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11 Polymer-protein hybrids are intriguing materials that can bolster protein stability in non-native environments, thereby
12 enhancing their utility in diverse medicinal, commercial, and industrial applications. One stabilization strategy
13 involves designing synthetic random copolymers with compositions attuned to the protein surface, but rational design
14 is complicated by a vast chemical and composition space. Here, we report a strategy to design protein-stabilizing
15 copolymers based on active machine learning, facilitated by automated material synthesis and characterization
16 platforms. The versatility and robustness of the approach is demonstrated by the successful identification of
17 copolymers that preserve, or even enhance, the activity of three chemically distinct enzymes following exposure to
1s thermal denaturing conditions. Although systematic screening results in mixed success, active learning appropriately
10 identifies unique chemistries for each enzyme. Overall, this work broadens our capabilities to design fit-for-purpose
20 synthetic copolymers that promote or otherwise manipulate protein activity, with extensions towards the design of

21 robust polymer-protein hybrid materials.

22 Polymer-protein hybrids (PPHs) have emerged as at-
23 tractive materials that leverage polymers to improve pro-
24 tein solubility and stability in often denaturing and abio-
25 logical environments.2® One strategy, which has resulted
26 in remarkable hours-long enzyme activity in toluene,” tai-
27 lors the composition of random copolymers based on pro-
28 tein surface chemistry. In principle, copolymers might be
20 precisely designed to stabilize any given protein without
30 compromising activity. However, identifying such copoly-
s1 mers, whether via rational design or screening, is chal-
32 lenging due to a large combinatorial design space (e.g.,
ss monomer chemistry, chain length, architecture).® Thus,
3a fit-for-purpose PPHs could facilitate myriad applications—
ss biofuel production,® plastics degradation,'® ! pharmaceu-
36 tical synthesis'?~ but a robust strategy for their design
37 remains elusive.

s Over the last decade, machine learning (ML) has
3o dramatically accelerated materials discovery across disci-
a0 plines,'3715 enabling more efficient identification of materi-
a1 als with target properties.!3 1621 Nonetheless, ML-guided
a2 copolymer design is limited by several factors, including
a3 the availability of quality data necessary to train the un-
aa derlying models.?2225 Most polymer databases predomi-
ss nantly feature homopolymers,?S and the laborious nature
a6 of polymer synthesis and characterization severely limits
#» the number of systems that can be examined “in-house”.2”
s Several copolymer design efforts have thus relied on data
s generated in silico.?! 2829 Meanwhile, recent experimental
so work has used flow reactors or parallel batch synthesizers
s1 to provide modest data (< 500 samples).'®30:31 More scal-
s2 able approaches would substantially extend capabilities to

s3 design copolymers for PPHs and other materials applica-
s4 tions.

55 Here, we use active ML to rapidly design copolymers to
se form thermostable PPHs with glucose oxidase (GOx), li-
sz pase (Lip), and horseradish peroxidase (HRP) (Fig. 1). To
ss efficiently acquire data, we use automated oxygen-tolerant
se radical polymerization for copolymer synthesis®? 33 and de-
0 velop a facile, thermal-stability assay to characterize PPHs.
s1 With this platform and five iterations of active learning for
2 each enzyme, we successfully identify PPHs with significant
e3 enzyme activity; these PPHs generally outperform those
ea derived from a systematic screen with over 500 unique
es copolymers. Notably, we demonstrate that our strategy
s appropriately adapts data acquisition to yield chemically
7 distinct sets of top-performing copolymers for each enzyme.
es Post hoc analysis of our data and ML models reveals impor-
e tant relationships between specific copolymer chemistries
7o and PPH stability, while biophysical characterization of
71 our most efficacious PPHs provide mechanistic insight into
72 how copolymers may preserve enzyme function under ther-
7s mal stress. Overall, this framework will automate and ac-
7a celerate the design of copolymers for stable PPHs across
7s applications.

s Overview of design space and strategy

77 To test our ML-based design paradigm, we consider three
7 chemically distinct enzymes—HRP, GOx, and Lip—with the
7o design goal to maximize retained enzyme activity (REA)
g0 following thermal stressing. For reference, a PPH ex-
81 hibiting 100% REA provides the same level of activity
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Fig. 1| Overview of study. a, Schematic illustration of the surface chemistry for horseradish peroxidase (HRP), glucose oxidase (GOx),
and lipase (Lip). Amino acids are colored based on classification as hydrophobic (magenta), hydrophilic (green), or ionic (blue). Scale bar
= 2 nm. Images for the protein are rendered using Visual Molecular Dynamics.® b, Monomers utilized for copolymer design. The colored
boxes delineate rough classifications as hydrophobic (magenta), hydrophilic (green), and ionic (blue). ¢, Schematic representation of
closed-loop learn-design-build-test discovery process used in this work. After initialization with a seed dataset, the process consists of
(i) training an enzyme-specific Gaussian process regression (GPR) surrogate model to predict the REA of a PPH based on copolymer
charachteristics (learn), (i) Bayesian optimization of copolymers to satisfy an expected improvement acquisition function and subsequent
filtering to propose new copolymers (design), (iii) automated synthesis of proposed copolymers via photoinduced electron/energy transfer
reversible addition—fragmentation chain transfer (PET-RAFT) polymerization (build), and (iv) mixing of synthesized copolymers with
enzyme to form PPHs that are thermally stressed and assessed for REA (test). Newly acquired data can then be used to restart the

closed-loop discovery process.

s2 as the enzyme prior to thermal stressing. Because these
3 enzymes possess distinct surface chemistries and molec-
sa ular weights (Fig. 1la), we consider a copolymer design
ss space with eight possible monomers (Fig. 1b) copoly-
ss merized with target degree of polymerization (DP) be-
sz tween 50 and 200 in increments of 25. The chosen
ss monomers are classified as hydrophobic (DEAMA, HPMA,
ss BMA, MMA), hydrophilic (DMAPMA, PEGMA), or ionic
o0 (SPMA, TMAEMA); this set enables various interactions
o1 (e.g., van der Waals, hydrogen-bonding, electrostatic) with
o2 the enzyme, while balancing aqueous solubility. To encour-
o3 age reproducible synthesis and minimize latency, up to four
oa distinct monomers are selected for copolymerization.

o5 Fig. 1c schematically presents the Learn-Design-Build-
96 Test cycle employed here. After constructing an initial seed
o7 dataset featuring 504 copolymers and corresponding REA
os measurements, we performed five iterations for each en-
oo zyme. Within each iteration, we (i) developed ML models
100 to predict REA from copolymer characteristics, (i) iden-
101 tified batches of 24 candidate copolymers for PPHs using
102 active and unsupervised ML, (i) synthesized candidate
103 copolymers, and (iv) performed thermal activity assays
10a t0 determine REA for candidate PPHs; these results aug-
10s mented the dataset to begin the next iteration.



16 Inefficiency of screening

107 To gain perspective on the viability of brute-force search,
108 our seed dataset consisted of a systematic screen over 504
100 copolymers with distinct monomer combinations and DPs.
110 The vast majority of copolymers in this dataset did not
111 result in substantial REA, with the median values of 3.2%
12 (HRP), 10.0% (GOx), and 0.118% (Lip). These poor re-
113 sults are partly explained by the limited design space sur-
11e veyed during systematic screening (Fig. SI1, S2). Addi-
11s tionally, the REA for PPHs with Lip, HRP, and GOx vary
116 significantly for copolymers in the seed dataset, suggesting
117 that copolymers should be tuned to specific enzymes and
118 that systematic screening is likely to have mixed success
110 across different enzymes.

120 Active learning in a combinatorial design
121 Space

122 To guide data acquisition beyond the seed database, we de-
123 vised an active learning (AL) paradigm based on Bayesian
124 optimization (BO)3* of a ML surrogate model (see Meth-
125 0ds). Preliminary comparisons using the seed datasets
126 indidcated that GPR modeling with simple, machine-
127 readable copolymer representations as input provided the
128 best predictive performance and was thus selected as our
120 surrogate modeling approach over other ML algorithms
130 and copolymer featurization strategies®> (Fig. S3). At
131 early stages of the design process, our objective was to it-
132 eratively identify batches of copolymers that are likely to
133 exhibit improvements in REA according to our ML mod-
134 els and /or explore unknown regions of design space based
135 on model uncertainty. To achieve this balance between ex-
136 ploitation and exploration, we optimized copolymer com-
137 positions and DP according to a series of modified expected
138 improvement acquisition functions (see Methods, Candi-
130 date copolymer generation, Candidate copolymer down-
140 selection); similar acquisition functions have been used in
1a1 previous work related to polymer design.?®37 Following
1a2 four iterations of this data acquisition approach, we transi-
1a3 tioned to a policy of pure exploitation in the fifth iteration;
142 we refer to the fifth iteration as the “exploit round.”

s Fig. 2a-c shows that the AL-BO paradigm facilitated
1s6 identification of numerous, diverse copolymers that en-
1s7 hanced retained activity for each of the three enzymes.
14s The median REA of PPHs found in the intermediate and
140 final iterations of AL show progressive and significant in-
1s0 crease over those in the seed database. In particular, there
151 1s a difference of 46.2%, 31.5 %, and 87.6% between the
12 median REA of seed PPHs and those found in the exploit
13 round for HRP, GOx, and Lip, respectively. Even within
1s¢ the intermediate iterations (1-4), we typically find improve-
1ss ments in median REA iteration-over-iteration (Fig. S4),
16 despite data acquisition sometimes foregoing potentially
1s7 promising designs in favor of diversity or uncertainty. For
1ss Lip and GOx, the best PPHs are found within the exploit

1se round and exhibit remarkable REA values of 107.9% and
160 67.4%, which significantly improve upon both the average
161 and maximum values observed in the seed datasets. For
1.2 HRP, the top-performing PPH is found during the initial
163 screen, but many of the top hybrids are still identified by
16a AL, including one with an REA of 81.0%. More generally,
1es we find that a large number of diverse copolymers offer
166 reasonable stabilization of HRP, and AL identifies some
167 promising regions that are not exposed by our system-
1es atic search. Quantitatively, AL-guided copolymers are dis-
160 proportionately represented as top performers, comprising
170 70.2%, 40.5%, and 42.5% of the top twentieth percentile of
172 REA for Lip, GOx, and HRP, respectively. Interestingly,
172 the exploit round also produces three PPHs for Lip that
173 not only preserve but enhance its activity relative to the
174 unstressed enzyme.

Fig. 2d-1 examine both the progression of AL and PPH
176 performance as a function of the chemical constitution of
177 copolymers. Based on the totality of measured REA val-
17s ues, we find that best-performing PPHs for each enzyme
17e utilize entirely different copolymer chemistries, which jus-
180 tifies a tailored design strategy. In particular, optimal
181 copolymers for HRP stabilization predominantly feature
12 hydrophobic and ionic monomers and smaller DP (<100)
13 (Fig. 2a,d). While AL-generated candidates primarily fo-
1sa CUS on uncovering this region of the chemical space, there
1ss are also many effective PPHs that limit ionic content as
1ss identified by the seed dataset (Figs. 2g and S2c¢). In
187 this case, a wide range of diverse, high-performing PPHs
1ss are identified by AL, despite outlier points in the HRP
10 dataset (Table S1). For GOx, optimal copolymers are ei-
100 ther predominantly hydrophobic or hydrophilic with very
101 little ionicity and have DP typically in the range of 100-
102 150 (Fig. 2b,e). Accordingly, AL for GOx stabilization pre-
103 dominantly probed these regions of the chemical space and
10« remained globally stagnant in its search (Fig. 2e,h), fine-
1es tuning relatively promising regions identified in the seed
106 dataset (Fig. S2a). Conversely, optimal copolymers for Lip
107 stabilization possess sizable incorporations of monomers
10 from all three chemical groupings with generally larger
100 DP (Fig. 2¢,f). AL-proposed candidates progress towards
200 this promising region of the chemical space with each sub-
201 sequent iteration (Fig. 2fi); notably, this region of the
202 chemical space is completely avoided in the seed dataset
203 (Fig. S2b). This suggests that the Lip design campaign
204 benefited from both exploration and exploitation data ac-
205 quisition polices. Therefore, the AL/BO paradigm appro-
206 priately adapted optimization to identify high-performing
207 PPHs for each enzyme across chemical space, with less than
208 20% additional data beyond the initial systematic screen.

175

200 Understanding chemical features driving PPH
210 performance

211 Given the identification of highly stable PPHs for each en-
212 Zzyme, we sought to understand the important chemical
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Fig. 2| Machine learning guides design of highly stable polymer-protein hybrids. a-c, Copolymer designs and their measured REAs for
HRP, GOx, and Lip. Marginal axes at the top contain Gaussian kernel density estimate distributions of REA in the seed database (blue),
active learning iterations 1-4 (orange), and the final exploitation round (green). Medians of distributions are indicated by vertical lines.
Main axes show the experimentally measured REA for all tested PPHs; individual markers are vertically located in bins according their
degree of polymerization with random fluctuations added within bins to improve visual clarity. The marker color reflects the composi-
tion of the copolymer according to the ternary diagram (bottom right). d-f, Representation of active learning path traversed through
copolymer chemical space for each enzymes. The chemical space is represented as a ternary diagram with coordinates providing the
fraction of incorporation of hydrophobic, hydrophilic, and ionic monomers in copolymers. Colored stars indicate the mean composition of
copolymers proposed during a given active learning iteration. The ternary diagrams are additionally colored by maximum REA observed
for a PPH in a given region of the chemical space spanned by the ternary axes. g-i, Individual chemical compositions of copolymers
proposed during each stage of active learning. The centroid of all points at a given iteration yields the position of the stars d-f. The
crosses denote copolymers that showed undesirable gelation during synthesis (see Methods, Handling polymer gelation).
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Fig. 3| Analysis reveals distinct priorities in copolymer features for each protein. a, Copolymer compositions and degree of polymer-
ization (DP) for the top ten performing PPHs for HRP (orange), GOx (green), and Lip (purple). b, Cross-evaluation of top-performing
copolymers across enzymes showing mean observed and predicted REA for each copolymer-enzyme pairing. Statistical significance was
determined by Mann-Whitney U test. * (p<0.05), ** (p<0.005), *** (p<0.0005), unlabeled pairs are not significantly different. Top
10 performers for each enzyme demonstrate high specificity in agreement with predicted activity. ¢, Normalized mean |SHAP| values
calculated for HRP, GOx, and Lip for each model to quantify relative feature importance. d-f, SHAP summary values for GPR models
calculated from available data after all five active learning iterations. Each point corresponds to a unique evaluated PPH, and the
point’s position along the X-axis shows the impact of a feature on predicted REA. g-i, SHAP value distributions demonstrating the effect
of degree of polymerization on REA predictions. Polymer chain lengths with maximum calculated SHAP values are distinct between
enzymes. Black candlesticks range from second to third quartiles of SHAP values and white dots represent the distribution mean. j-I,
Mean |SHAP| values calculated for all model features after model training on the seed dataset and after each iteration of active learning.

213 features of copolymers that gave rise to their performance.
214 Fig. 3a compares the features of copolymers underlying
21s PPHs with the top ten highest REA for each enzyme. Al-
216 though top-performing PPHs for a given enzyme tend to
217 have some chemical similarity across effective copolymers,
218 there is substantial chemical diversity between PPHs for
210 different enzymes. To demonstrate that copolymer pairing
220 with enzymes is highly specific, we cross-examined the ef-
221 ficacy of the copolymers in Fig. 3a to stabilize the other
222 enzymes; the results are provided in Fig. 3b. Experimen-

223 tally, we empirically confirmed that the REA of PPHs de-
224 signed for a specific enzyme are significantly higher than
225 that of PPHs formed by the same copolymers but other
226 enzymes. Virtual cross-evaluation using enzyme-specific
227 GPR models trained on all iterations of data similarly
228 suggest that REA is significantly diminished when top-
220 performing copolymers for one enzyme are paired with an-
230 other. Together, these results not only suggest an intricate
231 connection between copolymer chemistry and size and the
232 stability of PPHs but that such correlations can be effec-



233 tively learned from data. 288 across iterations suggests that GPR models had sufficient
234 To further explore the relationship between copolymer fidelity to effectively optimize REA, at least within a local
235 features and PPH activity, we computed Shapley additive 2°° chemical space.

236 explanations (SHAP) values®® 39 to quantify how chemical

237 features of the copolymers (fractions of incorporation and ,,, Revealing mechanisms with biophysical char-
23s DP) contributes to REA predictions by our GPR models. .= acterization

2 geErz’ I()I(l)zlgt;jcfievsI{S?{i;al:;elsu};d;agt;els): S;Zlg;tic\?:té;zltlggis 203 Although mechanisms of stabilization for PPHs based on

240 - . . .

e tions), and we use the mean absolute SHAP value of a fea- 204 random copolymers have been hypothesized and studied in
’ 205 limited fashion using molecular dynamics simulation,” ex-

2¢2 ture as a proxy for its overall importance to model predic- . . . .. . .
tion. Fig. 3c shows that different copolymer features have 206 perimental examination of these biophysical interactions is
243 . . . . .
24a distinct impact on REA predictions. To elucidate these dif- > n.ascent. Ther.efore, we characterlzc.ed (F.lg' 8.5) and Hves
zes ferences, we compare SHAP values for the fractions of in- 208 tigated a particular PPH for HRP identified in the exploit
. . . 200 round—dubbed HRP-Exploit Polymer 1 (HRP-EP1)- us-
246 corporation for each monomer (Fig. 3d-f) and DP (Fig. 3g- o ing circular dichroism (CD) spectroscopy, small-angle X-

7 ii)rforhe?)(;h eﬁzr};rini'r Altil;;)luih}:ve I;rfe\rz;oliunslypalzs’sf(l)mfa treiﬂg}; 01 ray scattering (SAXS), dynamic light scattering (DLS),
22 CIOPLODIC CACMISMLY W gh-perio 5 50 302 and quartz crystal microbalance with dissipation (QCM-

e f(‘ff. aif:)&h}jlie 3%1;(21)6 als }f‘lll:tt}?;e . ezlclu§zon0cf)f1\]/[31\h/;[: 1; s03 D). HRP was selected due to its amenability to these char-
ze0 fTavor teher y WAL netuston " " s0a acterization techniques, while detailed characterization of

similar hydrophobic monomer, is associated with higher .
:: REA Sir};lilarp observations 03711 be readily identiﬁedg for > other enzyme systems proved challenging due to weak CD
. . 306 Spectroscopy signal-to-noise and solubility limitations. We
=52 Lip (Fig. 3), for which SPMA and TMAEMA monomers 307 first investigated the impact of heating and cooling on the

254 (both highly ionic) represent the most and least important s sccondary structure of HRP by CD spectroscopy (Fig. 4a).
2ss features based on their mean absolute SHAP values. Such . .
. . . 300 The corresponding measured a-helix, 5-sheet, and random
a6 differences in SHAP values between monomers with the . . . . L
. . . o 310 coil content is provided in Table S2. We initially hypoth-
257 same chemical classifications underscores the intricacy of . "
0 designing effective polymer-enzyme pairing su esized that the addition of copolymer EP1 would reduce
. . T o s12 thermally induced unfolding of HRP; however, the CD data
20 Fig. 3c-i also 1nd1cat§ that the relative importances ,,, suggests only a slight retardation of unfolding. Upon heat-
20 Of copolymer features Varles across enzyme mode;ls. For _,, ing, the a-helix content for HRP degrades from ca. 34.8%
261 example, we ﬁnd that different cham. length regimes fa- ...t 17.4%, while the a-helix content for the HRP-EP1 sys-
262 vor high predictions 0(11 REA, (;ependlng on the enzyme- .., tem is 20.3% after heating. However, following cooling,
203 specific GPR model. (Fig. 3g-i). For HRP, smaller poly- .., HRP-EP1 exhibited 31.6% a-helix content compared to
2es mers (DP = 50, 75) display the highest SHAP values, while just 24.6% for HRP alone. This suggests that EP1 fa-
205 the highest SHAP values for Lip are observed for DP = 125 _; ¢ilitates significant refolding of HRP in a chaperone-like
266 Or 150. DP = 290 is generally associated with lower REA, .| manner.
2e7 perhaps suggt.estlng' t.hat s.horter copolyme{r SEqUENCes €N- 55, To further understand the nature of the HRP-EP1 in-
26s able more facile pairing with enzyme chemical domains to ,, teractions, we used SAXS to compare the physical dimen-
260 promote stabilization. 323 sions of HRP and its complexes in pre- and post-stress
270 To understand the evolution of feature importances sz« states. Guinier analysis of the data (Table S3, Fig. S6)
271 during AL, we compared mean absolute SHAP values s2s showed that both HRP and HRP-EP1 have the same ra-
272 for all non-gelling copolymers derived from GPR models s26 dius of gyration (R, 24.6 - 25.0 A) in the pre-stressed state.
273 trained after each stage of data acquisition. Fig. 3j-1 shows 32z Similarly, in the pre-stressed state, the pair-distance dis-
a7a that the importance of features can shift significantly, even szs tribution function P(r) remains highly similar upon com-
ars with the addition of small amounts of data (typically 20 s20 plexation of HRP with EP1 (Fig. 4b). Post-stress, the
276 data points added per iteration or less than 4% increase ss0 differences are dramatic in the pair-distance distribution
a7z in prior data available). This is most evident following s function. While the maximum particle diameter (Dmaz)
a7s for Lip, wherein mean absolute SHAP values for SPMA, 332 of native HRP increases from 80 to 200 A, that of HRP-
27s MMA, DMAPMA, and DP all substantially increase af- 333 EP1 increased only to 94 A (Table S3). Additionally, while
260 ter the third and fourth iteration. This behavior might be s:s the R, of HRP-EP1 increases only slightly to 26.9 A a
201 related to data acquisition over previously unexplored re- sss larger 51.9 A component appears in the Guinier plots of
22 gions of chemical space, which is partly shown in Fig. 2e. :3s HRP (Fig. 4c, blue line), likely indicative of a denatured
283 The effects for HRP and GOx are overall less dramatic; ssz or aggregated sub-species of HRP created through thermal
2ss most rankings are unchanged between iterations, with oc- sss stress. Additionally, Kratky plots (Fig. S7) show peaks at
285 casional shifts of one or two ranks upon exposure to new s q = 0.065 and 0.075 A~! in HRP and HRP-EP1, respec-
286 data. Nonetheless, even if the rank-ordering of features is s tively, which indicates a compact structure similar to that
2s7 unchanged, mean improvement in measured REA for PPHs sa: of the native protein. This clearly suggests that the com-
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Fig. 4| Biophysical characterization indicates copolymer-assisted refolding. a, Circular dichroism wavelength scans of HRP (dashed
lines) and HRP-EP1 (solid lines) at room temperature (black), upon heating (red), and after cooling for 24hrs (blue), demonstrating
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comparison to HRP control. b, Pair-distance distribution function

of HRP and HRP-EP1 by small-angle X-ray scattering demonstrating

retained HRP-PPH morphology and size after exposure to thermal stress in comparison to native enzyme. ¢, Guinier analysis of HRP
and HRP-EP1 before and after heating suggesting the development of a denatured or aggregated sub-population of HRP (blue line) in
comparison to a single species observed in HRP, HRP-EP1, and HRP-EP1 after thermal stress (red lines). d, Dynamic light scattering
size distributions of HRP with and without polymer EP1, demonstrating that no larger structures were observed after mixing. e, Surface
thickness measured by Quartz crystal microbalance with dissipation after direct adsorption of HRP (¢ = 22 min) followed by injection of

polymer EP1 (¢ = 82 min).

342 plex promotes a certain level of conformational integrity in
33 HRP even if secondary structure is impacted.
Finally, DLS was performed to complement the SAXS

344

3s2 we developed a robust design framework integrating au-
363 tomated polymer chemistry and machine learning to ef-
ses ficiently discover polymer-protein hybrids with enhanced

ass results by providing the distribution of hydrodynamic radii ses thermostability for three chemically distinct enzymes. No-
ss6 (Ry,) in the samples (Fig. 4d). All samples show peak in- ses tably, the machine learning-guided acquisition of data was
347 tensities between 3.0 - 3.3 nm with minimal signal intensity sev effectively tailored to each enzyme. In addition, by analy-
sas for R, > 10 nm. Additionally, measured polydispersity ses sis of developed surrogate machine learning models, we de-
340 index remained under 0.2 for all samples, suggesting rela- seo termined particular chemical features of copolymers that
ss0 tively monodisperse solutions (Fig. S8, Table S4). These s drive increased retained activity for each enzyme. Fur-
ss1 results indicate that stabilization of HRP in PPH-EP1 is sz thermore, the biophysical characterization of a successful
ss2 indeed driven by the formation of a complex rather than sz polymer-protein hybrid design reveals chaperone-like assis-
353 via larger macromolecular assembly. Further support of s7s tance in structural refolding as a possible mechanism of sta-
35« complex formation by QCM-D showed significant differ- s7a bilization. Taken together, these results highlight the exis-
sss ences in the Sauerbrey mass thickness following injection s7s tence of a complex structure-function relationship under-

sse of EP1 onto surface immobilized HRP (Figs. 4e and S9).
ss7 While native HRP exhibited a thickness of 3.6 nm, HRP-
3ss KP1 increased to 5.1 nm post injection at 80 minutes.

350 OUtIOOk

se0 Polymer-protein hybrids offer a powerful approach to sta-
se1 bilize sensitive proteins in a range of environments. Here,

376 lying protein-polymer hybrid activity that can be learned
377 and exploited for materials optimization.

This discovery platform for polymer-protein hybrids
370 can be extended in numerous directions. First, it provides
3s0 an exemplary approach that can be extended to other pro-
ss1 teins, other copolymer chemistries, and/or alternative de-
3s2 sign objectives, such as other environmental stresses. One

378



ss3 intriguing possibility is also to generalize the surrogate aso 10.
ssa models to incorporate chemical features of both proteins as:
sss and their encapsulating polymers. Additionally, the assay as2
sse data collected in this study can be used in conjunction with ass
ss7 simulation-based models to further elucidate and validate
sss molecular-level mechanisms for stability. Such simulations

sso might also aid in identifying and selecting key features for *

434 11.

s00 surrogate models or even provide in silico figures of merit ***
se1 that correlate with stability. Furthermore, the copolymer a3z 12.
302 chemical space is large and flexible to accommodate the ass
303 simultaneous pursuit of multiple design objectives, which ase
sea could accelerate their adoption as functional, commercial a0
3es materials.
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s»s Methods e27 challenged in a water bath at 60°C for 30 minutes. Sub-
e2s strate solution was prepared by diluting 40 mM of TMB

s7s Materials. Hydroxypropyl methacrylate (HPMA), ¢ in DMSO to a final concentration of 0.4 mM in 1% H50,
srs 2-diethylamino ethyl methacrylate (DEAEMA), [2- s% assay buffer. 5 uL of polymer-enzyme mixtures were added
s7s (methacryloyloxy)ethyl] trimethylammonium chloride so- to 245 nL of substrate solution. Absorbance was measured
sz lution (TMAEMC), and N-[3-(dimethylamino)propyl]| 2 in kinetic mode for 5 minutes in 20 second intervals; mea-
s7s methacrylamide (DMAPMA) were purchased from 3 surements were made at 653 nm, which is the maximum
s7o Sigma-Aldrich; methyl methacrylate (MMA) and 3- of the absorption peak. The initial rate of change of ab-
se0 sulfopropyl methacrylate potassium salt (SPMA) from sorbance was used to calculate the activity of HRP. Native
s VWR; butyl methacrylate (BMA) from Alfa Ae- % HRP activity at time ¢t = 0 served as a positive control,
ss2 sar; and poly(ethyleneglycol) (n) monomethyl ether 7 while HRP heated at 60°C for 30 minutes served as the
ss2 monomethacrylate (PEGMA, M,, ~ 400 g/mol) from Poly- ¢3s negative control.

ssa sciences. PEGMA was deinhibited prior to use by passing e3s GOx thermal stability assay. The activities of PPHs
sss over mono-methyl ether hydroxyquinone inhibitor removal es0 for GOx were evaluated using an assay buffer contain-
sss Tesin.  Ethyl 2-(phenylcarbonothioylthio)-2-phenylacetate, sa: ing glucose, TMB, and HRP. Copolymers were diluted in
ss7 4-nitrophenyl butyrate (PNB), hydrogen peroxide (HyO5), ss2 DMSO and then in assay buffer (50 mM sodium acetate,
sss D-(+)-glucose, sodium acetate, lithium bromide were sas pH 5.0) to a final concentration of 12 pM. Resulting solu-
sso purchased from Sigma-Aldrich; zinc tetraphenyl por- ess tions were mixed with equal volumes of stock GOx solution
seo phyrin (ZnTPP), dimethyl sulfoxide (DMSO), 3,3’,5,5'- eas (5 pg/mL 30 nM) in polystyrene 96 well plates. The so-
so1 tetramethylbenzidine (TMB) from Fisher Scientific; and ess lutions were thermally sealed with plate-sealing film and
so2 potassium phosphate (mono and dibasic) and sodium ac- esz then thermally challenged in a water bath at 65°C for 30
se3 etate anhydrous from VWR. sas minutes. After heating, 20 pl. of the PPH samples were

s0s Automated PET-RAFT synthesis. Copolymers were s added to 100 nL of substrate solution (5% glucose, 0.4 mM
sos prepared by automated photoinduced electron/energy °° TMB, 0.11 pM HRP in assay buffer). Absorbance was mea-
ses transfer reversible addition—fragmentation chain transfer ¢ sured in kinetic mode for 5 minutes in 20 second intervals;
sor (PET-RAFT) polymerization in 96 well plates as pre- 2 measurements were made at 653 nm, which is the maxi-
ses viously described.32:33:40:41  Briefly, the sequences and s Mum of the absorption peak. The initial rate of change
se0 processes to be conducted by the Hamilton MLSTARIet 4 of absorbance was used to calculate the enzyme activity.
s00 liquid-handling robot were programmed in Python, indi- e Native GOx activity at time ¢ = 0 served as a positive
eo1 cating information on sample concentration, reagent vol- ¢ control, while GOx heated at 65°C for 30 minutes served
eoz umes, and well position. Files containing reaction infor- 7 28 the negative control.

eos mation were transferred to the Hamilton MLSTARIlet to ess Lip thermal stability assay. Activities of PPHs for Lip
eoa prime the robotic transfers. Stock solutions of monomer ese were evaluated using PNB as the substrate. Copolymers
eos (2 M), ethyl 2-(phenylcarbonothioylthio)-2-phenylacetate sso were diluted in DMSO and then in assay buffer (50 mM
sos (RAFT chain-transfer agent (CTA), 100 or 50 mM) and es: KoHPO,, 16.66 mM K,HPO,, pH 7.4) to a final concen-
sor ZWTPP (4 or 2 mM) were prepared in DMSO as 1 mL es2 tration of 120 pM. From the 120 ptM copolymer solutions,
eos aliquots. Aliquots were loaded into the Hamilton ML- ess 50 nL. were mixed with 50 pL of stock lipase solution (0.8
sos STARIlet liquid-handling robot and automatically pipet- esa mg/mL 24 uM) in polystyrene 96 well plates. The so-
e10 ted into 96-wells clear flat-bottom well plates (Greiner bio- ses lutions were thermally sealed with plate-sealing film and
e11 one). Monomer/CTA ratio was varied from 100 — 400 while ses heated in a water bath at 70°C for one hour. Substrate
612 ZNTPP/CTA remained at 0.01. Polymer mixtures were es7 solution was prepared by diluting stock PNB solution (5.4
e13 dispensed to a total volume of 200 pL and final monomer ees M) first to 10 mM in DMSO, followed by a final dilution
e1a concentration of 1 M. The mixtures were then covered with ess to 0.5 mM in assay buffer. Absorbance was measured in
e1s well-plate sealing tape and radiated under 560 nm LED ez kinetic mode for 10 minutes in 20 second intervals; mea-
e16 light (5 mW/cm2, TCP 12 Watt Yellow LED BR30 bulb) e7: surements were made at 410 nm to monitor the production
e17 for 16 hours. 72 of p-nitrophenol. The initial rate of change of absorbance

as HRP thermal stability assay. The activities of PPHs 7 Was used to calculate the enzyme activity. Native Lip ac-
s10 for HRP were evaluated by its ability to oxidize TMB in tivity at time ¢ = 0 served as a positive control, while Lip
e20 the presence of HyO,. Copolymers were synthesized and 7 heated at 70°C for one hour served as the negative control.
621 diluted in DMSO before further dilution into assay buffer 76 Circular dichroism spectroscopy. CD wavelength
e22 (50 mM sodium acetate, pH 5.0) to a final concentration of e7z and temperature scans of samples were collected using
e23 22.7 pM (<1% DMSO). From the 22.7 pM polymer sam- e7s an AVIV Model 400 CD spectrometer (AVIV Biomedical
e2a ples, 50 pL were mixed with 50 pL of 10 pg/mL HRP e Inc.). Wavelength scans consisted of measurements from
e2s (0.11 pM) in polystyrene 96 well plates. The solutions were eso 260 nm to 190 nm, collecting points every 0.5 nm with
e2s thermally sealed with plate-sealing film and then thermally es: a 1-nm bandwidth for 5 seconds, at all required temper-
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es2 atures. Temperature scans were consisted of measuring 737 initial equilibration step at 20 pL/min for 25 min. HRP,
esz mean residue ellipticity at 222 nm from 30 to 90°C with a 73s polymer, and mixtures of HRP with polymer were flowed
esa D-second averaging time and 1.5-nm bandwidth. The ramp 730 at 40 pL/min for 10 min. Sodium acetate was flowed after
ess rate was 2°C/minute, and samples were equilibrated for zs0 each step at 20 pL/min for 25 min to remove any loosely
ess D minutes at each temperature before measurement. The 71 associated enzyme or polymer. Transformations using the
es7 fraction of protein unfolding at different temperatures were zs2 Sauerbery equation*® 4% were completed on the fifth har-
ess calculated by assuming fully folded state at 30°C and fully 7a3 monic frequency and dissipation responses to obtain sur-
eso unfolded state at 90°C. The melting temperature Ty, was 7 face thickness.

oo determined by fitting the temperature scans to a Boltz- -s Polymer characterization. The molecular weights
eo1 mann sigmoidal equation. The fractions of a-helices and 76 (M,, and M,,) and dispersity (D) were measured by gel-
ez 3-sheets in the protein samples were calculated using CD 747z permeation chromatography using an Agilent 1260 Infin-
s03 deconvolution algorithms for wavelength scans (Table S2). 74s ity II. Polymer samples were eluted through a Phenomenex

e0s Dynamic light scattering. DLS of copolymers and 7+ 5.0 pm guard column (50 x 7.5 mm) preceded by superose
s0s polymer-enzyme mixtures were performed on a DynaPro 7so Phenogel 12 10/300 GL column (Cytiva 17-5173-01, col-
ess DLS Plate Reader III, Wyatt Technologies. Concentra- 7s2 umn L x 1.D. 30 cm x 10 mm, 11 m avg. part. size) in
sor tion of HRP for DLS experiments was maintained at 0.2 7s2 0.5x PBS (0.2% NaN3) using a flow rate of 0.5 ml/min.
eve mg/mL while polymer concentration was at 1 mg/mL. The 753 GPC calibration was completed with Agilent PEG stan-
00 data was collected using a wavelength of 830 nm and a scat- 754 dards. Polymers were prepared at 50:1 eluent/polymer
700 tering angle of 173°. Fifteen acquisitions were collected for 7ss ratio in 0.5x PBS (0.2% NaN3) and filtered with a 0.45
701 cach sample with an acquisition time of 5 seconds per ac- 7se pm nylon filter. Polymer conversion was calculated by ob-
702 quisition using auto attenuation. Regularization analysis 77 taining "H NMR spectra using a Varian VNMRS 500 MHz
703 was performed using Rayleigh spheres model for hydrody- 7ss spectrometer with mesitylene as an internal standard and
704 IAMIC Size measurement. 780 processed using Mestrenova 11.0.4.

7e0 Machine learning surrogate models. All copolymers

zos Small-angle X-ray scattering. All scattering experi- ) A o )
761 were featurized as DP-explicit composition vectors with

70s ments were carried out at the Life Science X-ray Scattering . o35 <rre
70 (LiX) beamline 16-ID of the National Synchrotron Light 7 one-hot encoded fingerprints of the monomer units.”> With
708 Source 11 (NSLS-II) at Brookhaven National Laboratory ™ eight possible monomers, the resulting feature vector pos-

700 (Upton, NY). HRP was prepared at a final concentration ™ sesses nine dimensions, with the first containing the DP
moof 1 mg/mL in 50 mM sodium acetate (pH 5.15) while ™ of the copolymer divided by 200 and the remaining eight

712 lyophilized polymers were reconstituted in sodium acetate ™ containing the fractions of incorporation for each monomer;

112 buffer and mixed with HRP at a final concentration of 2.61 7 the division in the first dimension represents DP on a sim-
73 mg/mL (10:1 molar concentration of polymer:HRP). Sam- ™ ilar s.cale as the remaining.features. Qaussian process re-
71 ples were denatured by heating in a water bath at 65 °C for 7® 8ression (GI?R) models, trained to predict the Yeo-Johnson
715 1 hour. All solutions were loaded into 96-well PCR plates ° transformation of the REA for a PPH, were preferred due
716 and mailed in for data collection. An X-ray energy of 15.14 ™™ to their superior predictive performance compared to other

77 keV was utilized for solution SAXS. Three Pilatus detec- 772 ML algorithms (Fig. S3). Inaddition, preliminary compar-
773 isons amongst GPR models trained over the seed datasets

774 revealed no evident advantage to using more advanced fin-
775 gerprinting strategies over simple one-hot encoding (Fig.
776 S3). Using available experimental data of various PPHs,

718 tors were employed to provide a ¢ range of 0.005 - 3.13 A,
710 while the range 0.005 - 0.25 A was taken as the small-angle
720 region. For background subtraction, sodium acetate buffer

721 blanks were run for every three samples. The subtracted

122 data were analyzed in BioXTAS RAW 2.1 with ATSAS 77 We constructed enzyme-specific datasets wherein each da-
122 3.0.4-6. Guinier analysis was performed to quantify the 7® tum is described by this feature vector and labeled by REA.

72a radius of gyration R,, whereas pair-distance distribution 7 We modelled the. relationship between our copolyrger
725 analysis by an indirect Fourier transform method was con- 7*° features and REA using GPR to both capture the nontriv-

726 ducted to quantitatively assess R,, maximum dimension, 7 ial, nonlinear mapping and to facilitate AL as GPR nat-
227 and macromolecular structure.42 44 7zs2 urally provides uncertainty estimates on predicted labels.

ze3 Covariances of points that are modeled by the Gaussian
7sa Process are calculated using the squared exponential ker-
zss nel basis function:

728 Quartz crystal microbalance with dissipation. All
720 quartz crystal microbalance experiments were carried out
730 on the Q-Sense Omega Auto (Biolin Scientific) with 5 MHz
731 sensitivity, less than 1 nm surface roughness, and theo- 1(F— )

732 Tetical mass sensitivity of 17.7 ng cm=2 Hz~!. HRP was k(z, %) = U2exp(,,72) + 02,
733 dissolved in 50 mM sodium acetate buffer (pH 5.15) at 2

73 0.2 mg/mL whereas the final concentration of lyophilized 7ss where ¥ is the feature vector of the copolymer, and textitl,
735 polymers was set to 0.52 mg/mL (10:1 molar concentration zs7 o, o, are kernel hyperparameters. Anisotropic kernels were
736 of polymer:HRP). Sodium acetate buffer was flowed as an zss explored but did not improve model performance. Hyper-
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780 parameters were tuned using the Tree-structured Parzen sse copolymer featured fractions of incorporation of any given
700 Estimator Approach (TPE), implemented by the Hyper- sso monomer that was less than 5%. This filter was imposed to
701 opt Python package.®” sa1 establish reasonable margins of experimental control over
GPR models for each enzyme are constructed as fol- ss2 the process of dispensing the monomer reagents with the
7e3 lows: the dataset is first split into five folds. Four of five of ses robotic arm used to automatically synthesize the copoly-
7zea the folds are then used to tune the GPR model hyperpa- sssa mers. Second, candidates were subsequently clustered us-
7es rameters, which are identified with 20-fold cross-validation sss ing Density-based spatial clustering of applications with
796 and optimization by TPE to minimize the mean squared sss noise (DBSCAN) using a distance threshold of 0.05v/2 and
7e7 error of labels. The optimal hyperparameters, along with sz a minimum of three points per cluster. Following the for-
zes data from four of five folds, are used to train a GPR model sss mation of clusters, the copolymer with the shortest FEu-
700 that makes predictions on the remaining fold of data. This s clidean distance to the centroid poistion of the cluster in
soo process is repeated four more times, such that all five of sso the copolymer feature vector space was selected as a rep-
so1 the original folds have served as test sets. The five sets of ss: resentative candidate for futher consideration. All non-
so2 Optimized hyperparameters are then averaged and used to ss2 clustered candidates, or noise-points, were also considered
sos define a final GPR model with the full set of data available sss In this fashion, the procedure produced a set of relatively
sos fOr an enzyme at a given iteration. The five sets of held- ssa diverse and representative copolymer candidates that fairly
sos out test performance metrics are also averaged to quantify sss considers “outliers.” Third, in cases where DBSCAN pro-
s0s and validate the predictive capabilities of the model. sse duced more than 24 candidates (this always occurred), we
soz Candidate copolymer generation. We use Bayesian ssz ensured that precisely 24 candidates were proposed by ap-
sos Optimization (BO) in tandem with a GPR model to pro- ess plication of k-Means clustering. Here, again, representa-
soo pose promising candidate copolymers. For the first four sse tive candidates are chosen based on proximity to the clus-
s10 rounds of active learning, we select candidates that max- seo ter centroid. If a cluster consisted of only two points, then
s11 imize the expected improvement (EI) acquisition function se: the candidate with the higher REA was used. A different
s12 given by se2 down-smapling procedure was used in the exploit round,
se3 since diversity was no longer a priority for selection. Specif-
sea ically, after producing the 200 polymer designs with BO,
ses candidates were ranked by their REA in descending order
ses and iteratively chosen for the final set of 24 candidates,
se7 provided they had compositions that were unique (within
ses synthetic precision) from any polymers that constituted
seo the growing list at that point.

792

[(Z) = Zo(Z)2(Z) + o(T)p(Z)
(W@ —f'=¢)
7= { o (&)
0

s13 where f(Z) is the predicted mean REA from the GPR, f’ is
s1e the current largest mean REA observed by the model, o (&)
s1s is the standard deviation from the GPR, ® and ¢ are the s70 Handling polymer gelation. Upon construction of the
s1e cumulative and probability density functions of the normal 71 seed database and throughout the AL, a handful of copoly-

o(Z) >0
o(Z)=0

s17 distribution, respectively, and ¢ is a hyperparameter that
s1s controls the balance between exploring unobserved regions
s10 Of the chemical space and exploiting known regions of it to
s20 Obtain high performing polymers.

821 To effectively sample copolymer designs that live on
s22 the exploit-explore spectrum, we sequentially generate 200
s23 copolymer candidates for distinct & values that logarithmi-

s72 mers were found to phase separate into a liquid and gel
s73 phase. While gelling polymers recorded nonzero REA val-
s7a ues, they were excluded from the dataset used to train the
s7s GPR models from iteration 1 onward due to the poten-
s76 tial uncontrolled differences in copolymer - enzyme inter-
s77 action environments that could obfuscate model training.
s7s However, the penalty function was used during the active

s2a cally vary from 0.001 to 30. To avoid proposing previously sz learning procedure to avoid suggesting polymer candidates
s2s synthesized polymers or those within the margin of syn- sso proximate to gelling polymers across discovery campaigns
s26 thetic experimental error previously synthesized or already ss1 across all three enzymes up to that iteration. While this
s27 proposed polymers, an additional penalty function is added ss2 strategy limited the number of gelled polymers per iter-
s2s to the acquisition function based on & (see also Support- sss ation per enzyme to an average of six copolymers in the
s20 ing Information). In the final iteration or exploit round, sss first two rounds of AL, it ultimately proved ineffective for
s30 copolymers that simply maximize REA predictions from sss GOx as hydrophobic monomers were found to be effec-
s31 the GPR model are proposed as candidates, although the sss tive for GOx stabilization but increased polymer gelation
e32 penalty function is retained to avoid redundant proposals. ssz (Fig. S11). To combat this issue, a classifier that leveraged
s3z Candidate copolymer down-selection. Unsupervised sss knowledge of prior polymer gelation across all enzymes and
s3a clustering methods were used to select 24 candidates for sse iterations up to that point was designed and integrated in
s3s synthesis from a larger set of 200 candidates generated seo the AL scheme. The use of the classifier was limited to
s3s by the BO procedure. In particular, the following pro- sex and ultimately facilitated the discovery of primarily solu-
s37 tocol was used for candidate selection in the first four AL se2 ble polymers for iterations 4 and 5 of AL for GOx. Fur-
sss iterations. First, a filter was applied to ensure that no ses ther discussion on the development and integration of the
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soa Classifier into the active learning scheme is supplied in the e2a Computational Science and Engineering (PICSciE) and
ses supporting information (Table S5, Fig. S11, Fig. S12). o2s Office of Information Technology’s Research Computing.
026 A.J.G. and N.S.M. acknowledge James Byrnes, beamline
927 scientist at NSLS-IT beamline 16-ID for Life Science X-ray
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sor All experimental data used to develop machine learn- 2 periments at Brookhaven National Laboratory. The LiX
s0s ing models are available in supporting information. In °%° beamline is part of the Center for BioMolecular Structure
seo addition, all datasets will be published and available 23t (CBMS), which is primarily supported by the National In-
oo for download in .csv format from DataSpace, Zen- o3 stitutes of Health, National Institute of General Medical
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