq. Adding the missing term to Eq. (8) affords

f6(Spq) = 1−S2
pq

[
1−2 ln |Spq|+2(ln |Spq|)2− 4

3 (ln |Spq|)3
]
,

(9)
where the four terms in square brackets are intended to
scale like R0

pq, R
2
pq, R

4
pq, and R6

pq, respectively, as in
Eq. (5) with n = 6. Instead, the expression in Eq. (8) has
been applied to the C7 component of EFP dispersion,55

despite the absence of any term in the numerator with a
distance dependence greater than R4

pq.
Furthermore, while the ansatz in Eq. (6) does eliminate

parameters from the damping function, it also makes the
tacit assumption that all pairs of LMOs have the same
Gaussian exponent, ζ. If centers p and q have different
exponents α and β, then a more appropriate expression
is

Spq = exp

(
− αβ

α+ β
R2
pq

)
. (10)

Setting γ = αβ/(α+ β) and using

Spq = exp
(
− γR2

pq

)
(11)

as the damping function in Eq. (5), one obtains a slightly
different form for the damping function:

f revn (Spq) = 1− Spq
n/2∑
k=0

(− ln |Spq|)k

k!
. (12)

For n = 6 this is

f rev6 (Spq) = 1−Spq
[
1−ln |Spq|+ 1

2 (ln |Spq|)2− 1
6 (ln |Spq|)3

]
,

(13)
and we call this the “revised” parameter-free dispersion
damping function.

The original parameter-free damping function in
Eq. (8) was introduced in 2009,53 but has been updated
in more recent work to incorporate odd powers of R. This
is intended to provide a more consistent expression once
a C7 term is introduced in the EFP dispersion energy.
The updated damping function is19,20

fgenn (Spq) = 1− S2
pq

n∑
k=0

(−2 ln |Spq|)k/2

k!
, (14)

which we will call a “generalized” EFP dispersion damp-
ing function. However, the erroneous assumption of a sin-
gle Gaussian exponent, leading to Eq. (7) in the original
formulation, is repeated in this more recent expression.
As such, we also introduce a “revised general” damping
function of the form

f rev-genn (Spq) = 1− Spq
n∑
k=0

(− ln |Spq|)k/2

k!
, (15)

where we have not made any assumptions about the na-
ture of the Gaussian exponents. It is worth noting that
neither Eq. (14) nor Eq. (15) is bounded on the interval
[0, 1], which is undesirable from a rigorous standpoint.
This has likely gone unnoticed in practice because diver-
gences occur only very close to Rpq = 0 and in most real
systems the steric repulsion will preclude access to these
problematic geometries.

Finally, we introduce two novel damping functions to
be investigated alongside those discussed above. First, we
write an exact Tang-Toennies expression in terms of the
overlap, which puts the generalized formulas presented
above on a more rigorous foundation:

fTT
n (Rpq) = 1− e−(γR

2
pq)

1/2
n∑
k=0

(γR2
pq)

k/2

k!
. (16)

Using the overlap expression in Eq. (11), one may elimi-
nate the parameter

γ =
− ln |Spq|
R2
pq

(17)
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Table 1: Definitions of various damping functions for EFP dispersion.a

Damping Function Functional Form limR→0(−f6/R6)

Originalb 1− S2
pq

∑(n−2)/2
k=0

1
k!

(
− 2 ln |Spq|

)k −4γ/3

Generalizedc 1− S2
pq

∑n
k=0

1
k!

(
− 2 ln |Spq|

)k/2 ∞

Revised 1− Spq

∑n/2
k=0

1
k!

(
− ln |Spq|

)k
0

Revised General 1− Spq

∑n
k=0

1
k!

(
− ln |Spq|

)k/2 ∞

Tang-Toennies 1− e−(− ln |Spq|)1/2 ∑n
k=0

1
k!

(
− ln |Spq|

)k/2
0

Becke-Johnson Rn
pq

[
Rn

pq + (−R2
pq/ ln |Spq|)n/2

]−1

−γ3

aDefinitions are from this work unless otherwise noted, with γ defined in Eq. (17).
bFrom Ref. 53.
cFrom Ref. 19.

and thus express the damping function in Eq. (16) in the
equivalent form

fTT
n (Spq) = 1− e−(− ln |Spq|)1/2

n∑
k=0

(− ln |Spq|)k/2

k!
. (18)

Although this expression is bounded on [0, 1], it is likely
to overdamp the interaction as a consequence of the expo-
nential (rather than Gaussian) dependence on distance.

In order to avoid overdamping, we will also test a
softer damping function based on the Becke-Johnson
(BJ) form:56–59

fBJ
n (Rpq) =

Rnpq
Rnpq + (a1RvdW

pq + a2)n
. (19)

Recall that in modifying Eq. (3) for use with EFP, Gaus-
sian exponents were taken as stand-ins for the Tang-
Toennies damping parameter b in Eq. (4). We apply the
same substitution here, only using the general form of
the Gaussian overlap exponents, γ = αβ/(α + β). Note
that γ in Eq. (17) has dimensions of (length)−2. Manipu-
lating that expression to substitute a γ-dependent factor
in place of bn in the denominator of Eq. (19) affords the
expression

fBJ
n (Rpq, Spq) =

Rnpq
Rnpq + (−R2

pq/ ln |Spq|)n/2
. (20)

This overlap-based BJ damping function retains the
parameter-free philosophy of EFP but is trivially exten-
sible to odd powers of R without resorting to augmen-
tations that render the function unbound on the interval
[0, 1].

Table 1 summarizes the damping functions introduced
above. A successful damping function must prevent Edisp

from diverging as R → 0, regardless of the fine de-
tails of how it performs otherwise. This limit provides
a useful first assessment of the validity of any damp-
ing function, and Table 1 reports the the limiting value

limR→0(−f6/R6) for each damping function. The origi-
nal EFP damping function yields a finite, negative value
for this limit. As such, while this function does success-
fully prevent divergence of the dispersion energy, it is not
truly a Gaussian analogue of the TT damping function
because the latter damps the dispersion energy to zero at
R = 0.52 Failure to satisfy this limit is not fatal to the use
of damped EFP dispersion, but it does exemplify the er-
rors associated with early truncation of the original Tang-
Toennies expression. The revision suggested in Eq. (12)
restores the proper limit, namely, limR→0(−f6/R6) = 0.

The generalized EFP dispersion damping expres-
sion [Eq. (14)], introduced to accommodate C7

dispersion,19,20 does not prevent a singularity as R → 0
and the revision introduced in Eq. (15) does not rescue
it from this fate. In order to turn the generalized expres-
sion into a formally valid damping function, we aban-
don the concept of Gaussian damping altogether and
return to the exponential Tang-Toennies expression in
Eq. (16), as it restores the proper R → 0 limit. Finally,
the parameter-free BJ damping function in Eq. (20) ex-
hibits a small but finite limit as R→ 0.

3. Computational Methods

For a numerical assessment of these various damping ex-
pression we turn to the HF plus dispersion method, which
we denote as HF+D(EFP) to indicate that the disper-
sion correction is obtained from EFP. Various forms of
the +D(EFP) correction are considered, using the same
form for the dispersion energy [Eq. (2)] but with various
damping functions.

As an example of a “real-world” application where the
HF+D approach might be preferred to DFT+D, we con-
sider a data set of ion pairs corresponding to common
constituents of room-temperature ionic liquids. For such
systems, Grimme et al.60 report that DFT calculations
sometimes face convergence issues related to delocaliza-
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Figure 1: Error statistics in HF+D(EFP)/6-311++G(d,p) interaction energies for the IL195×8 data set, considering: (a)
equilibrium geometries only, versus (b) the entire data set, including intermolecular separations ranging from 0.9Re to 2.0Re

for each ion pair. Orange bars are mean absolute percentage errors and gray bars are maximum percentage errors, as compared
to CCSD(T)/CBS benchmarks. The “no dispersion” method is conventional HF theory whereas other entries are HF+D(EFP)
with various damping functions.

tion error and unphysical charge transfer, at least when
semilocal functionals are employed. The HF+D(EFP)
method provides a potentially useful alternative in such
cases, and indeed could be used as a general way to probe
whether delocalization error is problematic in a particu-
lar case, without sacrificing the quantitatively important
dispersion interaction.61,62

The data set assembled for this work is a subset of
the IL-2013 database63 and consists of 195 unique ion
pairs. We shift each dimer along the vector connecting
the cation and anion centers of mass, in order to gener-
ate eight different geometries for each dimer correspond-
ing to intermolecular separations ranging from 0.9Re to
2.0Re, where Re is the equilibrium separation from the
IL-2013 database. We call this data set IL195×8, and it
consists of 1,560 individual structures whose interaction
energies we have computed at the level of coupled-cluster
theory with single, double, and perturbative triple exci-
tations [CCSD(T)], using the domain-localized pair natu-
ral orbital (DLPNO) implementation of CCSD(T)64,65 in
the ORCA program.66 Tight cutoffs are used because the
accuracy of the DLPNO approximation is known to be
quite sensitive to these thresholds for noncovalent inter-
action energies.67,68 DLPNO-CCSD(T) interaction ener-
gies were extrapolated to the complete basis-set (CBS)
limit using a two-point formula69 with aug-cc-pVTZ and
aug-cc-pVQZ. Additional details are provided in the Sup-
plementary Material.

EFP parameters for each cation and each anion in the
data set were computed at the HF/6-311++G(3df,2p)
level, using the GAMESS program.70 We use the same
(rigid) monomer geometries and thus the same EFP pa-
rameters for each of the eight intermolecular separations.
The EFP energy calculations discussed below were per-
formed at the HF+D(EFP)/6-311++G(d,p) level using a
locally-modified version of the Q-Chem program,71 which
includes an interface72 to the libEFP library.54

Original
Becke-Johnson

Generalized
Revised Gen.

Revised
Tang-Toennies

no dispersion

error (kcal/mol)
–7 –6 –5 –4 –3 –2 –1 0 1 2

Figure 2: Mean errors in HF+D(EFP)/6-311++G(d,p) in-
teraction energies for the IL195×8 data set using various
damping functions for EFP dispersion. Positive errors reflect
systematic overbinding and negative errors indicate under-
binding.

4. Results and Discussion

Mean absolute percentage errors for the IL195×8 data
set, comparing HF+D(EFP)/6-311++G(d,p) calcula-
tions to CCSD(T)/CBS benchmarks, are shown in Fig. 1.
With the notable exception of the Tang-Toennies damp-
ing function, each of the various damping procedures
performs similarly with errors of about 2%. The Tang-
Toennies function, however, damps Edisp to such an ex-
tent that the dispersion-corrected method is no better
than plain HF theory without any dispersion correction
at all! In the absence of a dispersion correction, or when
the Tang-Toennies damping function is used, HF the-
ory underbind the IL195×8 complexes by an average of
almost 7 kcal/mol, as shown in Fig. 2. In fact, this un-
derbinding was the original motivation for replacing the
exponential in the Tang-Toennies damping function with
a Gaussian function.53
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Figure 3: Error statistics in HF+D(EFP)/def2-TZVPPD in-
teraction energies for the S66×8 data set (with acetylene com-
plexes removed) as compared to CCSD(T)/CBS benchmarks.
Orange bars indicate the mean absolute errors and gray bars
are maximum errors. The “no dispersion” method is conven-
tional HF theory whereas other entries are HF+D(EFP) with
various damping functions. In two cases, the maximum error
exceeds 8.5 kcal/mol and is cut off in this graph.

Setting aside the case of the Tang-Toennies damping
function, the overall accuracy of the various damping
functions is similar when measured in percentage terms.
However, maximum errors in Fig. 1(b) highlight subtle
nuances in the behavior of each damping potential as
R → 0 and each of the other damping functions sys-
tematically overbinds these dimers by 1–2 kcal/mol; see
Fig. 2. This is consistent with results indicating that
EFP consistently overestimates dispersion interactions
in ionic liquid constituent dimers, relative to third-order
SAPT calculations.73 The original and generalized damp-
ing equations exhibit slightly smaller errors than their
revised counterparts, although this indicates some error
cancellation since only the revisions have a rigorous the-
oretical foundation. The BJ damping function affords
results comparable to those of the original EFP damp-
ing function but without ad hoc approximations such as
missing terms. We recommend this version for general
use with EFP dispersion.

We have also assessed the performance of HF+D(EFP)
on the S66×8 data set of dimers,74 where the monomers
are all charge-neutral, in order to test whether the results
above are somehow an artifact of the ionic liquid data
set. (Dimers containing acetylene were excluded from
these calculations because the Q-Chem/libEFP interface
does not handle linear fragments at the present time.)
Error statistics are shown in Fig. 3 and suggest that the
general behavior is quite similar to what we observed for
ionic liquid constituent dimers.

5. Conclusions

We have examined various flavors of HF+D(EFP) using
two sizable data sets of noncovalent dimers. Overall, we

find that the damping functions currently used for EFP
dispersion are unsatisfactory from a formal standpoint as
the power series in the modified Tang-Toennies damping
function is truncated too early. Furthermore, replace-
ment of an empirical damping parameter with a spherical
Gaussian overlap integral fails to account for asymmetric
Gaussian exponents on different centers. These errors
lead to damping functions that do not satisfy correct
limiting conditions. In particular, a generalized damp-
ing function that was introduced to extend the original
formulation to odd powers of R (in order to incorporate
R−7 dispersion) is divergent as R→ 0 and thus does not
serve as a damping function at all when the intermolec-
ular separation is small.

Ultimately, we recommend the parameter-free, BJ-
style dispersion damping function introduced in Eq. (20)
as a replacement for the modified Tang-Toennies func-
tion that is presently employed in EFP. For the data sets
examined here, the HF+D(EFP) method in conjunction
with new damping function exhibits an accuracy that
rivals existing EFP damping functions, yet the new ap-
proach is based on a correct theoretical framework and is
extensible to odd powers of R. Given the extensive use
of EFP across myriad computational chemistry applica-
tions, we expect that following this recommendation will
minimize errors in many future studies by putting EFP
dispersion on a more rigorous footing.
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