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ABSTRACT: Drug resistance is a primary barrier to effective treatments of HIV/AIDS. Calculating quantitative 

relations between genotype and phenotype observations for each inhibitor with cell-based assays requires 

time and money consuming experiments. Machine learning models are good options for tackling these 

problems by generalizing the available data with suitable linear or nonlinear mappings. The main aim of this 

paper is to construct drug isolate fold change (DIF)-based artificial neural network (ANN) models for 

estimating the resistance potential of molecules inhibiting the HIV-1 protease (PR) enzyme. Throughout the 

study, seven of eight protease inhibitors (PIs) have been included in the training set and the remaining ones 

in the test set. Using the 7-in 1-out procedure, eight ANN models have been produced to measure the 

learning capacity of models from the descriptors of the inhibitors. The mean value of eight ANN models for 

unseen inhibitors is and 95% confidence interval (CI) is Predicting the fold change resistance for hundreds of 

isolates allowed for robust comparison of drug pairs. These eight models have predicted the drug resistance 

tendencies of each inhibitor pair with the mean 2D correlation coefficient 0.933 and 95% CI A classification 

problem has been created to predict the ordered relationship of the PIs and the mean accuracy, sensitivity 

and specificity values are obtained as 0.954, 0.791 and 0.791, respectively. The currently derived ANN models 

can accurately predict the drug resistance tendencies of PI pairs, and this observation could help test new 

inhibitors with various isolates. 
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INTRODUCTION 

Acquired immunodeficiency syndrome (AIDS) disease caused by the human immunodeficiency 

viruses, HIV-1 and HIV-2, began to spread in the 1970s and came into focus in the early 1980s 

as one of the most severe public health threats in history [1]. Detection of reverse transcription 

activity in cultures of lymph node cells from AIDS patients in the early 1980s revealed that AIDS 

was caused by a retrovirus later called human immunodeficiency virus (HIV) [2]. Zidovudine 

(AZT), the first nucleotide reverse transcriptase inhibitor (NRTI) that inhibits the reverse 

transcription enzyme of HIV, was approved in 1987, and today there are nearly thirty approved 

drugs [3]. HIV-1 has affected approximately 38 million people today, and just about 26 million 



people are receiving "Highly Active Antiretroviral Treatment" (HAART) [4]. The HAART therapy 

proposed in the mid-1990s was defined as the procedure of using three or four different drugs 

that act on various targets in the virus's life cycle [5]. With HAART therapy, the death rate fell 

to 47% in 1997, just ten years after the first AIDS case was detected [6]. 

Drug resistance is the primary barrier to the effective treatment of HIV/AIDS [7,8]. Single drug 

treatments for HIV yield rapid resistance due to the high genetic diversity and error-prone 

replication of the virus [8,9]. Thence, the use of drug combinations through the HAART 

protocols increases the efficacy of the treatment [10]. However, cross-resistant isolates for 

available drugs encourage researchers to find novel inhibitors [11-15]. To combat with drug-

resistant isolates, novel drug design methodologies have been adopted for HIV-1 protease 

enzyme such as phosphonate-mediated solvent anchoring [11], lysine sulfonamide-based 

molecular core [12], allophenylnorstatine containing inhibitors [13], nonpeptic inhibitor GRL-

02031 [14], bis-tetrahydrofuranylurethane containing nonpeptidic inhibitor UIC-94017 [15]. 

Testing novel inhibitors with various drug-resistant isolates need experimental or 

computational mechanisms. 

HIV protease enzyme plays a vital role in forming infectious viruses by regulating immature 

viruses' synthesized gag and gag-pol polyproteins [16]. Protease inhibitors are generally 

included in the scope of HAART therapy, and eight approved drug molecules are used 

effectively today [17]. Dose-response curves of protease inhibitors were shown that they have 

higher Hill coefficient values than the fusion (FI), integrase (II), nucleoside reverse transcriptase 

(NRTI) and non-nucleotide reverse transcriptase (NNRTI) inhibitors [18]. Even if a person is 

infected with the wild-type virion, resistant variants may emerge with dosing disruptions or the 

use of inappropriate combinations in the HAART therapy [19]. The success rate of HAART 

therapy can be increased by measuring the efficacy of existing and novel inhibitors over 

resistant genotypes [20-21]. The observation of drug-efficacy relations with cell-based assays 

is expensive and time-consuming in the presence of genotype information, and mathematical 

models are essential to tackle this vital problem [22-24]. 

Various mathematical models have been calibrated using genotype-fold change data proposed 

in the Stanford HIV database to predict mutational effects on viral dynamics in the literature 

[25-40]. The life span of patients can be considerably extended by the construction of reliable 

mathematical models that accurately predict suitable drugs for existing isolates. Most existing 

prediction models are knowledge-based and require predetermined rules on mutations and 



drugs [25-28]. The most commonly used genotype interpretation algorithms have been 

observed to be Stanford HIVdb [25], HIV-grade [26], REGA [27] and ANRS [28]. In addition to 

these genotype interpretation algorithms, various machine learning models have recently 

been proposed to predict genotype-fold change relationships in the presence of a 

predetermined inhibitor [29-40]. Artificial neural network [29-34], random forest algorithm 

[35-41], support vector machine [37,41-42], decision trees [43], k-nearest neighbours (kNN) 

[36], restricted Boltzmann machine [44], support vector regression [40] and linear regression 

[45] are the techniques used in the literature to model the efficacy of different drugs against 

HIV-1 variants. All of the works mentioned above focus on predicting the fold change of a single 

drug. The models take the mutational genotype as an input without the need for molecular 

descriptors as an input. Instead, a general model that makes fold-change predictions on 

hundreds of isolates based on molecular fingerprints are lacking. 

So far, machine learning models for each HIV-1 inhibitor have been successfully proposed with 

various encoding techniques of genotypes. Here, the possibility of constructing machine 

learning models that simultaneously take inhibitor fingerprints and isolate descriptors as inputs 

and estimate the fold change values is explored. For training and testing of models, data of 

eight approved protease inhibitors atazanavir (AZT), darunavir (DRV), fosamprenavir (FPV), 

indinavir (IDV), lopinavir (LPV), nelfinavir (NFV), saquinavir (SAV) and tipranavir (TPV) in the 

Stanford HIV drug resistance database is used. By proposing a reliable testing procedure called 

7-in 1-out, our drug-isolate-fold change (DIF) based artificial neural network (ANN) models are 

seen to have the ability to learn from inhibitor descriptors to predict fold-change values. The 

model can predict the fold change of hundreds of isolates based on molecular fingerprints and 

the mutational genotype. To that end, the learned hundreds of predictors (fold-change of 

isolates) can be successfully used to assess the resistance potential of inhibitors. We used pairs 

of drugs to predict the more resistance prone molecule. We called these pairwise comparisons 

the resistance tendencies. Our DIF-based ANN models are proven to predict each PI pair's drug 

resistance tendencies accurately, and these quantitative results support our central 

arguments. 

METHODS AND MATERIAL 

Dataset Description 

Filtered genotype-phenotype data on the Stanford HIV drug resistance database was retrieved 

for protease inhibitors [2]. We have regulated this data set with respect to isolates and 



inhibitors, and 498 protease mutations have been observed. For the HIV-1 PI: 1218 isolates for 

atazanavir (ATV), 678 isolates for darunavir (DRV), 1809 isolates for fosemprenavir (FPV), 1860 

isolates for indinavir (IDV), 1562 isolates for lopinavir (LPV), 1907 isolates for nelfinavir (NFV), 

1861 isolates for saquinavir (SQV) and 908 isolates for tipranavir (TPV) have been analyzed for 

PI susceptibility.  In the dataset, 436, 336, 480, 483, 472, 486, 489 and 409 different mutations 

have been observed for ATV, DRV, FPV, IDV, LPV, NFV, SQV and TPV, respectively.  

 

Representation of Isolates 

498 unique mutations have been observed in the complete dataset for eight protease 

inhibitors. To represent the isolates that occurred in the dataset, the binary barcoding 

technique was applied here, as also used in several studies of modelling genotype-phenotype 

data for various HIV-1 inhibitors [3]. Thus, 498-dimensional vector of binary entries with 0s and 

1s that uniquely represent any existing isolates is considered. Assume that the 498 unique 

mutations produce the set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} where 𝑥𝑖  is a mutation pattern that occurred in 

the dataset. Any isolate can be obtained from any combination of these mutations and the 

isolate 𝑗 can be defined as 𝐼𝑗 = {𝑎1, 𝑎2, … , 𝑎𝑛} with 

𝑎𝑘 = {
1,   𝑖𝑓 𝑥𝑘 ∈ 𝐼𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

In this way, each isolate can be transformed into a unique 498-dimesional input vector used in 

the machine learning part.  

 

Representation of Inhibitors 

To construct a drug-isolate-fold change model for the HIV-1 protease inhibitors, the molecular 

representations of the inhibitors have been built with binary Morgan fingerprints. The Morgan 

fingerprints provide an effective way of the vector representations of molecules and are widely 

used in machine learning models [4]. The RDKit environment of the Python program has been 

used to convert the smile representations of ATV, DRV, FPV, IDV, LPV, NFV, SQV and TPV 

inhibitors to a binary 512-bit vector representation. 234 out of 512 bits have been seen to 

provide unique characteristics for 8 PI. Thus, the molecular representation of each PI needs 

234-dimensional vectors. 

 

Artificial Neural Network Model for Regression  



An ANN model has been constructed with isolate-inhibitor inputs and fold change outputs with 

Machine Learning and Deep Learning toolbox of the MATLAB program. Since isolates and 

inhibitors are uniquely represented by 498- and 234- dimensional vectors, the ANN model has 

732-dimensional input. The ANN architecture includes 732-dimensional input, five hidden layer 

neurons and one output neuron with hyperbolic tangent-sigmoid and linear activation 

function. Logarithms of fold-change values in the dataset are taken as output variables of the 

neural network models.  In the training process, the scaled conjugate gradient algorithm with 

MATLAB built-in function “trainscg” is utilized over GPU [5].  

 

Ensemble Processing                                                                          

Since we have only eight inhibitors, measuring the molecular learning capacity of our ANN 

model is crucial. In this way, an ensemble learning procedure is used to improve the molecular 

learning performance of the model. For each PI, the 100×50 model has been trained with the 

data of the remaining seven inhibitors. From every 50 models, a model is chosen that yields 

the minimum mean square error for the interior test set of the corresponding PI data. Thus, 

100 optimal models are obtained, and the final model is calculated as the average of these 

models. 

 

RESULTS 

Regression performance of molecular learning models 

Eight feed-forward neural network models are constructed with drug-isolate-fold- change (DIF) 

data by excluding one of the drugs from training in each case. The excluded results are 

predicted by the ANN model trained with the remaining seven DIF data. The regression 

performances of each model are illustrated in Figure 1 with corresponding 𝑅2 values (square 

of the linear correlation coefficient). The best and worst results are obtained by predicting the 

outcomes of the drugs LPV and TPV with 𝑅2 = 0.837  and  𝑅2 = 0.393. Similarly, predicting 

the fold-change results of the inhibitor TPV was observed to be the worst one in literature [23]. 

The mean value 𝑅2 of all predictions is 0.732 and the 95% confidence interval is 

[0.613, 0.850]. The DIF based ANN model provides accurate estimations even if the test data 

consists of unseen drugs. This observation implies that our ANN models learn molecular 

information from the Morgan fingerprints accurately. The detailed performance results of our 

DIF based ANN models are presented in Table 1.  



   

Figure 1 Data versus predicted values of fold changes obtained by DIF-based ANN models 

DIF-based ANN regression models are constructed with the 7- training 1- testing methodology. For each figure, 

the fold-change results are estimated by an ANN model which is trained with the remaining data of the seven PI. 

The 𝑅2 values correspond to the square of the linear correlation coefficient of the data and prediction.  

 

Table 1. Mean square error (MSE) and 𝑅2  values of the DIF-based ANN modelb. 

 𝑅2 MSE 

ARVsa Whole dataset Test set Whole dataset Test set 

ATV 0.865 0.778 0.087 0.166 

DRV 0.857 0.736 0.092 0.227 

FPV 0.849 0.738 0.097 0.160 

IDV 0.861 0.811 0.090 0.131 

LPV 0.852 0.822 0.096 0.188 

NFV 0.845 0.757 0.101 0.215 

SQV 0.833 0.731 0.109 0.283 

TPV 0.821 0.359 0.116 0.560 
a Abbreviations: ATV, atazanavir; DRV, darunavir; FPV, fosamprenavir; IDV, indinavir; LPV, lopinavir; NFV, 

nelfinavir; SQV, saquinavir; TPV, tipranavir. 

b Drug-isolate-fold change models are constructed as a general neural network model taking drug fingerprints and 

mutation information as inputs. For each line, the corresponding drug has not been included in the training 

process. The test set performance of each model has been evaluated with respect to the excluded drugs. 

100 × 50 simulations with random weights have been done, and 100 neural network models that yield minimum 

MSE for interior test set among 50 trials are obtained. The final neural network model is achieved by taking the 

mean of 100 models. 

 



Prediction of drug resistance tendencies for each PI pair 

The inhibition potential of each PI in the presence of various genotypes is known to be variable. 

Tendencies of the logarithmic fold change values for each PI pair provides valuable information 

about the resistance profiles of the inhibitors, as seen in Figure 2. Prediction of these 

tendencies by the DIF-based ANN models and the corresponding 2D correlation coefficients 

are presented in Figure 2 in a comparative way for each PI pair. For each PI, prediction is done 

with the ANN model trained by the data of the remaining seven inhibitors with an ensemble 

learning approach. This procedure shows the molecular learning capacity of our ANN models 

from the Morgan fingerprints. The minimum and maximum 2D correlation coefficients are 

0.892 and 0.954 for TPV-DRV and LPV-DRV couples (95% CI [0.930, 0.938]). Thus, the current 

DIF-based ANN models can distinguish the inhibitory potentials of each PI pair. 

 

 

 

Figure 2 Prediction of the fold-change tendencies with the DIF-based ANN model for each PI pair 

The common isolate data of each PI pair and the corresponding DIF-based ANN model predictions are illustrated 

with 2D correlation coefficients. For each PI, the prediction is constructed using the DIF-based ANN model, which 

is trained with the remaining seven PI data. The illustrations show the tendencies of the drug resistances for each 

PI pair for common genotypes. 

 

Classification of PIs with respect to possible common isolates 



Our DIF-based ANN models can distinguish the fold change values of each PI in the presence 

of any isolate. In this way, a classification problem measuring the relationship 

𝑙𝑜𝑔(𝐹𝑜𝑙𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 [𝐴, 𝐼𝑠𝑜𝑙𝑎𝑡𝑒]) > 𝑙𝑜𝑔(𝐹𝑜𝑙𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 [𝐵, 𝐼𝑠𝑜𝑙𝑎𝑡𝑒]) has been constructed, 

where A and B are possible protease inhibitors. These relations take values 0 and 1 depending 

on the inhibitors and isolates. Thus, our ANN models trained with the data of seven inhibitors 

except that one specific inhibitor has been used to predict these binary values. The 

corresponding receiver operating characteristic (ROC) curves have been illustrated in Figure 3. 

Area under the ROC curve (AUC) values are included in the figure. The best and worst AUC 

values are obtained for the IDV-LPV and DRV-LPV pairs with 0.992 and  0.818 (95% CI: [0.950, 

0.978]). In this context, the current DIF-based ANN models are seen to capture the binary 

relations between any PI pair with high approximation performance. 

Performance metrics of the current ANN models for capturing binary relations of PI pairs are 

presented in Table 2. As indicated in the table, the DIF-based ANN models have a high rate of 

true prediction for each PI pair. The mean accuracy, sensitivity and specificity values are 

calculated as 0.954, 0.791 and 0.791 (95% CI [0.932, 0.952], [0.719, 0.863] and [0.719, 0.863]), 

respectively. The most conspicuous result here is that the neural network models can classify 

the inhibitors for resistance profiles, even if that model did not see the corresponding 

inhibitors in the training process. 

 

 

Figure 3 Classification performances of the DIF-based ANN models  



DIF-based ANN classification models are constructed with the 7- training 1- testing methodology. For each PI, the 

classification of resistant and non-resistant isolates is estimated by an ANN model trained with the remaining data 

of the seven PI. The 𝐴𝑈𝐶 values correspond to the area under the ROC curves, and the accuracy is evaluated with 

the true estimation rate. 

 

Table 2. Accuracy values of the DIF-based ANN models for predicting the drug resistance 

tendencies for each couple of ARVsa.  

ARVs  ATV DRV FPV IDV LPV NFV SQV TPV 

ATV 

Accuracy - 0.970 
(224/231) 

0.932 
(438/470) 

0.923 
(264/286) 

0.913 
(303/332) 

0.948 
(361/381) 

0.896  
(301/336) 

0.983  
(404/411) 

Sensitivity - 0.500 
(7/14) 

0.772 
(78/101) 

0.850 
(85/100) 

0.978 
(178/182) 

0.986 
(291/295) 

0.720 
(90/125) 

0.000 
(0/6) 

Specificity - 1.000 
(217/217) 

0.976 
(360/369) 

0.962 
(179/186) 

0.833 
(125/150) 

0.814 
(70/86) 

1.000 
(211/211) 

0.998 
(404/405) 

DRV 

Accuracy 0.970 
(224/231) 

- 0.968 
(184/190) 

0.917 
(222/242) 

0.960 
(215/224) 

0.976 
(321/329) 

0.936 
(206/220) 

0.897 
(156/174) 

Sensitivity 1.000 
(217/217) 

- 0.972 
(172/177) 

0.966 
(198/205) 

0.982 
(214/218) 

1.000 
(308/308) 

0.972 
(173/178) 

0.714 
(40/56) 

Specificity 0.500 
(7/14) 

- 0.923 
(12/13) 

0.649 
(24/37) 

0.167 
(1/6) 

0.619 
(13/21) 

0.786 
(33/42) 

0.983 
(116/118) 

FPV 

Accuracy 0.932 
(438/470) 

0.968  
(184/190) 

- 0.936 
(677/723) 

0.952 
(511/537) 

0.964 
(878/911) 

0.930 
(705/758) 

0.932 
(369/396) 

Sensitivity 0.976 
(360/369) 

0.923 
(12/13) 

- 0.993 
(552/556) 

0.996 
(465/467) 

0.996 
(817/820) 

0.975 
(502/515) 

0.511 
(24/47) 

Specificity 0.772 
(78/101) 

0.972 
(172/177) 

- 0.749 
(125/167) 

0.657 
(46/70) 

0.670 
(61/91) 

0.835 
(203/243) 

0.989 
(345/349) 

IDV 

Accuracy 0.923 
(264/286) 

0.917 
(222/242) 

0.936 
(677/723) 

- 0.952 
(399/419) 

0.952 
(498/523) 

0.929 
(562/605) 

0.957 
(404/422) 

Sensitivity 0.962 
(179/186) 

0.649 
(24/37) 

0.749 
(125/167) 

- 0.989 
(270/273) 

0.994 
(468/471) 

0.874 
(221/253) 

0.280 
(7/25) 

Specificity 0.850 
(85/100) 

0.966 
(198/205) 

0.993 
(552/556) 

- 0.884 
(129/146) 

0.577 
(30/52) 

0.969 
(341/352) 

1.000 
(397/397) 

LPV 

Accuracy 0.913 
(303/332) 

0.960 
(215/224) 

0.952 
(511/537) 

0.952 
(399/419) 

- 0.944 
(526/557) 

0.929 
(509/548) 

0.982 
(429/437) 

Sensitivity 0.833 
(125/150) 

0.167 
(1/6) 

0.657 
(46/70) 

0.884 
(129/146) 

- 0.979 
(375/383) 

0.836 
(173/207) 

0.632 
(12/19) 

Specificity 0.978 
(178/182) 

0.982 
(214/218) 

0.996 
(465/467) 

0.989 
(270/273) 

- 0.868 
(151/174) 

0.985 
(336/341) 

0.998 
(417/418) 

NFV 

Accuracy 0.948 
(361/381) 

0.976 
(321/329) 

0.964 
(878/911) 

0.952 
(498/523) 

0.944 
(526/557) 

- 0.935 
(735/786) 

0.966 
(477/494) 

Sensitivity 0.814 
(70/86) 

0.619 
(13/21) 

0.670 
(61/91) 

0.577 
(30/52) 

0.868 
(151/174) 

- 0.451 
(41/91) 

0.188 
(3/16) 

Specificity 0.986 
(291/295) 

1.000 
(308/308) 

0.996 
(817/820) 

0.994 
(468/471) 

0.979 
(375/383) 

- 0.999 
(694/695) 

0.992 
(474/478) 

SQV 

Accuracy 0.896  
(301/336) 

0.936 
(206/220) 

0.930 
(705/758) 

0.929 
(562/605) 

0.929 
(509/548) 

0.935 
(735/786) 

- 0.898 
(359/400) 

Sensitivity 1.000 
(211/211) 

0.786 
(33/42) 

0.835 
(203/243) 

0.969 
(341/352) 

0.985 
(336/341) 

0.999 
(694/695) 

- 0.146 
(7/48) 

Specificity 0.720 
(90/125) 

0.972 
(173/178) 

0.975 
(502/515) 

0.874 
(221/253) 

0.836 
(173/207) 

0.451 
(41/91) 

- 1.000 
(352/352) 



TPV 

Accuracy 0.983  
(404/411) 

0.897 
(156/174) 

0.932 
(369/396) 

0.957 
(404/422) 

0.982 
(429/437) 

0.966 
(477/494) 

0.898 
(359/400) 

- 

Sensitivity 0.998 
(404/405) 

0.983 
(116/118) 

0.989 
(345/349) 

1.000 
(397/397) 

0.998 
(417/418) 

0.992 
(474/478) 

1.000 
(352/352) 

- 

Specificity 0.000 
(0/6) 

0.714 
(40/56) 

0.511 
(24/47) 

0.280 
(7/25) 

0.632 
(12/19) 

0.188 
(3/16) 

0.146 
(7/48) 

- 

a Accuracy, sensitivity and specificity values represent the rate of true predictions, true positive 

rate and true negative rate, respectively. The common genotype data is used for each PI pair 

by eliminating the observations satisfying |log(𝐴) − log (𝐵)| ≤ 𝑙𝑜𝑔2 where 𝐴 and 𝐵 are the 

fold change values of drugs A and B for a specified genotype. 

 

DISCUSSION 

This study proposes a machine learning approach to predict fold-change values from the 

descriptors of HIV-1 protease inhibitors and isolates. The filtered PhenoSense assay datasets 

publicly available in the Stanford HIV drug resistance database have been utilized for training 

and testing machine learning models. Drug-isolate-fold change-based feed-forward artificial 

neural networks have been trained with seven of eight inhibitors, and the remaining one is 

used as test data, and this procedure has been called 7-in 1-out. In this context, the 7-in 1-out 

process yields an objective testing approach to identify the learning capacity of models from 

the descriptors of the inhibitors. Both inhibitors and isolates have been encoded through 

binary mappings that are observed to be computationally effective representations. The 

Morgan fingerprints have been used as the binary mappings of protease inhibitors due to their 

known advantages in molecular machine learning models [41-43]. An efficient ensemble 

process has been proposed and verified through various quantitative experiments to handle 

the overfitting trouble.  

The most crucial contribution of this study is the construction of drug-isolate-fold change (DIF)-

based ANN models rather than isolate-fold change (IF)-based models widely studied in the 

literature [29-40]. The IF models do not take the molecular fingerprints as an input, thus 

insensitive to the molecular structure. This study shows the possibility of achieving such a 

generalized model by feeding models with enough data of various PIs in the presence of 

isolates. With the utilization of a 7-in 1-out procedure throughout the study, the current DIF-

based models have been seen to have the ability to predict the drug resistance profiles of the 

unseen inhibitors. Even if the number of available inhibitors in the Stanford HIV database is 

only eight, having many isolates for each inhibitor has contributed to the molecular learning 



process, and acceptable predictions have been seen in the regression performance of 

remaining inhibitors.  

An inevitable expectation from our DIF-based ANN models is the prediction of drug resistance 

tendencies for each PI pair. It has been shown here that our generalized models can predict 

the resistance tendencies with high 2D correlation scores. By defining classification problems 

from the tendency relations of each PI pair, the DIF-based models have provided satisfactory 

accuracy, sensitivity, and specificity values. Our all-quantitative observations have shown that 

the DIF-based ANN model takes valuable information from the Morgan fingerprints to predict 

the fold change values of hidden inhibitors. 

This study provides a new perspective on this research area by including inhibitor descriptors 

on the input side of machine learning models, rather than creating so many individual models 

for each inhibitor. The most conspicuous limitation of the current study is having a limited 

number of protease inhibitors with enough genotype-phenotype data. Nevertheless, our 

positive results have proven to shed light on the construction of more general drug-isolate-

fold change-based machine learning models by adding genotype-phenotype data of novel 

protease inhibitors. Additionally, feeding the DIF-based models with the data of various 

traditional and nontraditional inhibitors may lead to a unified model for predicting drug 

resistance tendencies for any PI pair in the presence of known genotypes.  

The drug development process for evolvable diseases, such as HIV, bacterial infections, and 

cancer should be fundamentally different from diseases such as blood-pressure regulators. A 

drug needs to be effective and stay effective through the test of evolution. Predicting 

resistance potentials for drugs is becoming a necessity. Luckily, the experiments can measure 

fold-change values for many genotypes at once by sequencing. Our model aims to make sense 

of such data. 

CONCLUSION 

This study has revealed the advantages of producing DIF-based models to predict drug 

resistance profiles. Instead of IF-based models, the current approach has enabled us to 

investigate a new model that can predict the drug resistance tendencies of PI pairs. Even if the 

number of available PIs is only eight, the test results with a 7-in 1-out procedure show that the 

DIF-based model takes significant information from inhibitor descriptors and leads to 

satisfactory regression performance. Therefore, after completing this study, it is noted on the 

research agenda to train ANN models with more inhibitors by expanding the existing dataset. 



In this context, it will be possible to track the drug resistance profiles of any novel protease 

inhibitor and it is strongly believed that these valuable predictions can be of great help to 

clinicians. 
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