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ABSTRACT: Mutually orthogonal bioorthogonal reactions are a thriving area of research in chemical biology. Here we present 
a predictive-driven approach to identify mutually orthogonal pairs among two bioorthogonal reactions: the metal-free 1,3-
dipolar cycloaddition (1,3-DC) reaction and the inverse electron-demand Diels–Alder (IEDDA) reaction. Parametrization of 
both 1,3-dipoles and dipolarophiles structures allowed the development of statistically robust models for predicting the sec-
ond order rate constants of 1,3-DC reactions. Combination of predictive models were used to identify potential mutually or-
thogonal reactions among sets of structurally different pairs. 

INTRODUCTION 

Bioorthogonal reactions are widely used for monitoring and 
controlling biological functions through labelling or decag-
ing of biomolecules and payloads of interest.1-3 Advances in 
the bioorthogonal toolbox have rendered these reactions 
more effective, selective and widespread, enabling the con-
struction of innovative theranostic and delivery systems for 
in vivo applications.4-6 Recently, the technology reached the 
milestone of first-in-human usage with a trans-cy-
clooctene/tetrazine (TCO/Tz) prodrug activation system 
recently entering Phase I clinical trials (ClinicalTrials.gov, 
Identifier: NCT04106492).5-7A current theme in bioorthog-
onal chemistry is the development of mutually orthogonal 
reactions towards deepening the understanding of biologi-
cal systems.8, 9 This has been achieved by empirically iden-
tifying suitable pairs among reported mechanistically and 
kinetically distinct reactions with reaction rates varying by 
several orders of magnitude.10 Examples include the orthog-
onality between most polar reactions with cycloaddition re-
actions11-13; but also amongst cycloadditions, such as the in-
verse electron-demand Diels–Alder reaction (IEDDA) using 
a TCO/Tz pair with the copper–, or strain–promoted azide-
cyclooctyne cycloaddition.14 More demanding triple strate-
gies combining such reactivities have also been gaining mo-
mentum on expanding the current paradigm on multiplexed 
biological approaches.15-19 

Prediction of the reaction kinetics has been a cornerstone of 
the advances made in bioorthogonal chemistry. The use of 
DFT calculations together with the distortion/interaction 
analysis has been used to determine the activation energies 
and consequently the rate constants of bioorthogonal reac-
tions.20-23 In multiplexed applications, kinetic divergence 
among bioorthogonal pairs is a widely employed strategy. 
By using such computations, Houk and co-workers have 
shown the advantage of using heatmaps (i.e., a matrix) of 
calculated rate constants for identifying new mutually 

orthogonal reaction pairs.20 However, the need to locate 
transition state geometries renders this approach time con-
suming. For instance, a 10 × 10 matrix, which displays 100 
reactions (e.g., IEDDA involving 10 dienes and 10 dieno-
philes), would require optimizing 100 transition state 
structures. To cover a broader chemical space of bioorthog-
onal compounds in a more convenient way, we envisioned 
the use of statistical data analysis as alternative to predict 
rate constants. We have recently shown that multivariate 
regression analysis can be used to model and predict the ki-
netics of IEDDA reactions using low computation cost by 
parametrizing both diene and dienophile reagents.24 This 
approach would require the parametrization of only 10 + 10 
reagents for effectively generate a 10 × 10 matrix of 100 re-
actions. Metal-free 1,3-dipolar cycloaddition reactions (1,3-
DC) have contributed together with IEDDA to the wide-
spread success of bioorthogonal chemistry for therapeutic 
and bioimaging purposes, and have been explored in multi-
plexed approaches as kinetically disparate pairs.  

 
Figure 1. Matrixes of predicted rate constants for bioorthogo-
nal IEDDA and 1,3-DC reactions.
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Figure 2. Multivariate models for 1,3-DC reactions involving (a) azides, (b) nitrones, (c) sydnones, (d) diazos, and (e) nitrilimines 
and nitrile oxides. (f) Parameters related to 1,3-dipoles and dipolarophiles. 

Herein we modeled the 1,3-DC as the bioorthogonal reac-
tion counterpart of the previously modeled IEDDA reaction 
and evaluated the benefit of using statistical data analysis 
and integrated models in the identification of new mutually 
orthogonal pairs (Figure 1). 

RESULTS AND DISCUSSION 

We started our study by modeling the biorthogonal 1,3-DC 
reaction. Literature curation resulted in the collection of ex-
perimental rate constants of 400 reactions involving 168 
structurally different 1,3-dipoles and 88 dipolarophiles 
(free energy range of nearly 15 kcal mol−1, see SI). These re-
agents were parametrized using molecular descriptors de-
termined after structure optimization using DFT calcula-
tions (M06-2X/6-31G(d) level of theory). Calculated de-
scriptors included geometric, steric and electronic features 
such as Sterimol parameters (L, B1 and B5), distances (d), 
bond angles and dihedral angles, vibration frequencies and 
intensities, and NBO charges and HOMO/LUMO energies. 
For the parametrization of the 1,3-dipoles we oriented the 
structures from left-to-right according to the order XNZ and 
with the highest Sterimol coefficient of the Z substituents 
placed on the top (Figure 2f), while the dipolarophiles struc-
tures where oriented according to our previous report (i.e., 
highest Sterimol coefficient placed to the top right quad-
rant)24. 

We created five data sets according to the 1,3-dipole struc-
ture (Figure 2): azides (149 reactions, 39 1,3-dipoles, 61 di-
polarophiles), nitrones (60 reactions, 30 1,3-dipoles, 5 di-
polarophiles), sydnones (70 reactions, 48 1,3-dipoles, 5 di-
polarophiles), diazos (45 reactions, 4 1,3-dipoles, 32 dipo-
larophiles), nitrilimines and nitrile oxides (94 reactions, 41 
1,3-dipoles, 21 dipolarophiles). 

Highly predictive models were identified for all five individ-
ual data sets with a goodness-of-fit R2 values in the range of 
0.74 to 0.94. Furthermore, cross validation analysis (LOO, 
Q2 = 0.61−0.93 and k-fold, Q2 = 0.59−0.93) and external val-
idation analysis (data set partitioned into 7:3 training/vali-
dation sets, RMSEtraining = 0.52−1.30 kcal mol−1, RMSEvalida-

tion = 0.60−1.29 kcal mol−1) suggest robust models. These 
models include terms relative to 1,3-dipoles and dipolaro-
philes. The descriptors used to describe 1,3-dipoles across 
the five models are the geometric parameter dXN, dNZ, dZ−1, 
β, Ψ, Sterimol S1, NBO charge NBON, and HOMO energy 
(Figure 1f). For dipolarophiles, the descriptors included in 
these models are the geometric parameters Σ, Σ720 and Φ, 
Sterimol parameters B1H, L2, S3 and S2, NBO charge NBOL, 
and HOMO and LUMO energies (Figure 1f). None of the pa-
rameters describing the structure of 1,3-dipoles are re-
peated across the different datasets, which is not surprising 
taking into consideration that each dataset corresponds to 
a unique class of 1,3-dipoles. 
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Figure 3. (a) Comprehensive model for the 1,3-DC reaction. (b) model and parameters (c) LODO (leave one-class-of-dipole out) 
analysis (d) Selected external validations using out-of-sample dipolarophiles or 1,3-dipoles. Ts – toluenesulfonyl or tosyl, Ms – mesyl 
or methanesulfonyl, Mes – mesityl.

Conversely, as several dipolarophiles structures are re-
peated across the different datasets, NBOL, Σ/Σ720 and S3 are 
repeated twice across the five models. Despite the fact that, 
in general, reaction rates are affected by solvent, we ob-
served that dielectric constant of the solvent was not statis-
tically relevant for these individual models, which could be 
attributed to the low diversity of solvents in each individual 
subset. All the parameters used in these models are chemi-
cally comprehensible, nevertheless the most complex pa-
rameter is Σ720, which describes the structure of dipolaro-
philes. This descriptor is the difference between the sum of 
the bend angles of a perfectly planar structure (i.e., 720, re-
sembling ethylene) and the sum of the bend angles of the 
dipolarophile core (Σ), thus describing how far from planar 
the dipolarophile structures are. For instance, in the syd-
nones model, this parameter is inversely correlated to ΔG‡, 
suggesting faster reaction rates for distorted dipolaro-
philes. Furthermore, Σ720 in combination with NBOL can 
used to represent the chemical space of dipolarophiles in-
cluding alkynes and alkenes both cyclic and acyclic (see SI). 

Comprehensive model for 1,3-DC reactions 

The robustness of these individual models suggested that a 
comprehensive model for 1,3-DC reactions could be devel-
oped. To this end, we built a data set consisting of 382 1,3-
DC reactions employed in biological systems, which 

included all six classes of 1,3-dipoles. By applying the same 
methodology as before, a highly predictive model was ob-
tained with a goodness-of-fit R2 value of 0.75 (Figure 3). 
Cross validation analysis (LOO, Q2 = 0.73 and k-fold, Q2 = 
0.73) and external validation analysis (data set portioned 
into 1:1 training/validation sets, RMSEtraining = 1.25 kcal 
mol−1, RMSEvalidation = 1.43 kcal mol−1) suggest a robust 
model. Moreover, we did not identify any outliers. This com-
prehensive model includes two parameters related to 1,3-
dipoles: NBOZ and S1, three parameters related to dipolaro-
philes: δ, NBOL and |Σ720|, and the dielectric constant of the 
solvent (ε). In other words, reaction rate of 1,3-DC increases 
for polar solvents (high ε), for 1,3-dipoles with high NBO 
charge at atom Z and sterically shielded (high Sterimol pa-
rameter of the Z-substituent), and for dipolarophiles with 
high NBO charges and far from planar (high |δ| and |Σ720|). 
Not surprisingly, the previously highlighted descriptors 
NBOL and |Σ720| are statistically relevant for the compre-
hensive model. The presence of the dielectric constant of 
the solvent contrasts with the individual models, which 
could be explained by the greater variability of the solvent 
in the full dataset. Interestingly, neither HOMO nor LUMO 
energies are used to parametrize 1,3-dipole and dipolaro-
philes structures in this comprehensive model.  



 

 
Figure 4. (a) Representation of the terms for the comprehensive models for the IEDDA and 1,3-DC reaction. (b) Predictive matrix of 
10 dienes, 10 1,3-dipoles, 10 alkenes and 10 alkynes structures. For complete list of structures and values see Supporting Infor-
mation. 

To demonstrate the ability of the model to predict 
out-of-sample structures, we performed 1) a leave-one-
class-of-dipoles out cross validation analysis (LODO) and 2) 
external validations by predicting several reaction rates re-
cently reported in the literature. In LODO analysis, the full 
dataset is split into different folds according to the class of 
1,3-dipole structure and for each class the model is trained 
with all folds except one that is used for validation. This 
analysis shows that in general the model is able to predict 
out-of-sample structures (Figure 3c, RMSEvalidation ≤ 2.35 
kcal mol−1, for azides, nitrones, sydnones, diazos and nitrile 
oxides), with a higher error found for the prediction of the 
k2 of reactions involving nitrilimines (RMSEvalidation = 3.89 
kcal mol−1). It is worth mentioning that the low LODOazides 
arises from the fact that a large data of dipolarophiles is re-
moved when azides-containing reactions are not included 
in the training set (see SI for analysis of the chemical space 
of each dataset). Finally, we tested the comprehensive 
model using three recently reported case studies. In the first 
case, the model was able to predict with high precision the 
reaction rates of the cycloadditions of different 

out-of-sample cyclononynes with benzyl azide (e.g., 21.8 vs 
21.6 kcal mol−1, Figure 3d).25 In the second case, the predic-
tion of the reaction rate involving sterically shielded sul-
fonated nitrilimines26 resulted in a greater error (e.g., 15.1 
vs 11.2 kcal mol−1, Figure 3d), which was not surprising due 
to the low LODOnitrilimines. In fact, we could increase the pre-
cision of this prediction by acknowledging that this is not an 
out-of-sample structure and using the individual model de-
veloped for the subset of nitrilimines (10.1 vs 11.2 kcal 
mol−1, Figure 3d). Nevertheless, it is worth mentioning that 
this is an overextrapolation considering the datapoints 
comprising nitrilimine pairs (i.e., this is the fastest reaction 
rate involving nitrilimines), and thus validating the high 
predictive skill of the model. In the third case, the prediction 
of a more challenging out-of-sample 1,3-dipole phos-
phaazide27 resulted in a 2.8 kcal mol−1 error compared to 
the reported DFT calculated transition state energy (17.9 vs 
20.7 kcal mol−1, experimental reaction rate not reported, 
Figure 3d). 



 

Identification of mutually orthogonal bioorthogonal reac-

tions 

With access to two statistically robust models composed of 
independent parameters to describe the common pair 
dienophile/dipolarophile of the two cycloadditions (Figure 
4a), we questioned whether mutually orthogonal 
bioorthogonal reactions could be identified. As proof-of-
concept, we selected structurally diverse reactive pairs 
comprised of 10 dienes (6-disubstituted tetrazines, dTz; 1 
monosubstituted tetrazine, mTz; and 3 triazines, Tri), 10 
1,3-dipoles (4 azides, Az; 2 nitrilimines, NIm; 2 sydnones, 
Syd; 1 nitrone, NTone; and 1 diazo, Diazo), and 20 dieno-
philes/dipolarophiles (10 alkenes, TCO, Norb, Cpp, Ene; and 
10 cyclic alkynes, cYne), and created a matrix of the respec-
tive predicted ΔG‡ values (Figure 4b). Identification of mu-
tually orthogonal pairs among the selected reactants could 
be achieved by detecting ΔG‡ values that differ by several 
units. To validate this approach, we selected a mutually or-
thogonal cycloaddition described in the literature and eval-
uated the skill of the matrix to predict such reactivity. Re-
markably, taking in consideration the corresponding RMSE, 
the predictive matrix was able to describe the mutual or-
thogonality involving the TCO/cyclooctyne/Tz/azide com-
bination reported by Hilderbrand and co-workers28 (Figure 
4b, dashed lines). Finally, several showcases of unreported 
potential mutually orthogonal biorthogonal cycloaddition 
were identified involving: 1) norbornene/cy-
clooctyne/Tz/nitrilimine (Figure 4b, solid black line), 2) 
TCO/cyclooctyne/Tz/sydnone (Figure 4b, solid grey line), 
and 3) TCO/cyclooctyne/Tz/Diazo (not shown, See SI). 

CONCLUSION 

In this study, we parametrized the structure of 1,3-dipoles 
and dipolarophiles and developed predictive multivariate 
models for the determination of second order rate con-
stants of 1,3-dipolar cycloadditions. Analysis of the devel-
oped comprehensive model revealed that i) reaction rates 
are greatly affected by manipulation of dipolarophiles and 
less by 1,3-dipoles (higher normalized coefficients for dipo-
larophiles terms); ii) ring strain poses as the most im-
portant descriptor for dipolarophiles as depicted by high 
coefficients for || and |720| terms; iii) 1,3-dipoles struc-
tures could be effectively tuned by varying the NBO charge 
and size of substituent of Z (NBOZ and S1). 

The combination of two comprehensive models for the 
bioorthogonal IEDDA reaction and 1,3-DC was used to gen-
erate matrixes of predicted reaction rates for several 
bioorthogonal cycloadditions. This workflow demonstrates 
the ability of a predictive data-driven approach for identify-
ing mutually orthogonal bioorthogonal cycloadditions. We 
believe that statistical modeling can be combined with deci-
sion analysis to improve the effectiveness of the approach 
for further identifying novel mutually orthogonal reac-
tions—either to account for information of reactions that do 
not occur (reaction rate not available) or to use a sub model 
depending on the reagent structure in oppose to the com-
prehensive model. Furthermore, we envision the use of this 
approach for fine-tuning a pair in a specific reaction, being 
crucial the quality of the training set and model choice for 
the performance. 
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