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Polymer-protein hybrids are intriguing materials that can bolster protein stability in non-native environments, thereby11

enhancing their utility in diverse medicinal, commercial, and industrial applications. One stabilization strategy12

involves designing synthetic random copolymers with compositions attuned to the protein surface, but rational design13

is complicated by a vast chemical and composition space. Here, we report a strategy to design protein-stabilizing14

copolymers based on active machine learning, facilitated by automated material synthesis and characterization15

platforms. The versatility and robustness of the approach is demonstrated by the successful identification of16

copolymers that preserve, or even enhance, the activity of three chemically distinct enzymes following exposure to17

thermal denaturing conditions. Although systematic screening results in mixed success, active learning appropriately18

identifies unique chemistries for each enzyme. Overall, this work broadens our capabilities to design fit-for-purpose19

synthetic copolymers that promote or otherwise manipulate protein activity, with extensions towards the design of20

robust polymer-protein hybrid materials.21

Polymer-protein hybrids (PPHs) have emerged as at-22

tractive materials that leverage polymers to improve pro-23

tein solubility and stability in often denaturing and abio-24

logical environments.2–6 One strategy, which has resulted25

in remarkable hours-long enzyme activity in toluene,7 tai-26

lors the composition of random copolymers based on pro-27

tein surface chemistry. In principle, copolymers might be28

precisely designed to stabilize any given protein without29

compromising activity. However, identifying such copoly-30

mers, whether via rational design or screening, is chal-31

lenging due to a large combinatorial design space (e.g.,32

monomer chemistry, chain length, architecture).8 Thus,33

fit-for-purpose PPHs could facilitate myriad applications–34

biofuel production,9 plastics degradation,10,11 pharmaceu-35

tical synthesis12– but a robust strategy for their design36

remains elusive.37

Over the last decade, machine learning (ML) has38

dramatically accelerated materials discovery across disci-39

plines,13–15 enabling more efficient identification of materi-40

als with target properties.13,16–21 Nonetheless, ML-guided41

copolymer design is limited by several factors, including42

the availability of quality data necessary to train the un-43

derlying models.8,22–25 Most polymer databases predomi-44

nantly feature homopolymers,26 and the laborious nature45

of polymer synthesis and characterization severely limits46

the number of systems that can be examined “in-house”.2747

Several copolymer design efforts have thus relied on data48

generated in silico.21,28,29 Meanwhile, recent experimental49

work has used flow reactors or parallel batch synthesizers50

to provide modest data (< 500 samples).18,30,31 More scal-51

able approaches would substantially extend capabilities to52

design copolymers for PPHs and other materials applica-53

tions.54

Here, we use active ML to rapidly design copolymers to55

form thermostable PPHs with glucose oxidase (GOx), li-56

pase (Lip), and horseradish peroxidase (HRP) (Fig. 1). To57

efficiently acquire data, we use automated oxygen-tolerant58

radical polymerization for copolymer synthesis32,33 and de-59

velop a facile, thermal-stability assay to characterize PPHs.60

With this platform and five iterations of active learning for61

each enzyme, we successfully identify PPHs with significant62

enzyme activity; these PPHs generally outperform those63

derived from a systematic screen with over 500 unique64

copolymers. Notably, we demonstrate that our strategy65

appropriately adapts data acquisition to yield chemically66

distinct sets of top-performing copolymers for each enzyme.67

Post hoc analysis of our data and ML models reveals impor-68

tant relationships between specific copolymer chemistries69

and PPH stability, while biophysical characterization of70

our most efficacious PPHs provide mechanistic insight into71

how copolymers may preserve enzyme function under ther-72

mal stress. Overall, this framework will automate and ac-73

celerate the design of copolymers for stable PPHs across74

applications.75

Overview of design space and strategy76

To test our ML-based design paradigm, we consider three77

chemically distinct enzymes–HRP, GOx, and Lip–with the78

design goal to maximize retained enzyme activity (REA)79

following thermal stressing. For reference, a PPH ex-80

hibiting 100% REA provides the same level of activity81
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Fig. 1| Overview of study. a, Schematic illustration of the surface chemistry for horseradish peroxidase (HRP), glucose oxidase (GOx),
and lipase (Lip). Amino acids are colored based on classification as hydrophobic (magenta), hydrophilic (green), or ionic (blue). Scale bar
= 2 nm. Images for the protein are rendered using Visual Molecular Dynamics.1 b, Monomers utilized for copolymer design. The colored
boxes delineate rough classifications as hydrophobic (magenta), hydrophilic (green), and ionic (blue). c, Schematic representation of
closed-loop learn-design-build-test discovery process used in this work. After initialization with a seed dataset, the process consists of
(i) training an enzyme-specific Gaussian process regression (GPR) surrogate model to predict the REA of a PPH based on copolymer
charachteristics (learn), (ii) Bayesian optimization of copolymers to satisfy an expected improvement acquisition function and subsequent
filtering to propose new copolymers (design), (iii) automated synthesis of proposed copolymers via photoinduced electron/energy transfer
reversible addition–fragmentation chain transfer (PET-RAFT) polymerization (build), and (iv) mixing of synthesized copolymers with
enzyme to form PPHs that are thermally stressed and assessed for REA (test). Newly acquired data can then be used to restart the
closed-loop discovery process.

as the enzyme prior to thermal stressing. Because these82

enzymes possess distinct surface chemistries and molec-83

ular weights (Fig. 1a), we consider a copolymer design84

space with eight possible monomers (Fig. 1b) copoly-85

merized with target degree of polymerization (DP) be-86

tween 50 and 200 in increments of 25. The chosen87

monomers are classified as hydrophobic (DEAMA, HPMA,88

BMA, MMA), hydrophilic (DMAPMA, PEGMA), or ionic89

(SPMA, TMAEMA); this set enables various interactions90

(e.g., van der Waals, hydrogen-bonding, electrostatic) with91

the enzyme, while balancing aqueous solubility. To encour-92

age reproducible synthesis and minimize latency, up to four93

distinct monomers are selected for copolymerization.94

Fig. 1c schematically presents the Learn-Design-Build-95

Test cycle employed here. After constructing an initial seed96

dataset featuring 504 copolymers and corresponding REA97

measurements, we performed five iterations for each en-98

zyme. Within each iteration, we (i) developed ML models99

to predict REA from copolymer characteristics, (ii) iden-100

tified batches of 24 candidate copolymers for PPHs using101

active and unsupervised ML, (iii) synthesized candidate102

copolymers, and (iv) performed thermal activity assays103

to determine REA for candidate PPHs; these results aug-104

mented the dataset to begin the next iteration.105
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Inefficiency of screening106

To gain perspective on the viability of brute-force search,107

our seed dataset consisted of a systematic screen over 504108

copolymers with distinct monomer combinations and DPs.109

The vast majority of copolymers in this dataset did not110

result in substantial REA, with the median values of 3.2%111

(HRP), 10.0% (GOx), and 0.118% (Lip). These poor re-112

sults are partly explained by the limited design space sur-113

veyed during systematic screening (Fig. S1, S2). Addi-114

tionally, the REA for PPHs with Lip, HRP, and GOx vary115

significantly for copolymers in the seed dataset, suggesting116

that copolymers should be tuned to specific enzymes and117

that systematic screening is likely to have mixed success118

across different enzymes.119

Active learning in a combinatorial design120

space121

To guide data acquisition beyond the seed database, we de-122

vised an active learning (AL) paradigm based on Bayesian123

optimization (BO)34 of a ML surrogate model (see Meth-124

ods). Preliminary comparisons using the seed datasets125

indidcated that GPR modeling with simple, machine-126

readable copolymer representations as input provided the127

best predictive performance and was thus selected as our128

surrogate modeling approach over other ML algorithms129

and copolymer featurization strategies35 (Fig. S3). At130

early stages of the design process, our objective was to it-131

eratively identify batches of copolymers that are likely to132

exhibit improvements in REA according to our ML mod-133

els and/or explore unknown regions of design space based134

on model uncertainty. To achieve this balance between ex-135

ploitation and exploration, we optimized copolymer com-136

positions and DP according to a series of modified expected137

improvement acquisition functions (see Methods, Candi-138

date copolymer generation, Candidate copolymer down-139

selection); similar acquisition functions have been used in140

previous work related to polymer design.36,37 Following141

four iterations of this data acquisition approach, we transi-142

tioned to a policy of pure exploitation in the fifth iteration;143

we refer to the fifth iteration as the “exploit round.”144

Fig. 2a-c shows that the AL-BO paradigm facilitated145

identification of numerous, diverse copolymers that en-146

hanced retained activity for each of the three enzymes.147

The median REA of PPHs found in the intermediate and148

final iterations of AL show progressive and significant in-149

crease over those in the seed database. In particular, there150

is a difference of 46.2%, 31.5 %, and 87.6% between the151

median REA of seed PPHs and those found in the exploit152

round for HRP, GOx, and Lip, respectively. Even within153

the intermediate iterations (1-4), we typically find improve-154

ments in median REA iteration-over-iteration (Fig. S4),155

despite data acquisition sometimes foregoing potentially156

promising designs in favor of diversity or uncertainty. For157

Lip and GOx, the best PPHs are found within the exploit158

round and exhibit remarkable REA values of 107.9% and159

67.4%, which significantly improve upon both the average160

and maximum values observed in the seed datasets. For161

HRP, the top-performing PPH is found during the initial162

screen, but many of the top hybrids are still identified by163

AL, including one with an REA of 81.0%. More generally,164

we find that a large number of diverse copolymers offer165

reasonable stabilization of HRP, and AL identifies some166

promising regions that are not exposed by our system-167

atic search. Quantitatively, AL-guided copolymers are dis-168

proportionately represented as top performers, comprising169

70.2%, 40.5%, and 42.5% of the top twentieth percentile of170

REA for Lip, GOx, and HRP, respectively. Interestingly,171

the exploit round also produces three PPHs for Lip that172

not only preserve but enhance its activity relative to the173

unstressed enzyme.174

Fig. 2d-i examine both the progression of AL and PPH175

performance as a function of the chemical constitution of176

copolymers. Based on the totality of measured REA val-177

ues, we find that best-performing PPHs for each enzyme178

utilize entirely different copolymer chemistries, which jus-179

tifies a tailored design strategy. In particular, optimal180

copolymers for HRP stabilization predominantly feature181

hydrophobic and ionic monomers and smaller DP (<100)182

(Fig. 2a,d). While AL-generated candidates primarily fo-183

cus on uncovering this region of the chemical space, there184

are also many effective PPHs that limit ionic content as185

identified by the seed dataset (Figs. 2g and S2c). In186

this case, a wide range of diverse, high-performing PPHs187

are identified by AL, despite outlier points in the HRP188

dataset (Table S1). For GOx, optimal copolymers are ei-189

ther predominantly hydrophobic or hydrophilic with very190

little ionicity and have DP typically in the range of 100-191

150 (Fig. 2b,e). Accordingly, AL for GOx stabilization pre-192

dominantly probed these regions of the chemical space and193

remained globally stagnant in its search (Fig. 2e,h), fine-194

tuning relatively promising regions identified in the seed195

dataset (Fig. S2a). Conversely, optimal copolymers for Lip196

stabilization possess sizable incorporations of monomers197

from all three chemical groupings with generally larger198

DP (Fig. 2c,f). AL-proposed candidates progress towards199

this promising region of the chemical space with each sub-200

sequent iteration (Fig. 2f,i); notably, this region of the201

chemical space is completely avoided in the seed dataset202

(Fig. S2b). This suggests that the Lip design campaign203

benefited from both exploration and exploitation data ac-204

quisition polices. Therefore, the AL/BO paradigm appro-205

priately adapted optimization to identify high-performing206

PPHs for each enzyme across chemical space, with less than207

20% additional data beyond the initial systematic screen.208

Understanding chemical features driving PPH209

performance210

Given the identification of highly stable PPHs for each en-211

zyme, we sought to understand the important chemical212
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Fig. 2| Machine learning guides design of highly stable polymer-protein hybrids. a-c, Copolymer designs and their measured REAs for
HRP, GOx, and Lip. Marginal axes at the top contain Gaussian kernel density estimate distributions of REA in the seed database (blue),
active learning iterations 1-4 (orange), and the final exploitation round (green). Medians of distributions are indicated by vertical lines.
Main axes show the experimentally measured REA for all tested PPHs; individual markers are vertically located in bins according their
degree of polymerization with random fluctuations added within bins to improve visual clarity. The marker color reflects the composi-
tion of the copolymer according to the ternary diagram (bottom right). d-f, Representation of active learning path traversed through
copolymer chemical space for each enzymes. The chemical space is represented as a ternary diagram with coordinates providing the
fraction of incorporation of hydrophobic, hydrophilic, and ionic monomers in copolymers. Colored stars indicate the mean composition of
copolymers proposed during a given active learning iteration. The ternary diagrams are additionally colored by maximum REA observed
for a PPH in a given region of the chemical space spanned by the ternary axes. g-i, Individual chemical compositions of copolymers
proposed during each stage of active learning. The centroid of all points at a given iteration yields the position of the stars d-f. The
crosses denote copolymers that showed undesirable gelation during synthesis (see Methods, Handling polymer gelation).
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Fig. 3| Analysis reveals distinct priorities in copolymer features for each protein. a, Copolymer compositions and degree of polymer-
ization (DP) for the top ten performing PPHs for HRP (orange), GOx (green), and Lip (purple). b, Cross-evaluation of top-performing
copolymers across enzymes showing mean observed and predicted REA for each copolymer-enzyme pairing. Statistical significance was
determined by Mann-Whitney U test. * (p<0.05), ** (p<0.005), *** (p<0.0005), unlabeled pairs are not significantly different. Top
10 performers for each enzyme demonstrate high specificity in agreement with predicted activity. c, Normalized mean |SHAP| values
calculated for HRP, GOx, and Lip for each model to quantify relative feature importance. d-f, SHAP summary values for GPR models
calculated from available data after all five active learning iterations. Each point corresponds to a unique evaluated PPH, and the
point’s position along the X-axis shows the impact of a feature on predicted REA. g-i, SHAP value distributions demonstrating the effect
of degree of polymerization on REA predictions. Polymer chain lengths with maximum calculated SHAP values are distinct between
enzymes. Black candlesticks range from second to third quartiles of SHAP values and white dots represent the distribution mean. j-l,
Mean |SHAP| values calculated for all model features after model training on the seed dataset and after each iteration of active learning.

features of copolymers that gave rise to their performance.213

Fig. 3a compares the features of copolymers underlying214

PPHs with the top ten highest REA for each enzyme. Al-215

though top-performing PPHs for a given enzyme tend to216

have some chemical similarity across effective copolymers,217

there is substantial chemical diversity between PPHs for218

different enzymes. To demonstrate that copolymer pairing219

with enzymes is highly specific, we cross-examined the ef-220

ficacy of the copolymers in Fig. 3a to stabilize the other221

enzymes; the results are provided in Fig. 3b. Experimen-222

tally, we empirically confirmed that the REA of PPHs de-223

signed for a specific enzyme are significantly higher than224

that of PPHs formed by the same copolymers but other225

enzymes. Virtual cross-evaluation using enzyme-specific226

GPR models trained on all iterations of data similarly227

suggest that REA is significantly diminished when top-228

performing copolymers for one enzyme are paired with an-229

other. Together, these results not only suggest an intricate230

connection between copolymer chemistry and size and the231

stability of PPHs but that such correlations can be effec-232
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tively learned from data.233

To further explore the relationship between copolymer234

features and PPH activity, we computed Shapley additive235

explanations (SHAP) values38,39 to quantify how chemical236

features of the copolymers (fractions of incorporation and237

DP) contributes to REA predictions by our GPR models.238

Here, positive SHAP values indicate positive contributions239

REA (negative SHAP values suggest negative contribu-240

tions), and we use the mean absolute SHAP value of a fea-241

ture as a proxy for its overall importance to model predic-242

tion. Fig. 3c shows that different copolymer features have243

distinct impact on REA predictions. To elucidate these dif-244

ferences, we compare SHAP values for the fractions of in-245

corporation for each monomer (Fig. 3d-f) and DP (Fig. 3g-246

i) for each enzyme. Although we previously associated hy-247

drophobic chemistry with high-performing PPHs for HRP248

(Fig. 2f,i), Fig. 3d reveals that the exclusion of BMA is249

favorable (higher REA), while the inclusion of MMA, a250

similar hydrophobic monomer, is associated with higher251

REA. Similar observations can be readily identified for252

Lip (Fig. 3f), for which SPMA and TMAEMA monomers253

(both highly ionic) represent the most and least important254

features based on their mean absolute SHAP values. Such255

differences in SHAP values between monomers with the256

same chemical classifications underscores the intricacy of257

designing effective polymer-enzyme pairing.258

Fig. 3c-i also indicate that the relative importances259

of copolymer features varies across enzyme models. For260

example, we find that different chain length regimes fa-261

vor high predictions on REA, depending on the enzyme-262

specific GPR model. (Fig. 3g-i). For HRP, smaller poly-263

mers (DP = 50, 75) display the highest SHAP values, while264

the highest SHAP values for Lip are observed for DP = 125265

or 150. DP = 200 is generally associated with lower REA,266

perhaps suggesting that shorter copolymer sequences en-267

able more facile pairing with enzyme chemical domains to268

promote stabilization.269

To understand the evolution of feature importances270

during AL, we compared mean absolute SHAP values271

for all non-gelling copolymers derived from GPR models272

trained after each stage of data acquisition. Fig. 3j-l shows273

that the importance of features can shift significantly, even274

with the addition of small amounts of data (typically 20275

data points added per iteration or less than 4% increase276

in prior data available). This is most evident following277

for Lip, wherein mean absolute SHAP values for SPMA,278

MMA, DMAPMA, and DP all substantially increase af-279

ter the third and fourth iteration. This behavior might be280

related to data acquisition over previously unexplored re-281

gions of chemical space, which is partly shown in Fig. 2e.282

The effects for HRP and GOx are overall less dramatic;283

most rankings are unchanged between iterations, with oc-284

casional shifts of one or two ranks upon exposure to new285

data. Nonetheless, even if the rank-ordering of features is286

unchanged, mean improvement in measured REA for PPHs287

across iterations suggests that GPR models had sufficient288

fidelity to effectively optimize REA, at least within a local289

chemical space.290

Revealing mechanisms with biophysical char-291

acterization292

Although mechanisms of stabilization for PPHs based on293

random copolymers have been hypothesized and studied in294

limited fashion using molecular dynamics simulation,7 ex-295

perimental examination of these biophysical interactions is296

nascent. Therefore, we characterized (Fig. S5) and inves-297

tigated a particular PPH for HRP identified in the exploit298

round–dubbed HRP-Exploit Polymer 1 (HRP-EP1)– us-299

ing circular dichroism (CD) spectroscopy, small-angle X-300

ray scattering (SAXS), dynamic light scattering (DLS),301

and quartz crystal microbalance with dissipation (QCM-302

D). HRP was selected due to its amenability to these char-303

acterization techniques, while detailed characterization of304

other enzyme systems proved challenging due to weak CD305

spectroscopy signal-to-noise and solubility limitations. We306

first investigated the impact of heating and cooling on the307

secondary structure of HRP by CD spectroscopy (Fig. 4a).308

The corresponding measured α-helix, β-sheet, and random309

coil content is provided in Table S2. We initially hypoth-310

esized that the addition of copolymer EP1 would reduce311

thermally induced unfolding of HRP; however, the CD data312

suggests only a slight retardation of unfolding. Upon heat-313

ing, the α-helix content for HRP degrades from ca. 34.8%314

to 17.4%, while the α-helix content for the HRP-EP1 sys-315

tem is 20.3% after heating. However, following cooling,316

HRP-EP1 exhibited 31.6% α-helix content compared to317

just 24.6% for HRP alone. This suggests that EP1 fa-318

cilitates significant refolding of HRP in a chaperone-like319

manner.320

To further understand the nature of the HRP-EP1 in-321

teractions, we used SAXS to compare the physical dimen-322

sions of HRP and its complexes in pre- and post-stress323

states. Guinier analysis of the data (Table S3, Fig. S6)324

showed that both HRP and HRP-EP1 have the same ra-325

dius of gyration (Rg, 24.6 - 25.0 Å) in the pre-stressed state.326

Similarly, in the pre-stressed state, the pair-distance dis-327

tribution function P (r) remains highly similar upon com-328

plexation of HRP with EP1 (Fig. 4b). Post-stress, the329

differences are dramatic in the pair-distance distribution330

function. While the maximum particle diameter (Dmax )331

of native HRP increases from 80 to 200 Å, that of HRP-332

EP1 increased only to 94 Å (Table S3). Additionally, while333

the Rg of HRP-EP1 increases only slightly to 26.9 Å, a334

larger 51.9 Å component appears in the Guinier plots of335

HRP (Fig. 4c, blue line), likely indicative of a denatured336

or aggregated sub-species of HRP created through thermal337

stress. Additionally, Kratky plots (Fig. S7) show peaks at338

q = 0.065 and 0.075 Å−1 in HRP and HRP-EP1, respec-339

tively, which indicates a compact structure similar to that340

of the native protein. This clearly suggests that the com-341
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Fig. 4| Biophysical characterization indicates copolymer-assisted refolding. a, Circular dichroism wavelength scans of HRP (dashed
lines) and HRP-EP1 (solid lines) at room temperature (black), upon heating (red), and after cooling for 24hrs (blue), demonstrating
that HRP-EP1 promotes retention of secondary structure in HRP during thermal stress and promotes significant protein refolding in
comparison to HRP control. b, Pair-distance distribution function of HRP and HRP-EP1 by small-angle X-ray scattering demonstrating
retained HRP-PPH morphology and size after exposure to thermal stress in comparison to native enzyme. c, Guinier analysis of HRP
and HRP-EP1 before and after heating suggesting the development of a denatured or aggregated sub-population of HRP (blue line) in
comparison to a single species observed in HRP, HRP-EP1, and HRP-EP1 after thermal stress (red lines). d, Dynamic light scattering
size distributions of HRP with and without polymer EP1, demonstrating that no larger structures were observed after mixing. e, Surface
thickness measured by Quartz crystal microbalance with dissipation after direct adsorption of HRP (t = 22 min) followed by injection of
polymer EP1 (t = 82 min).

plex promotes a certain level of conformational integrity in342

HRP even if secondary structure is impacted.343

Finally, DLS was performed to complement the SAXS344

results by providing the distribution of hydrodynamic radii345

(Rh) in the samples (Fig. 4d). All samples show peak in-346

tensities between 3.0 - 3.3 nm with minimal signal intensity347

for Rh > 10 nm. Additionally, measured polydispersity348

index remained under 0.2 for all samples, suggesting rela-349

tively monodisperse solutions (Fig. S8, Table S4). These350

results indicate that stabilization of HRP in PPH-EP1 is351

indeed driven by the formation of a complex rather than352

via larger macromolecular assembly. Further support of353

complex formation by QCM-D showed significant differ-354

ences in the Sauerbrey mass thickness following injection355

of EP1 onto surface immobilized HRP (Figs. 4e and S9).356

While native HRP exhibited a thickness of 3.6 nm, HRP-357

EP1 increased to 5.1 nm post injection at 80 minutes.358

Outlook359

Polymer-protein hybrids offer a powerful approach to sta-360

bilize sensitive proteins in a range of environments. Here,361

we developed a robust design framework integrating au-362

tomated polymer chemistry and machine learning to ef-363

ficiently discover polymer-protein hybrids with enhanced364

thermostability for three chemically distinct enzymes. No-365

tably, the machine learning-guided acquisition of data was366

effectively tailored to each enzyme. In addition, by analy-367

sis of developed surrogate machine learning models, we de-368

termined particular chemical features of copolymers that369

drive increased retained activity for each enzyme. Fur-370

thermore, the biophysical characterization of a successful371

polymer-protein hybrid design reveals chaperone-like assis-372

tance in structural refolding as a possible mechanism of sta-373

bilization. Taken together, these results highlight the exis-374

tence of a complex structure-function relationship under-375

lying protein-polymer hybrid activity that can be learned376

and exploited for materials optimization.377

This discovery platform for polymer-protein hybrids378

can be extended in numerous directions. First, it provides379

an exemplary approach that can be extended to other pro-380

teins, other copolymer chemistries, and/or alternative de-381

sign objectives, such as other environmental stresses. One382

7



intriguing possibility is also to generalize the surrogate383

models to incorporate chemical features of both proteins384

and their encapsulating polymers. Additionally, the assay385

data collected in this study can be used in conjunction with386

simulation-based models to further elucidate and validate387

molecular-level mechanisms for stability. Such simulations388

might also aid in identifying and selecting key features for389

surrogate models or even provide in silico figures of merit390

that correlate with stability. Furthermore, the copolymer391

chemical space is large and flexible to accommodate the392

simultaneous pursuit of multiple design objectives, which393

could accelerate their adoption as functional, commercial394

materials.395
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Methods573

Materials. Hydroxypropyl methacrylate (HPMA),574

2-diethylamino ethyl methacrylate (DEAEMA), [2-575

(methacryloyloxy)ethyl] trimethylammonium chloride so-576

lution (TMAEMC), and N -[3-(dimethylamino)propyl]577

methacrylamide (DMAPMA) were purchased from578

Sigma-Aldrich; methyl methacrylate (MMA) and 3-579

sulfopropyl methacrylate potassium salt (SPMA) from580

VWR; butyl methacrylate (BMA) from Alfa Ae-581

sar; and poly(ethyleneglycol) (n) monomethyl ether582

monomethacrylate (PEGMA, Mn ≈ 400 g/mol) from Poly-583

sciences. PEGMA was deinhibited prior to use by passing584

over mono-methyl ether hydroxyquinone inhibitor removal585

resin. Ethyl 2-(phenylcarbonothioylthio)-2-phenylacetate,586

4-nitrophenyl butyrate (PNB), hydrogen peroxide (H2O2),587

D-(+)-glucose, sodium acetate, lithium bromide were588

purchased from Sigma-Aldrich; zinc tetraphenyl por-589

phyrin (ZnTPP), dimethyl sulfoxide (DMSO), 3,3’,5,5’-590

tetramethylbenzidine (TMB) from Fisher Scientific; and591

potassium phosphate (mono and dibasic) and sodium ac-592

etate anhydrous from VWR.593

Automated PET-RAFT synthesis. Copolymers were594

prepared by automated photoinduced electron/energy595

transfer reversible addition–fragmentation chain transfer596

(PET-RAFT) polymerization in 96 well plates as pre-597

viously described.32,33,40,41 Briefly, the sequences and598

processes to be conducted by the Hamilton MLSTARlet599

liquid-handling robot were programmed in Python, indi-600

cating information on sample concentration, reagent vol-601

umes, and well position. Files containing reaction infor-602

mation were transferred to the Hamilton MLSTARlet to603

prime the robotic transfers. Stock solutions of monomer604

(2 M), ethyl 2-(phenylcarbonothioylthio)-2-phenylacetate605

(RAFT chain-transfer agent (CTA), 100 or 50 mM) and606

ZnTPP (4 or 2 mM) were prepared in DMSO as 1 mL607

aliquots. Aliquots were loaded into the Hamilton ML-608

STARlet liquid-handling robot and automatically pipet-609

ted into 96-wells clear flat-bottom well plates (Greiner bio-610

one). Monomer/CTA ratio was varied from 100 – 400 while611

ZnTPP/CTA remained at 0.01. Polymer mixtures were612

dispensed to a total volume of 200 µL and final monomer613

concentration of 1 M. The mixtures were then covered with614

well-plate sealing tape and radiated under 560 nm LED615

light (5 mW/cm2, TCP 12 Watt Yellow LED BR30 bulb)616

for 16 hours.617

HRP thermal stability assay. The activities of PPHs618

for HRP were evaluated by its ability to oxidize TMB in619

the presence of H2O2. Copolymers were synthesized and620

diluted in DMSO before further dilution into assay buffer621

(50 mM sodium acetate, pH 5.0) to a final concentration of622

22.7 µM (<1% DMSO). From the 22.7 µM polymer sam-623

ples, 50 µL were mixed with 50 µL of 10 µg/mL HRP624

(0.11 µM) in polystyrene 96 well plates. The solutions were625

thermally sealed with plate-sealing film and then thermally626

challenged in a water bath at 60°C for 30 minutes. Sub-627

strate solution was prepared by diluting 40 mM of TMB628

in DMSO to a final concentration of 0.4 mM in 1% H2O2629

assay buffer. 5 µL of polymer-enzyme mixtures were added630

to 245 µL of substrate solution. Absorbance was measured631

in kinetic mode for 5 minutes in 20 second intervals; mea-632

surements were made at 653 nm, which is the maximum633

of the absorption peak. The initial rate of change of ab-634

sorbance was used to calculate the activity of HRP. Native635

HRP activity at time t = 0 served as a positive control,636

while HRP heated at 60°C for 30 minutes served as the637

negative control.638

GOx thermal stability assay. The activities of PPHs639

for GOx were evaluated using an assay buffer contain-640

ing glucose, TMB, and HRP. Copolymers were diluted in641

DMSO and then in assay buffer (50 mM sodium acetate,642

pH 5.0) to a final concentration of 12 µM. Resulting solu-643

tions were mixed with equal volumes of stock GOx solution644

(5 µg/mL 30 nM) in polystyrene 96 well plates. The so-645

lutions were thermally sealed with plate-sealing film and646

then thermally challenged in a water bath at 65°C for 30647

minutes. After heating, 20 µL of the PPH samples were648

added to 100 µL of substrate solution (5% glucose, 0.4 mM649

TMB, 0.11 µM HRP in assay buffer). Absorbance was mea-650

sured in kinetic mode for 5 minutes in 20 second intervals;651

measurements were made at 653 nm, which is the maxi-652

mum of the absorption peak. The initial rate of change653

of absorbance was used to calculate the enzyme activity.654

Native GOx activity at time t = 0 served as a positive655

control, while GOx heated at 65°C for 30 minutes served656

as the negative control.657

Lip thermal stability assay. Activities of PPHs for Lip658

were evaluated using PNB as the substrate. Copolymers659

were diluted in DMSO and then in assay buffer (50 mM660

K2HPO4, 16.66 mM K2HPO4, pH 7.4) to a final concen-661

tration of 120 µM. From the 120 µM copolymer solutions,662

50 µL were mixed with 50 µL of stock lipase solution (0.8663

mg/mL 24 µM) in polystyrene 96 well plates. The so-664

lutions were thermally sealed with plate-sealing film and665

heated in a water bath at 70°C for one hour. Substrate666

solution was prepared by diluting stock PNB solution (5.4667

M) first to 10 mM in DMSO, followed by a final dilution668

to 0.5 mM in assay buffer. Absorbance was measured in669

kinetic mode for 10 minutes in 20 second intervals; mea-670

surements were made at 410 nm to monitor the production671

of p-nitrophenol. The initial rate of change of absorbance672

was used to calculate the enzyme activity. Native Lip ac-673

tivity at time t = 0 served as a positive control, while Lip674

heated at 70°C for one hour served as the negative control.675

Circular dichroism spectroscopy. CD wavelength676

and temperature scans of samples were collected using677

an AVIV Model 400 CD spectrometer (AVIV Biomedical678

Inc.). Wavelength scans consisted of measurements from679

260 nm to 190 nm, collecting points every 0.5 nm with680

a 1-nm bandwidth for 5 seconds, at all required temper-681
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atures. Temperature scans were consisted of measuring682

mean residue ellipticity at 222 nm from 30 to 90°C with a683

5-second averaging time and 1.5-nm bandwidth. The ramp684

rate was 2°C/minute, and samples were equilibrated for685

5 minutes at each temperature before measurement. The686

fraction of protein unfolding at different temperatures were687

calculated by assuming fully folded state at 30°C and fully688

unfolded state at 90°C. The melting temperature Tm was689

determined by fitting the temperature scans to a Boltz-690

mann sigmoidal equation. The fractions of α-helices and691

β-sheets in the protein samples were calculated using CD692

deconvolution algorithms for wavelength scans (Table S2).693

Dynamic light scattering. DLS of copolymers and694

polymer-enzyme mixtures were performed on a DynaPro695

DLS Plate Reader III, Wyatt Technologies. Concentra-696

tion of HRP for DLS experiments was maintained at 0.2697

mg/mL while polymer concentration was at 1 mg/mL. The698

data was collected using a wavelength of 830 nm and a scat-699

tering angle of 173°. Fifteen acquisitions were collected for700

each sample with an acquisition time of 5 seconds per ac-701

quisition using auto attenuation. Regularization analysis702

was performed using Rayleigh spheres model for hydrody-703

namic size measurement.704

Small-angle X-ray scattering. All scattering experi-705

ments were carried out at the Life Science X-ray Scattering706

(LiX) beamline 16-ID of the National Synchrotron Light707

Source II (NSLS-II) at Brookhaven National Laboratory708

(Upton, NY). HRP was prepared at a final concentration709

of 1 mg/mL in 50 mM sodium acetate (pH 5.15) while710

lyophilized polymers were reconstituted in sodium acetate711

buffer and mixed with HRP at a final concentration of 2.61712

mg/mL (10:1 molar concentration of polymer:HRP). Sam-713

ples were denatured by heating in a water bath at 65 °C for714

1 hour. All solutions were loaded into 96-well PCR plates715

and mailed in for data collection. An X-ray energy of 15.14716

keV was utilized for solution SAXS. Three Pilatus detec-717

tors were employed to provide a q range of 0.005 - 3.13 Å,718

while the range 0.005 - 0.25 Å was taken as the small-angle719

region. For background subtraction, sodium acetate buffer720

blanks were run for every three samples. The subtracted721

data were analyzed in BioXTAS RAW 2.1 with ATSAS722

3.0.4-6. Guinier analysis was performed to quantify the723

radius of gyration Rg, whereas pair-distance distribution724

analysis by an indirect Fourier transform method was con-725

ducted to quantitatively assess Rg, maximum dimension,726

and macromolecular structure.42–44727

Quartz crystal microbalance with dissipation. All728

quartz crystal microbalance experiments were carried out729

on the Q-Sense Omega Auto (Biolin Scientific) with 5 MHz730

sensitivity, less than 1 nm surface roughness, and theo-731

retical mass sensitivity of 17.7 ng cm−2 Hz−1. HRP was732

dissolved in 50 mM sodium acetate buffer (pH 5.15) at733

0.2 mg/mL whereas the final concentration of lyophilized734

polymers was set to 0.52 mg/mL (10:1 molar concentration735

of polymer:HRP). Sodium acetate buffer was flowed as an736

initial equilibration step at 20 µL/min for 25 min. HRP,737

polymer, and mixtures of HRP with polymer were flowed738

at 40 µL/min for 10 min. Sodium acetate was flowed after739

each step at 20 µL/min for 25 min to remove any loosely740

associated enzyme or polymer. Transformations using the741

Sauerbery equation45,46 were completed on the fifth har-742

monic frequency and dissipation responses to obtain sur-743

face thickness.744

Polymer characterization. The molecular weights745

(Mw and Mn) and dispersity (Ð) were measured by gel-746

permeation chromatography using an Agilent 1260 Infin-747

ity II. Polymer samples were eluted through a Phenomenex748

5.0 µm guard column (50 x 7.5 mm) preceded by superose749

Phenogel 12 10/300 GL column (Cytiva 17-5173-01, col-750

umn L × I.D. 30 cm × 10 mm, 11 m avg. part. size) in751

0.5x PBS (0.2% NaN3) using a flow rate of 0.5 ml/min.752

GPC calibration was completed with Agilent PEG stan-753

dards. Polymers were prepared at 50:1 eluent/polymer754

ratio in 0.5x PBS (0.2% NaN3) and filtered with a 0.45755

µm nylon filter. Polymer conversion was calculated by ob-756

taining 1H NMR spectra using a Varian VNMRS 500 MHz757

spectrometer with mesitylene as an internal standard and758

processed using Mestrenova 11.0.4.759

Machine learning surrogate models. All copolymers760

were featurized as DP-explicit composition vectors with761

one-hot encoded fingerprints of the monomer units.35 With762

eight possible monomers, the resulting feature vector pos-763

sesses nine dimensions, with the first containing the DP764

of the copolymer divided by 200 and the remaining eight765

containing the fractions of incorporation for each monomer;766

the division in the first dimension represents DP on a sim-767

ilar scale as the remaining features. Gaussian process re-768

gression (GPR) models, trained to predict the Yeo-Johnson769

transformation of the REA for a PPH, were preferred due770

to their superior predictive performance compared to other771

ML algorithms (Fig. S3). In addition, preliminary compar-772

isons amongst GPR models trained over the seed datasets773

revealed no evident advantage to using more advanced fin-774

gerprinting strategies over simple one-hot encoding (Fig.775

S3). Using available experimental data of various PPHs,776

we constructed enzyme-specific datasets wherein each da-777

tum is described by this feature vector and labeled by REA.778

We modelled the relationship between our copolymer779

features and REA using GPR to both capture the nontriv-780

ial, nonlinear mapping and to facilitate AL as GPR nat-781

urally provides uncertainty estimates on predicted labels.782

Covariances of points that are modeled by the Gaussian783

Process are calculated using the squared exponential ker-784

nel basis function:785

k(x⃗, x⃗′) = σ2exp(−1

2

(x⃗− x⃗′)2

l2
) + σ2

n,

where x⃗ is the feature vector of the copolymer, and textitl,786

σ, σn are kernel hyperparameters. Anisotropic kernels were787

explored but did not improve model performance. Hyper-788
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parameters were tuned using the Tree-structured Parzen789

Estimator Approach (TPE), implemented by the Hyper-790

opt Python package.47791

GPR models for each enzyme are constructed as fol-792

lows: the dataset is first split into five folds. Four of five of793

the folds are then used to tune the GPR model hyperpa-794

rameters, which are identified with 20-fold cross-validation795

and optimization by TPE to minimize the mean squared796

error of labels. The optimal hyperparameters, along with797

data from four of five folds, are used to train a GPR model798

that makes predictions on the remaining fold of data. This799

process is repeated four more times, such that all five of800

the original folds have served as test sets. The five sets of801

optimized hyperparameters are then averaged and used to802

define a final GPR model with the full set of data available803

for an enzyme at a given iteration. The five sets of held-804

out test performance metrics are also averaged to quantify805

and validate the predictive capabilities of the model.806

Candidate copolymer generation. We use Bayesian807

optimization (BO) in tandem with a GPR model to pro-808

pose promising candidate copolymers. For the first four809

rounds of active learning, we select candidates that max-810

imize the expected improvement (EI) acquisition function811

given by812

f(x⃗) = Zσ(x⃗)Φ(Z) + σ(x⃗)ϕ(Z)

Z =

{
(µ(x⃗)−f ′−ξ)

σ(x⃗) σ(x⃗) > 0

0 σ(x⃗) = 0

where f (x⃗) is the predicted mean REA from the GPR, f ′ is813

the current largest mean REA observed by the model, σ(x⃗)814

is the standard deviation from the GPR, Φ and ϕ are the815

cumulative and probability density functions of the normal816

distribution, respectively, and ξ is a hyperparameter that817

controls the balance between exploring unobserved regions818

of the chemical space and exploiting known regions of it to819

obtain high performing polymers.820

To effectively sample copolymer designs that live on821

the exploit-explore spectrum, we sequentially generate 200822

copolymer candidates for distinct ξ values that logarithmi-823

cally vary from 0.001 to 30. To avoid proposing previously824

synthesized polymers or those within the margin of syn-825

thetic experimental error previously synthesized or already826

proposed polymers, an additional penalty function is added827

to the acquisition function based on x⃗ (see also Support-828

ing Information). In the final iteration or exploit round,829

copolymers that simply maximize REA predictions from830

the GPR model are proposed as candidates, although the831

penalty function is retained to avoid redundant proposals.832

Candidate copolymer down-selection. Unsupervised833

clustering methods were used to select 24 candidates for834

synthesis from a larger set of 200 candidates generated835

by the BO procedure. In particular, the following pro-836

tocol was used for candidate selection in the first four AL837

iterations. First, a filter was applied to ensure that no838

copolymer featured fractions of incorporation of any given839

monomer that was less than 5%. This filter was imposed to840

establish reasonable margins of experimental control over841

the process of dispensing the monomer reagents with the842

robotic arm used to automatically synthesize the copoly-843

mers. Second, candidates were subsequently clustered us-844

ing Density-based spatial clustering of applications with845

noise (DBSCAN) using a distance threshold of 0.05
√
2 and846

a minimum of three points per cluster. Following the for-847

mation of clusters, the copolymer with the shortest Eu-848

clidean distance to the centroid poistion of the cluster in849

the copolymer feature vector space was selected as a rep-850

resentative candidate for futher consideration. All non-851

clustered candidates, or noise-points, were also considered852

In this fashion, the procedure produced a set of relatively853

diverse and representative copolymer candidates that fairly854

considers “outliers.” Third, in cases where DBSCAN pro-855

duced more than 24 candidates (this always occurred), we856

ensured that precisely 24 candidates were proposed by ap-857

plication of k-Means clustering. Here, again, representa-858

tive candidates are chosen based on proximity to the clus-859

ter centroid. If a cluster consisted of only two points, then860

the candidate with the higher REA was used. A different861

down-smapling procedure was used in the exploit round,862

since diversity was no longer a priority for selection. Specif-863

ically, after producing the 200 polymer designs with BO,864

candidates were ranked by their REA in descending order865

and iteratively chosen for the final set of 24 candidates,866

provided they had compositions that were unique (within867

synthetic precision) from any polymers that constituted868

the growing list at that point.869

Handling polymer gelation. Upon construction of the870

seed database and throughout the AL, a handful of copoly-871

mers were found to phase separate into a liquid and gel872

phase. While gelling polymers recorded nonzero REA val-873

ues, they were excluded from the dataset used to train the874

GPR models from iteration 1 onward due to the poten-875

tial uncontrolled differences in copolymer - enzyme inter-876

action environments that could obfuscate model training.877

However, the penalty function was used during the active878

learning procedure to avoid suggesting polymer candidates879

proximate to gelling polymers across discovery campaigns880

across all three enzymes up to that iteration. While this881

strategy limited the number of gelled polymers per iter-882

ation per enzyme to an average of six copolymers in the883

first two rounds of AL, it ultimately proved ineffective for884

GOx as hydrophobic monomers were found to be effec-885

tive for GOx stabilization but increased polymer gelation886

(Fig. S11). To combat this issue, a classifier that leveraged887

knowledge of prior polymer gelation across all enzymes and888

iterations up to that point was designed and integrated in889

the AL scheme. The use of the classifier was limited to890

and ultimately facilitated the discovery of primarily solu-891

ble polymers for iterations 4 and 5 of AL for GOx. Fur-892

ther discussion on the development and integration of the893
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classifier into the active learning scheme is supplied in the894

supporting information (Table S5, Fig. S11, Fig. S12).895

Data and Code availability896

All experimental data used to develop machine learn-897

ing models are available in supporting information. In898

addition, all datasets will be published and available899

for download in .csv format from DataSpace, Zen-900

odo, and Materials Data Facility. The code used901

in the development of the Gaussian process regression902

model development and training will be available on903

GitHub (https://github.com/webbtheosim/PPH_public)904

with trained machine learning models available in .pkl for-905

mat as described on the Github repository. Python scripts906

used to perform SHAP analysis will also be available. Prior907

to publication, these materials are available by reasonable908

request from the corresponding authors.909
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