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Abstract 
Chemical and physical stabilities are two key features considered in pharmaceutical 
development. Chemical stability is typically reported as a combination of potency and 
degradation product. For peptide products, it is common to measure physical stability via 
aggregation or fibrillation using the fluorescent reporter Thioflavin T. Executing stability studies 
is a lengthy process and requires extensive resources. To reduce the resources and shorten the 
process for stability studies during the development of a product, we introduce a machine 
learning based model for predicting the chemical stability over time using both the formulation 
conditions as well as the aggregation curve. In this work, we explore the relationships between 
the formulation, stability time point, and the measurements of chemical stability and achieve a 
coefficient of determination on a random test set of 0.945 and a mean absolute error (MAE) of 
0.421 when using a multilayer perceptron (MLP) neural network for total degradation. Similarly, 
we achieve a coefficient of determination of 0.908 and an MAE of 1.435 when predicting the 
potency using a random forest model. When measurements of physical stability are included into 
the model, the MAE in the prediction of TD decreases to 0.148 for the MLP model. Using a similar 
strategy for the prediction of potency, the MAE decreases to 0.705 for the random forest model. 
Therefore, we can conclude two important points: first, chemical stability can be modeled using 
machine learning techniques and second there is a relationship between the physical stability of 
a peptide and its chemical stability. 

  



Introduction 
Peptides are an important class of biomolecules that have been rapidly developed as 

therapeutical agents that cover areas such as metabolic disorders, skin infections, and 

oncology.1,2 Among many challenges in developing acceptable commercial peptide drug product 

is to demonstrate acceptable chemical and physical stabilities. This is accomplished through 

systematic stability studies, in which peptides as active pharmaceutical ingredient (API) or in the 

formulation matrix are stored at certain conditions, their chemical and physical stabilities are 

monitored over time to understand the effect of environmental parameters such as temperature, 

moisture and light.3,4 There are reported computer programs such as ASAPprime5 utilizing 

humidity corrected Arrhenius equation, which predicts the stability of APIs using storage 

conditions such as temperature and humidity.3,5 Potency, individual degradation product and 

total degradation product are key quality attributes of peptide drug products and studied in 

chemical stability.6 High performance liquid chromatography (HPLC) is one of the most common 

analytical techniques for measurement of potency and degradation product. Peptides, especially 

in solution during storage or manufacture, can undergo conformational change from α helical 

structure to β sheets, then aggregate or form fibrils. These pathways of physical instability are 

undesirable due to their potential risk of immunogenic responses and impacting bioavailability.7,8 

Thus, aggregation is a key physical stability parameter of formulated peptide product and need 

to be evaluated. One method for measuring the aggregation of peptides is through the use of 

Thioflavin T (ThioT). The knowledge gained from stability studies will be used to guide the design 

of formulation, establishment of shelf life and determination of proper storage and packaging 

conditions. Depending on the stage of drug development, the duration of stability study ranges 



from a couple of months to several years, which requires tremendous number of resources, and 

the process is lengthy.  

Recently, chemists have started to apply machine learning techniques to model various chemical 

processes for catalyst design9,10, prediction of organic reactions11,12, reactions in a mass 

spectrometer13, and for the analysis of chemical spectra. Moreover, Lai and coworkers have 

developed machine learning based methodologies to determine molecular features which are 

responsible for the viscosity behavior and the aggregation of therapeutic antibodies.14,15 In short, 

machine learning is a process where an algorithm is given input variables (x) and an output 

variable (y). This algorithm then adjusts a set of weights, biases, and other parameters to predict 

the output variable from the input variables. Given enough weights and an optimized algorithm, 

the result will be a model that can always predict the output from the inputs. Therefore, one 

needs to ensure that a given model is robust with high predictive performance on data that was 

not used to directly train the model. A popular technique for ensuring that this scenario is the 

case is referred to as k-fold cross validation where the available data is divided into various 

portions called folds.16 For example, the available data can be divided into 5-folds each containing 

20% of the entire data set. One of these folds is then removed and referred to as the validation 

set and the remaining training set is used to train the model. The model is then evaluated on the 

validation set and the performance of the model is calculated. This process is repeated until all 

the folds has been used as the validation set and statistics can be calculated on how well the 

model did for the various folds. 

One interesting application of machine learning in chemistry is the ability to understand how 

underlying variables (x) relate to the output (y). The use of machine learning to understand these 



variables has been applied to understanding how IR and MS spectra relate to functional groups17 

and how functional groups in organic molecules relate to chemical reactivity13. When performing 

this type of analysis there are two important points to consider. First, machine learning models 

can only learn from the variables they are given, and second machine learning models can 

“overfit” to a particular data point set of variables18,19. This second point can be addressed by 

using cross-validation. Recent works have shown that machine learning models built on small 

training sets can be successful for both understanding chemistry and for useful predictions.13,20–

22  

To our knowledge, these techniques have not been used to understand the relationships 

between storage conditions, chemical stability, and physical stability in drug formulation. In this 

work, we will outline how an initial design of experiment (DoE) was used to generate training 

data for both the chemical and physical stability of a peptide drug molecule in formulation matrix. 

Then, we will use the training data from this DoE to create machine learning models to predict 

the chemical stability from both the storage conditions and the physical stability to develop a 

relationship between these variables.  

Methods 
Stability study for Peptide A 
Pharmaceutical development was triggered for Peptide A, sequence 

H{d}SQGTFTSDK(γEγEC16)SKYLDARAAQDFVQWLLDT-NH2,23 necessitating the design of a robust 

and safe formulation with optimized chemical and physical stability. Early in development it was 

determined that Peptide A had risks in both its chemical and physical stabilities. The primary 

chemical degradation products were aspartic acid isomerization at multiple sites and reactivity 



at the N-terminal histidine. Fibrillation was identified as the primary mechanism of physical 

degradation. Optimizing the formulation for Peptide A was a balancing act due to the contrasting 

pH dependent trends necessary for chemical and physical stability. The chemical stability and key 

degradation products were observed to be accelerated under more alkaline conditions for the 

pH range evaluated (7.0-8.7). In contrast, the physical stability was inverted where Peptide A was 

stabilized by more alkaline conditions tending to form fibrils at neutral or acidic pH’s. 

We sought out to design an optimized formulation by setting up a stability study composed of 

Peptide A formulations spanning a wide range of pH’s, buffers, and excipient concentrations. The 

stability study utilized both long term (5°C) and accelerated (25°C, 40°C) conditions with a target 

storage condition of being refrigerated. Given that pH was closely linked to chemical and physical 

stability formulations were designed to explore a wide pH range of 7.5-8.7 to define a formulation 

with an optimized pH. In addition to pH, compositions of multiple excipients were varied 

including histidine (0 to 10 mM) and a proprietary excipient B (EB) (0-0.5% w/v) which were 

targeted to improve chemical and physical stability, respectively. The addition of histidine was to 

prevent the growth of a specific degradant and is not expected to have a dramatic effect neither 

on the potency nor the total degradation of the peptide. Therefore, the addition of this excipient 

can be used as a case study for changes to the formulation that are not designed to make a 

dramatic impact on the output variables. The goal of the stability study was to optimize the pH 

and excipient compositions and determine if it was achievable to design a formulation with 

acceptable physical and chemical stability over the course of Peptide A’s shelf life. 

The values measured in the above DoE experiment are easily translated into features usable for 

a machine learning model. The pH, %EB, and output of the model are all numeric features of the 



model. While it would be possible to treat some of these values as one-hot encoded vectors, the 

true utility of the model would be to use for the optimization of these parameters. Since this 

ability is not possible using a one-hot encoded vector, we opted to treat these values numerically. 

Additionally, the natural choice to treat the prediction of potency (measured using the percent 

label claim of the product, %LC) and Total Degradation (TD) as numeric values forces the creation 

of regression models. However, the buffer type used as well as the presence of histidine were 

treated as factors. The first choice is required as the use of a phosphate buffer versus a tris buffer 

cannot be modeled numerically. The second choice is also required as only concentration of 

histidine was used in the DoE experiment. 

Interpretable machine learning for predicting potency and total degradation. 
A shotgun approach was used to evaluate how ML models perform for the calculation of potency 

(%LC) and Total Degradation (TD) from the variables in the DoE. The models were evaluated using 

k-fold cross validations (k=2, 5, 10 and 20) as well as a bootstrap method provided by Caret 

package in R24,25. The ML models evaluated are a Generalized Linear Model26 (GLM), Random 

Forest27,28 (RF), Partial Least Squares29 (PLS), K Nearest Neighbor (KNN), Multi-Layer Perceptron17 

(MLP), and Support Vector Machine30,31 with a linear kernel (SVML) and a radial kernel (SVMR). 

Since both TD and %LC are represented to these models as a number, these models were treated 

as regression problems. We decided to use the coefficient of determination (R2) to compare the 

performance of the models and select the best model from the data as this measure is easily 

understood by analytical chemists. More conventional measures of error such as Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE) were calculated as well. The equations for 

these measures of error are given below where 𝑦# is the experimentally measured observation 



and 𝑦 is the value predicted by a model. Additionally, 𝑦$ is the mean of the experimentally 

measured values. 
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Model training, validation, and testing 
To evaluate the performance of the model on an external test (blind) set, the data available for 

modeling was split into a training and test set. Assignment of an observation to either set was 

random and 80% of the data was set aside for the training set while 20% was used for the test 

set. Then, the training set was then split into a training and validation set as per the cross-

validation procedure and the above three measurements of model performance (R2, MAE, RMSE) 

are calculated for the validation set for a given set of hyperparameters (i.e. parameters used to 

control the training performance of model itself). The model and associated hyperparameters 

which performs the best (as measured by these metrics) is then selected and a new model is 

trained using the same method and hyperparameters using the entire training set. The test set 

identified at the beginning of the procedure was then used to evaluate this final model. 

Results and Discussion 
Total degradation is linear with respect to time point while label claim is not linear. 
Before attempting to model the data, we examined how the total degradation (TD) and percent 

label claim (%LC) changed with time-point. To do so, we plotted these variables, separated by 



the storage conditions, as a function of time-point (Figure 2a for TD and Figure 2b for %LC). The 

plot for TD shows a linear trend, which is confirmed by the coefficient of determination (R2) 

values for each sample (Table 1) as 16 out of the 18 samples have an R2 greater than 0.95 and 13 

samples have an R2 greater than or equal to 0.98. In contrast, there are only 5 samples where the 

%LC has an R2 value greater than 0.95 and only a single sample has an R2 greater 0.98. 

Interestingly, all five samples with a high R2 were stored at the same pH and for these storage 

conditions, the %LC was less than or equal to 80% at the 24-month time-point. All other pH 

storage conditions had a %LC greater than 90%, therefore these 5 high R2 values may be false 

indicator of linearity resulting from a strong outlier affect. While R2 values alone cannot be used 

to determine whether a relationship is best modeled by a linear function, these results indicate 

that the TD measurement is more linear with respect to time than %LC. It should also be noted 

that some samples with low potency were noted to have a high degree of fibrillation, leading to 

samples with a high viscosity. This made the samples difficult to analyze and is not a good 

measurement of the true chemical degradation and problematic samples were removed from 

the available training data. In the next section, we explore different machine learning models for 

predicting these two measurements of chemical degradation. 

Regression models predict total degradation. 
The first machine learning models we investigate are interpretive models known to perform well 

in most general cases. Here we use Decision Trees (DT), Generalized Linear Models (GLM), k-

Nearest Neighbor regression (KNN), Partial Least Squares (PLS), linear Support Vector Machine 

(SVML), radial Support Vector Machine (SVMR), Random Forest (RF), and a Multi-Layer Perceptron 

(MLP) to predict TD and %LC from the storage conditions (pH, buffer type, %EB, histamine 



concentration) and the time-point. We evaluated each machine learning model using both 

bootstrapping cross-validation and a k-fold cross-validation using k=2, 5, 10, and 20. To compare 

the models to each other and across validation techniques, we calculated the R2 of the validation 

set. These results are summarized in Figure 3a and Table S1 with additional metrics shown in 

Figures S1. It can be seen that SVMR, RF, and MLP models out-perform the other models and 

within error of each other. For these models, the performance of models trained on 50% of the 

available data (k=2) is similar to those trained on 95% of the available data (k=20). This indicates 

that these models can be trained with a small amount of data and still be predictive. Since these 

models all perform within error of each other, we compared the true TD to the predicted TD for 

each fold for the three models. The results for k=2 cross-validation is shown in Figures 3b-d and 

for all cross-validation schemes in Figures S2-S4. These results show that the MLP model is best 

at producing a one-to-one prediction with the true TD. The RF and SVMR models fail to predict 

large TD values (above 7.5%) while the MLP model is able to predict the TD for these values. 

Therefore, we conclude that the MLP model performs best for this form of chemical degradation. 

Given the success of the MLP model, we decided to investigate the internals of the model to 

attempt to gain insight. The entire model is displayed in the top of Figure 4. It can be seen that 

the 5 input variables go through two linear transformations: first a 5->5 vector transformation 

and second from the second vector to a scalar. The second transformation weights and sums the 

previous layer in a completely positive manner. The first transformation, however, does include 

negative transformations into account. The weights for the “Histidine” input variable are all 

negative. Additionally, we calculated the importance of all the importance variables using Olden’s 

method (bottom of Figure 4).32 It is not surprising that the most important variable is the Time-



point, followed by the pH (see the above discussion of Figure 2). While these results do not yield 

any insights into how these variables affect chemical degradation, they do show that this type of 

analysis can be used to reveal known relationships between the input variables and the output 

variables. 

Results of the Train-Validate-Test paradigm are given in Table 2. The MAE of the MLP model is 

0.421 for the test set and 0.267 for the full training set, indicating that a tuned version of this 

model performs well for data not available during training. This represents a mean percent error 

of 15.6% for the prediction of TD for time-points past the first month of the study given the 

average total degradation past this is 3.0%. Therefore, we would like to further optimize the 

prediction of TD using additional information, and idea which will be discussed in a later section 

of this work. 

Regression models predict percent label claim. 
The successful modeling of TD using storage conditions was repeated for the prediction of 

potency (quantitated as %LC). In Figure 5a it can be seen that the RF model achieved an R2 greater 

than 0.90 and Figure S5 indicates that the RF model has the lowest RMSE and MAE. Additionally, 

the relationship between the true observations and predictions does not show any significant 

patterns (Figure 5b, Figure S6). For other interpretable machine learning models, points with true 

low %LC values are predicted to be too high (Figures S7-S8). These results indicate that the RF 

model is able to capture the relationship between the input variables and %LC. An analysis of the 

variable importance is given in Figure 5c. As with the prediction of TD, the most important 

variable for the prediction of %LC is the Timepoint of the data. The second most important 

variable is the type of buffer used to store the peptide. This result is interesting as the only pH 



condition associated with a change in buffer type is the pH 8.7 condition, indicating that the RF 

model is using this variable as a surrogate for the highest pH condition. Since the highest pH 

condition shows the greatest decrease in %LC, this selection is justified. The third most important 

variable is the pH, which likely explains the remaining variance in the %LC curve not already 

covered by the selection of buffer type. Finally, the EB is least important variable that is used by 

the RF model and likely adjusts for small changes in %LC. It is interesting to note that the amount 

of histidine is not used in the model to predict %LC and is assigned an importance of zero, similar 

to the result from the TD model. 

As with the TD predictions, the Train-Validate-Test paradigm16 was used to evaluate the 

performance of the tuned model, and the results of these tests is given in Table 3. The MAE for 

the RF model is 1.435 for the test set and 0.779 for the training set. Since the mean %LC value for 

timepoints after 1 month is 94.7%, the percent error for this model is 1.52%. It is interesting to 

note that, relative to the magnitude of the mean value, the final %LC model does better than the 

final TD model, even though the trend is less linear with respect to time-point. This indicates that 

the ML models are able to account for non-linearity in the data. 

Incorporating physical degradation as an input feature for chemical degradation 
To improve the prediction results for the %LC and TD models, we decided to include the physical 

degradation of the peptide as measured by the ThioT curve measured at each time-point for the 

storage conditions (data shown in Figure 6 for the initial (6a), 1-month (6b), 6-month (6c) and 

12-month (6d) time-points). Here, the ThioT curve was given to the model as a normalized vector 

where each point of the curve measured over the 48-hour experiment became an independent 

input to the model. Since this value was measured every 15 minutes, there are 192 points 



available to the model. We used a rolling average with a window of 5 to smooth out the curve 

and trained the models using only the resulting ThioT curve as well as a model containing both 

the ThioT as well as the storage conditions used in the previous sections. The results of this 

modeling are shown in Table 4 for MLP, RF, and SVM models. 

All three investigated models are able to predict the TD using solely the ThioT data as input. The 

RF, MLP, and SVM models achieve an MAE of 0.387, 0.310, and 0.662, respectively. However, The 

R2 values for these models trained on only ThioT data are all below 0.5. This result can be 

explained by the models predicting low TD values with high fidelity and high TD values poorly. 

Inclusion of storage conditions improves the predictions significantly, decreasing the MAE of the 

models to 0.121, 0.132, and 0.148, respectively and increases all the R2 values to be greater than 

0.9. These results show that the inclusion of ThioT data into the model is beneficial. Furthermore, 

the MAE values for the TD prediction are approximately half that for the model trained with ThioT 

versus the model trained on only storage conditions, indicating that that there is value in adding 

physical degradation measures to the model. 

For the prediction of %LC, the RF, SVM, and MLP models are able to predict %LC from the ThioT 

information alone (albeit poorly) with MAEs of 3.04, 2.78, and 4.131, respectively. However, the 

R2 value for both models are quite low at values of 0.254, 0.304, and 0.106. A potential 

explanation of this performance is that the models predict high %LC values with great accuracy 

but are not able to capture the overall trend of the data as the %LC values decrease. Inclusion of 

the storage conditions decreases the MAEs to 0.705, 0.976, and 1.367 for the RF, SVM, and MLP 

models, and increases the R2 to 0.963 and 0.931, 0.880 for the three models, respectively. The 



improvement in model performance indicates that these models are able to properly weigh the 

storage conditions and physical degradation to predict a non-linear response variable. 

To better understand how the addition of the ThioT curve data improves the model, we 

performed feature importance calculations using the RF model. These results are shown for the 

time-points of the ThioT curve in Figure 7 and show that the initial points of the ThioT curve are 

most important to the model performance. The same RF model was used to visualize the learned 

relationship between the Physical stability (ThioT curve) and chemical stability data (%LC or TD) 

for each time point. These models are visualized as 2D contour plots in Figure 8 for both %LC and 

TD. Predicted values are plotted as a function of two variables: i) Samples – different sample 

conditions at each time point ii) pH – pH value of the considered sample. The grouping of the 

samples in the figure (X1, X2, etc.) was done such that the pH of four group members were 

different as to sample the four different pH conditions in the original experimental setup. There 

is no other relationship between the samples in these groups, therefore movement across the X-

axis only means different samples having the same pH. These grouped samples are tabulated in 

the Table S2 with storage conditions. The ML learned “function” shown in Figure 8 has captured 

special conditions such as sample R3 solely based on physical stability data. Sample R3 (pH = 8.7, 

Buffer = Tris, EB=0.50, and Histidine = 0) at time-point 12 showed the maximum true TD (5.2131) 

as well as a low true %LC values (87.5178). Both functional surfaces in Figure 8 show higher and 

lower values for TD and %LC, respectively, around sample R3. Further, both increasing TD and 

decreasing %LC with time have been captured by the function developed by the model. This is 

demonstrated as the %LC functional surface gets more dark blue areas and TD functional surface 

gets more dark red areas over time for some sample conditions such as “R3”, indicating a 



decrease of the peptide’s stability over time. These functional surfaces demonstrate a 

relationship between the physical degradation and chemical degradation. Both ML learned 

functions are compared with surfaces generated by true data in Figure S9 and Figure S10 for TD 

and %LC, respectively. Therefore, we show that the learned functional surfaces have a very good 

correlation with true data. Moreover, the ML learned function by the RF model trained on both 

ThioT curve data and storage conditions in Figure S11 also shows similar relationship to the 

surfaces shown in Figure 8. A limitation of this work is that it does not determine how physical 

and chemical degradation are related on a molecular level. In future works, we will use molecular 

mechanics to investigation this relationship to develop detailed mechanistic models. 

Conclusion 
We have investigated the relationship between the storage conditions, physical and chemical 

stability of Peptide A using interpretive machine learning techniques. These machine learning 

models trained only on the storage conditions of the peptide are able to reliably predict the total 

degradation (TD) and percent label claim (%LC, a measure of potency) with R2 values greater than 

0.90 and a mean absolute error less than 0.5 for the prediction of TD and less than 1.5 for the 

prediction of %LC. These models were then analyzed to understand how the underlying variables 

relate to the chemical degradation of Peptide A to show that the pH and %EB combined with the 

timepoint of the experiment are important features of the model while the usage of histidine 

does not appear to be important for modeling the chemical degradation of the peptide. We 

believe that these modeling efforts are useful for understanding the degradation of Peptide A as 

a function of its storage conditions. In conclusion, we provide a framework to develop the 



relationships between chemical and physical degradation for future studies in drug development 

and in chemical sciences. 
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Figures and Tables 

 

Figure 1: Relationship between physical and chemical degradation. (left) Methodology for predicting 
chemical degradation as a function of storage conditions and time. Interpretative machine learning 
predicts total degradation of Peptide A as this appears to be a linear function with respect to time. Second, 
we will present a model to predict the change in percent label claim using changes in physical degradation 
as measured by a ThioT curve. Using this methodology, we will show that there is a link between the 
physical degradation of the peptide and the chemical degradation as represented by total degradation 
and percent label claim. 

  



 

 

Figure 2: Training data for (a) total degradants and (b) percent label claim as measured by HPLC. The 
relationship between the total amount of degradants and time-point follows a linear trend (see Table 1). 
The slope of this trend is a function of pH, the type of buffer used, concentration of histidine, and the 
percentage of EB used. The relationship between time-point and the percent label claim is less obvious.  

  



Table 1: Coefficient of determination (R2) for Total Degradation and Percent Label claim (%LC) as a linear 
function of time-point. Values greater than or equal to 0.95 are bolded. 

Sample 
ID 

pH EB Histidine Buffer TD R2 %LC R2 

O1 7.5 0.1 0 Phosphate 0.856 0.010 
O2 7.5 0.25 0 Phosphate 0.970 0.838 
O3 7.5 0.5 0 Phosphate 0.973 0.703 
T1 7.5 0.5 0 Phosphate 0.950 0.571 
P1 7.9 0.1 0 Phosphate 0.986 0.852 
P2 7.9 0.25 0 Phosphate 0.854 0.750 
P3 7.9 0.5 0 Phosphate 0.983 0.750 
T2 7.9 0.5 0 Phosphate 0.986 0.510 
Q1 8.3 0.1 0 Phosphate 0.986 0.944 
Q2 8.3 0.25 0 Phosphate 0.981 0.858 
Q3 8.3 0.5 0 Phosphate 0.991 0.911 
S1 8.3 0.5 10 Phosphate 0.980 0.889 
T3 8.3 0.5 0 Phosphate 0.992 0.695 
R1 8.7 0.1 0 Tris 0.989 0.976 
R2 8.7 0.25 0 Tris 0.993 0.979 

R3 8.7 0.5 0 Tris 0.992 0.985 
S2 8.7 0.5 10 Tris 0.992 0.979 
T4 8.7 0.5 0 Tris 0.990 0.978 

  



 

Figure 3: (a) The ability of each ML model to predict total degradation as a function of the five input 
variables is shown above. A look at how the prediction of each model correlates with true total 
degradation for the (b) MLP model, (c) random forest model, and (d) radial SVM model. These plots show 
the MLP model is able to predict the total degradation at higher values in the plot. These values 
correspond to the values at higher pH (see Figure 2).  



 

 

Figure 4: The final MLP model when trained with hyperparameters derived from the 2-fold cross validation 
model. Here, the thickness of the lines indicates the magnitude of the given weight. Positive values are 
green while negative values are red. The bias values are set to zero in this model and therefore these 
values are not shown. The importance of each feature is shown in the Olden plot at the bottom on the 
figure. This shows that the Time-Point and pH are two most important features in the model.  



Table 2: Test set results for the prediction of TD using only the storage conditions. Hyperparameters for 
each method were determined using k-fold cross validation with k= 2. 

 

 

 

 

 

  

Set Method R2 RMSE MAE 
Test MLP 0.945 0.531 0.421 
Test RF 0.937 0.584 0.412 
Test SVMR 0.974 0.414 0.311 
Train MLP 0.980 0.374 0.267 
Train RF 0.974 0.450 0.257 
Train SVMR 0.972 0.530 0.281 



 

Figure 5: The ability of each model to predict %LC from the storage conditions is shown in (a). Of these 
models, only RF consistently exceeds an R2 value greater than 0.90 for all cross-validation schemes. A plot 
of the predicted %LC value versus the true %LC value is shown in (b). These results show that the model 
is also able to predict %LC from storage conditions. 

  



Table 3: Test set results for the prediction of %LC using only the storage conditions. Hyperparameters 
for each method were determined using k-fold cross validation with k= 2. 

Set Method R2 RMSE MAE 
Test MLP 0.918 3.285 2.864 
Test RF 0.908 2.174 1.435 
Test SVMR 0.905 2.200 1.715 
Train MLP 0.893 3.434 2.836 
Train RF 0.978 1.010 0.779 
Train SVMR 0.959 1.516 1.053 

  



 

Figure 6: ThioT curves for the (a) initial, (b) 1-month, (c) 6-month, and (d) 12-month time-points. 

  



Table 4: Test and training set results for the prediction of %LC and TD from the only the ThioT curve and 
from the ThioT curve with the storage conditions explicitly given to the model. 

%LC 

Set Method Input MAE R2 RMSE 

Test 

RF 
ThioT Only 3.037 0.254 3.761 

With Conditions 0.705 0.963 0.848 

SVM 
ThioT Only 2.779 0.304 3.769 

With Conditions 0.976 0.931 1.174 

MLP 
ThioT Only 4.131 0.106 4.667 
With Conditions 1.367 0.880 1.738 

Train 

RF 
ThioT Only 1.620 0.894 2.147 

With Conditions 0.465 0.987 0.633 

SVM 
ThioT Only 2.878 0.468 4.270 

With Conditions 0.852 0.963 1.128 

MLP 
ThioT Only 4.226 0.155 5.102 
With Conditions 1.491 0.902 1.775 

TD 

Set Method Input MAE R2 RMSE 

Test 

RF 
ThioT Only 0.387 0.457 0.596 

With Conditions 0.121 0.937 0.188 

SVM 
ThioT Only 0.310 0.494 0.493 

With Conditions 0.132 0.954 0.172 

MLP 
ThioT Only 0.662 0.315 0.850 

With Conditions 0.148 0.957 0.180 

Train 

RF 
ThioT Only 0.254 0.916 0.400 

With Conditions 0.103 0.983 0.156 

SVM 
ThioT Only 0.405 0.611 0.774 

With Conditions 0.124 0.985 0.173 

MLP 
ThioT Only 0.709 0.344 0.976 

With Conditions 0.188 0.957 0.264 



 

Figure 7: Importance of a ThioT measurement at a given time for the prediction of %LC and TD using a 
Random Forest model. 



 

Figure 8: Relationship of chemical and physical stability using the Random Forest model trained only on 
ThioT assay data to predict a) % LC and b) TD. The Y-axis shows the pH and the movement across the X-
axis only means Different samples having the same pH. Positions of true samples are labeled on the 
contour surface using white circles. 
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