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Abstract: 

Geothermal electricity generation may play a role in reducing greenhouse gas emissions and addressing 

climate change in a cost-effective manner. Reservoir equations for pressure and temperature must be 

coupled to a power cycle model to calculate electricity generation from a geothermal power plant. This 

work focuses on sedimentary basin geothermal power production, which relies on flow through porous 

and permeable aquifers in sedimentary basins. Previous work has used numerical reservoir simulators, 

but we introduce analytical reservoir solutions for reservoir impedance, wellbore heat loss, and reservoir 

heat depletion in this work. The reservoir impedance and wellbore heat loss solutions are combined 

with a power cycle model to calculate electricity generation. The reservoir heat depletion solution 

provides insight into the reservoir lifetime because electricity generation decreases with reservoir 

temperature. We compare the analytical and numerical approaches and discuss their implications for 

geothermal electricity generation from sedimentary basins. Both approaches have merits, and the 

comparison herein can guide those who want to understand geothermal electricity production. 
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Nomenclature: 

𝐴𝑐 Cross-sectional area 𝑟0 Well radius 

𝐴𝑟𝑒𝑠 Conduction area of reservoir 𝑟1, 𝑟2 Distance from well to 

equipotential line (Sec. 2.1.3) 

𝐷 Well diameter 𝑡 Time 

𝐿 Well spacing 𝑡𝑑  Dimensionless time 

𝑀 Source-sink strength 𝑥 Cartesian horizontal spatial 

coordinate 

𝑃 Fluid pressure 𝑥0 Location of well/porous media 

interface 

𝑄𝐿𝑜𝑠𝑠 Heat exchange from wellbore 

to surroundings 
𝑧 Vertical spatial coordinate 

𝑇𝑒 Background geothermal 

temperature  
Γ Non-dimensional temperature 

𝑇𝑖𝑛𝑗 Injection temperature Δ𝑃 Pressure difference in the 

reservoir between the injection 

well and the midpoint between 

the injection and production 

well 

 
1 The short version of the paper was presented at Applied Energy Symposium: MIT A+B, August 13-14, 

Boston, MA with paper ID APEN-MIT-2020_215. This paper is a substantial extension of the short version of 

the conference paper. 
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𝑇𝑟 Reservoir temperature Δ𝑃𝑡𝑜𝑡 Pressure difference in the 

reservoir between the injection 

well and the production well 

𝑇𝑤 Well wall temperature Δ𝑃𝐿𝑜𝑠𝑠  Frictional losses in well 

𝑉 Darcy velocity 𝛽 Wellbore heat transfer factor  

𝑉𝑟𝑒𝑠 Volume of reservoir 𝜖 Heat depletion term 

𝑎 Equivalent radius of the 

reservoir 

𝜃 Inclination in radial coordinates 

𝑎𝐴 Area-based equivalent radius 𝜅 permeability 

𝑎𝑉 Volume-based equivalent 

radius 

𝜆 Inverse of the product of the 

contact resistance and the 

thermal conductivity 

𝑏 Reservoir thickness 𝜇 Fluid viscosity 

𝑐𝑒𝑓𝑓  Specific heat of rock/water 

mixture 

𝜇̅ Effective fluid viscosity in 

reservoir 

𝑐𝐹𝑙𝑢𝑖𝑑  Working fluid heat capacity 𝜉 Parameter that accounts for heat 

capacity inside and outside 

reservoir. Typically 3. 

𝑒 Euler’s number 𝜌 Fluid density 

ℎ Enthalpy 𝜌𝑒𝑓𝑓 Density of rock/water mixture 

𝑘𝑒𝑓𝑓  

 

Effective thermal conductivity 

of saturated fluid/rock mixture 
𝜌̅ Effective fluid density in 

reservoir 

𝑚̇ Mass flow rate (general) 𝜑 Stream potential 

𝑚̇𝑡𝑜𝑡 Total mass flow rate through 

well 

𝜔 Thermal diffusivity of 

fluid/rock mixture 

𝑟 Radial horizontal spatial 

coordinate 

  

 

1. Introduction 
Substantially reducing or eliminating CO2 emissions from the electricity sector while simultaneously 

electrifying substantial portions of the heat and transportation sectors are important components of least-
cost pathways that limit the global mean surface temperature increase to 2oC or less [Krey et al. 2014; 
Kriegler et al. 2014; IPCC 2018]. Geothermal power plants may be valuable in this effort because they 
emit little to no CO2 and can provide dispatchable electricity [Sepulveda et al. 2018, Bistline and 
Blanford 2020]. While much prior work investigating geothermal power generation focuses on naturally 
faulted and fractured rock (i.e., hydrothermal resources) or hot dry rock that are artificially stimulated 
(i.e., Enhanced Geothermal System (EGS) resources), it is also possible to generate electricity with 
naturally porous and permeable sedimentary basin resources [Adams et al., 2015; Banks and Harris 2018; 
Tester et al., 2006; U.S. DOE., 2019]. Prior work in this area estimated electricity generation from 
sedimentary basin geothermal power plants by coupling numerical reservoir simulators with power cycle 
models [Adams et al., 2014, 2015, 2020; Ezekiel et al., 2020; Fleming et al., 2020; Garapati et al., 2020; 
Randolph and Saar 2011]. In contrast, little to no work has utilized analytical solutions for reservoir 
performance in conjunction with power cycle models to estimate power generation. 

Analytical solutions have advantages and disadvantages when compared to numerical methods. They 
are typically easier to apply than numerical solutions. Moreover, they tend to have fewer degrees of 
freedom, which may lead to less human error. Furthermore, it is possible to understand underlying 
relationships between variables by simply examining an analytical solution's mathematical form. The 
Ideal Gas Law provides a simple example of seeing a relationship by examining an equation; it is clear 
that the pressure is proportional to temperature and inversely proportional to the volume. Analytical 
solutions are computationally inexpensive, which means they can be used to explore a large parameter 
space and in pre-screening studies. On the other hand, analytical solutions often rely on simplifying 
assumptions and approximations, making them less suitable for some applications. Sometimes, 
analytical solutions are unknown and are difficult to derive 
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Numerical solutions, which have become popular due to increased computational power in recent 
decades, also have advantages and disadvantages compared to analytical solutions. Numerical 
approaches can often relax the assumptions and approximations that some analytical solutions utilize, 
making them suitable for applications where such simplifications are not warranted. For example, 
numerical solutions are often able to handle problems with complex geometry, heterogeneity, or coupled 
physics (e.g., thermo-hydro-mechanical-reservoir simulation). However, this complexity also has its 
drawbacks. There can be many degrees of freedom and user choices, such as the specification of 
parameters, decisions about meshing, and application of boundary and initial conditions. More degrees 
of freedom may lead to more human error. However, the potential for human error can likely be 
decreased if users learn about the governing equations, numerical methods, and assumptions embedded 
within numerical simulators. Furthermore, human error may also be reduced by built-in error checking, 
which will stop a numerical solution from running if incompatible parameters are specified. Finally, 
numerical error, which can come from roundoff error and truncation error, is always present in numerical 
solutions. 

This paper: 1) introduces the application of analytical solutions for representing sedimentary basin 
geothermal reservoirs and 2) compares results from those analytical solutions against results from 
numerical models to elucidate and further demonstrate the pros and cons of the two methods for 
representing the subsurface. Our application is primarily focused on using techniques to represent 
sedimentary basin reservoirs in coupled models that estimate power generation, but we also investigate 
reservoir heat depletion because this may be important in investigations of geothermal power generation 
over decadal periods (i.e., the lifetime of a geothermal power plant). One novel aspect of our work is the 
combination of the analytical reservoir solutions with the power cycle model to calculate power 
generation, which has not been done in the context of sedimentary basin geothermal to our knowledge. 
Given the tradeoffs between the analytical and numerical methods and the broad applications for coupled 
models that can estimate electricity generation from sedimentary basin geothermal power plants, it is 
impossible to claim that one method is always more favorable, precise, or accurate compared to the other. 
However, our results offer insights that can guide people who are deciding how to represent sedimentary 
basin geothermal reservoirs when investigating geothermal power generation. In Sec. 2, we introduce 
analytical solutions for reservoir impedance, heat loss from a wellbore, and reservoir heat depletion. 
Since we compare to a numerical solution and calculate power generation, we also review the numerical 
reservoir simulator and power cycle model from Adams et al. [2015], which remain largely unchanged 
from that work. In Sec. 3, we compare the analytical and numerical solutions and their effect on the 
predicted power generation and reservoir lifetime. In Sec. 4, we provide conclusions. 

2. Methods 
Our methodology uses analytical solutions to calculate electric power generation and offer insights 

into a geothermal reservoir's useful lifetime. These analytical solutions are also compared to a numerical 
solution, similar to the one in Adams et al. [2015]. The electric power generation is related to the 
produced fluid's flow rate and temperature. Therefore, in Secs. 2.1 and 2.2, we provide analytical 
solutions for the reservoir impedance and wellbore heat loss. The reservoir lifetime is related to reservoir 
heat depletion because power generation decreases with reservoir temperature. Therefore, in Sec. 2.3 we 
provide an analytical solution for reservoir heat depletion. Since comparison to the numerical solution is 
a key aspect of this study, we recap the numerical solution that we have previously used [Adams et al., 
2015], which remains mostly unchanged in this work. Sec. 2.5 details how electric power generation is 
calculated. These electric power calculations use the same methodology as Adams et al. [2015], except 
that the reservoir impedance comes from the analytical solutions (Sec. 2.1), and wellbore heat loss is 
included (Sec. 2.2).  

The key simulation parameters are given in Table 1. 

TABLE I.  MODEL ASSUMPTIONS AND PARAMETERS  

Parameter Value 

Geologic Temperature Gradient 35 °C/km 

Reservoir Pressure Hydrostatic 

Well Diameter (𝐷) 0.41 m 

Well Spacing (𝐿) 707 m 

Surface Temperature 15 °C 

Well Pattern 1 km2 Inverted 5-spot 

Primary Geothermal Fluid Water 
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Parameter Value 

Secondary ORC Fluid R245fa 

Flow rate (𝑚̇) 
100 kg/s (reservoir heat depletion calcs.) 
Maximized power (power production calcs.) 

Permeability (𝜅) 5 ⋅ 10−14 m2 

Reservoir thickness (𝑏) 300 m 

Thermal Conductivity of saturated media 2.1 W/m-°C 

Density of saturated media (𝜌𝑒𝑓𝑓) 2485 kg/m3 

Heat capacity of saturated media (𝑐𝑒𝑓𝑓) 1320 J/kg-°C 

Thermal conductivity of saturated media (𝑘𝑒𝑓𝑓) 2.1 W/m-°C 

Injection temperature (𝑇𝑖𝑛𝑗) 20 °C 

Far-field temperature (𝑇𝑒) 102.5 °C 

Other reservoir assumptions 
Laterally-extensive, homogeneous, 

horizontally-isotropic 

2.1. Impedance Analytical Solutions 
When fluid is injected into one well and extracted from another, the reservoir impedance is the 

pressure difference between the two wells divided by the mass flow rate. All else equal, a low impedance 
will allow a higher flow rate, which likewise increases electric power production.  

We analyze two well patterns in this work: a tessellated, developed field (TDF) and an isolated 
doublet (ID). The 5-spot pattern in Adams et al. [2015] is an example of a tessellated, developed field 
(TDF), which we define as a geothermal field that contains a repeating pattern of wells in a laterally-
extensive, homogeneous and horizontally-isotropic reservoir. We assume reservoirs are homogeneous 
and horizontally-isotropic for the entirety of this study. When analyzing a TDF, we use symmetry to 
simplify boundary conditions and consider only a small section of the geothermal field. Then, the results 
from the small section can be scaled up to represent larger parts of the field. 

While the TDF represents a mature field, many geothermal fields will start with a single injection-
production pair. We define an isolated doublet (ID) as an injection-production well pair with non-zero 
well spacing located far from any other wells, so there is no outside hydraulic or thermal influence. Many 
geothermal fields will start as an ID and become a TDF as development continues. Therefore, we analyze 
IDs and TDFs, which act as bounding cases. 

We provide several analytical solutions for reservoir impedance here: a square, 5-spot TDF well 
pattern in cartesian coordinates (Sec. 2.1.1), a concentric circle approximation of an ID (Sec. 2.1.2) in 
radial coordinates, and a more exact solution for an ID using a stream potential function (Sec. 2.1.3). In 
Sec. 2.1.4, we present a hybrid 5-spot TDF solution. This hybrid solution combines desirable aspects of 
cartesian and radial coordinate systems used in Secs. 2.1.1 and 2.1.3. Pressure contours for the ID and 
TDF approaches are illustrated in Fig. 2(a) and Fig. 2(b), respectively. These contour lines represent the 
cross-sectional area over which flow occurs divided by the reservoir thickness. 
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Fig. 1. Pressure contours for (a) ID and (b) one-quarter of a 5-spot TDF in plan view. These pressure contours correspond to the crosss-

sectional area divided by the reservoir thickness for the solutions derived in Sec. 2.1.  

2.1.1. Tessellated, Developed Field (TDF) in Cartesian Coordinates 
The one-dimensional Darcy equation for horizontal flow can be expressed in Equation 1, where 𝑃 is 

the pressure, 𝜇 is the dynamic viscosity of the fluid, 𝑉 is the Darcy velocity, 𝜅 is the permeability, and 𝑥 
is distance in the direction of fluid flow. 

 
𝑑𝑃 = −

𝜇 ∙ 𝑉

𝜅
𝑑𝑥 

(1) 

 The continuity equation is shown in Equation 2, where the mass flowrate, 𝑚̇, is equal to the product 
of fluid density, 𝜌, cross-sectional area, 𝐴𝑐, and Darcy velocity, 𝑉. 

 𝑚̇ = 𝜌 ∙ 𝐴𝑐 ∙ 𝑉 (2) 

Equation 2 is substituted into Equation 1, yielding Equation 3. 

 
𝑑𝑃 = −

𝜇

𝜌

𝑚̇

𝜅 ∙ 𝐴𝑐
𝑑𝑥 

(3) 

For a one-quarter domain of a 5-spot configuration, the x-axis is aligned on the line between the 
injection and production wells (see Fig. 1(b)). The cross-sectional area, 𝐴𝑐, is given in Equation 4, where 
𝑏 is the reservoir thickness. The lines “TDF, Cartesian” in Fig. 1(b) indicate the cross sectional area 
divided by the reservoir thickness. 

 𝐴𝑐 = 2 ∙ 𝑥 ∙ 𝑏 (4) 

By combining Equations 3 and 4 and integrating from the interface between the well and the porous 
media, 𝑥0, to the midpoint between the two wells, 𝐿/2, we arrive at Equation 5 where 𝐿 is the distance 
between the injection and production wells (i.e., the well spacing). Integration of Equation 5 yields 
Equation 6, where ∆𝑃 is the pressure decrease from the well to the midpoint.  

 

∫𝑑𝑃 = −
𝜇̅

𝜌̅

𝑚̇

2 ∙ 𝜅 ∙ 𝑏
∫

1

𝑥
𝑑𝑥

𝐿
2

𝑥0

 

(5) 

 
∆𝑃 =

𝜇̅

𝜌̅

𝑚̇

2 ∙ 𝜅 ∙ 𝑏
ln (

𝐿

2 ∙ 𝑥0
) 

(6) 

To find the total pressure difference from the injection well to the production well, Δ𝑃𝑡𝑜𝑡, Equation 6 
must be doubled. The viscosity, 𝜇̅, and density, 𝜌̅, are effective values within the entire reservoir. Also, 
the well perimeter in this one-dimensional Cartesian space is a square, where each side of the square has 

a length of 2 ∙ 𝑥0. Thus, it is possible to equate the perimeter of the square with the perimeter of a circle 
with diameter, 𝐷, to yield Equation 7.  

 𝜋 ∙ 𝐷 = 4 ∙ (2 ∙ 𝑥0) (7) 

Substitution of Equation 7 into Equation 6 yields the pressure difference as a function of well 
diameter, 𝐷. This equation is valid for all quadrants of the 5-spot configuration, and the total flow rate 
through the well is 𝑚̇𝑡𝑜𝑡 = 4𝑚̇, due to the symmetry of the problem. We express the impedance in terms 
of Δ𝑃𝑡𝑜𝑡 and 𝑚̇𝑡𝑜𝑡 in Equation 8, which leads to easier comparison with other solutions in Sec 2.1. Note 
that the reservoir impedance is inversely proportional to the reservoir transmissivity, 𝜅𝑏, which is the 
product of reservoir permeability and thickness. 

 ∆𝑃𝑡𝑜𝑡
𝑚̇𝑡𝑜𝑡

=
𝜇̅

𝜌̅

1

4 ⋅ 𝜅 ∙ 𝑏
ln (

4 ∙ 𝐿

𝜋 ∙ 𝐷
) 

(8) 

 

2.1.2. Isolated Doublet (ID) and Tessellated, Developed Field (TDF) in Radial 

Coordinates 
A similar approach as in Sec. 2.1.1 is used to solve for the reservoir impedance of an injection-

production pair that is far from the influence of other wells (i.e., an ID). We assume the flow between 
the injection and production wells flows uniformly and radially in all directions, up to a radius of 𝐿 2⁄ . 
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For this injection-production pair, we use radial coordinates and substitute 𝑑𝑥 = 𝑑𝑟 in Equation 1. The 
cross-sectional area of flow is the product of the circumference at any given radius and the reservoir 
thickness, given in Equation 9. The cross sectional area divided by the reservoir thickness is illustrated 
by the lines labeled “ID, Radial” in Fig. 1(a). 

 𝐴𝑐 = 2 ∙ 𝜋 ∙ 𝑟 ∙ 𝑏 (9) 

By combining Equations 3 and 9, we obtain Equation 10, where 𝑟0 is the well radius, which is 
analogous to 𝑥0 from Sec. 2.1.1. Integration yields Equation 11 which is the pressure difference from the 
well to the midpoint. 

 

∫𝑑𝑃 = −
𝜇̅

𝜌̅

𝑚̇

2 ∙ 𝜋 ∙ 𝜅 ∙ 𝑏
∫

1

𝑟
𝑑𝑟

𝐿
2

𝑟0

 

(10) 

  

 
∆𝑃 =

𝜇̅

𝜌̅

𝑚̇

2 ∙ 𝜋 ∙ 𝜅 ∙ 𝑏
ln (

𝐿

2 ∙ 𝑟0
) 

(11) 

Equation 11 is rearranged into the reservoir impedance of an approximate source-sink pair in 

Equation 12, where the well radius is half the well diameter. Note that the flow rate, 𝑚̇, is equal to 𝑚̇𝑡𝑜𝑡 
in this section because we analyzed the entire circumference of the well, unlike in Sec. 2.1.1 where we 
only analyzed one-quarter of the circumference. 

 ∆𝑃𝑡𝑜𝑡
𝑚̇𝑡𝑜𝑡

=
𝜇̅

𝜌̅

1

𝜋 ∙ 𝜅 ∙ 𝑏
ln (

𝐿

𝐷
) 

(12) 

It turns out that the radial approach can also be applied to derive the impedance of a 5-spot TDF, and 
the impedance for “ID, Radial” are the same as “TDF, Radial” (i.e. Equation 12 also applies to a 5-spot 
TDF analyzed with radial coordinates). This can be derived following the same approach as in Sec. 2.1.1, 
except using the lower bound of integration in Equation 5 is 𝐷/2 and 𝐴𝑐 = 𝜋𝑟𝑏/2. Since a similar 
derivation was already been shown, it is not repeated. 

Note that for large values of 𝐿 𝐷⁄ , the reservoir impedance of Equation 12 is larger than the reservoir 
impedance of a 5-spot (Equation 8) by a factor of 4/𝜋. This 27% difference is due to the 27% smaller 
swept area of the “ID, Radial” and “TDF, Radial” solutions than the “TDF, Cartesian” solution. Thus, in 
Sec. 2.1.3, we use the potential functions to include the entirety of the reservoir area for an ID. 

2.1.3. Isolated Doublet (ID) with Potential Flow 
The pressure potential curve surrounding a source (i.e., injection well) or sink (i.e., production well) 

does not have a constant radius, as is assumed in Sec 2.1.2. Thus, to gain a more precise solution for an 
ID, we integrate the distance of the potential curve surrounding the sink to obtain the cross-sectional 
area, given in Equation 13, where 𝑟1 is the radius to the equipotential line from the sink and 𝜃 is the 
inclination. 

 
𝐴𝑐 = 𝑏 ∙ ∫ 𝑟1 𝑑𝜃

2𝜋

0

 
(13) 

For source-sink potential flow, the stream potential, 𝜑, is given by Equation 14, where 𝑀 is the 
source-sink strength, 𝑟1 is the radial distance from the sink and 𝑟2 is the radial distance from the source 
[Stern 2006]. 

 
𝜑 = −

𝑀

2𝜋
ln (

𝑟1
𝑟2
) 

(14) 

On the shortest streamline which extends directly from the sink to source (shown as a dashed line in 
Fig. 1(a)), the potential is Equation 15, evaluated where 𝑟1 = 𝑟 and 𝑟2 = 𝐿 − 𝑟 along this streamline. 

 
𝜑 = −

𝑀

2𝜋
ln

𝑟

𝐿 − 𝑟
 

(15) 

Equating Equations 14 and 15, yields Equation 16, which provides the distances 𝑟1 and 𝑟2 along a 

line of constant potential as a function of 𝐿 and 𝑟. Equation 16 is solved for 𝑟2
2 in Equation 17. 
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 𝑟2
𝑟1
=
𝐿

𝑟
− 1 

(16) 

 
𝑟2
2 = 𝑟1

2 ∙ (
𝐿

𝑟
− 1)

2

 
(17) 

Separately of the considerations of potential flow, we find length 𝑟2 as a function of 𝑟1 and 𝜃 in 
Equation 18 using trigonometry. 

 𝑟2
2 = 𝑟1

2 + 𝐿2 − 2 ∙ 𝐿 ∙ 𝑟1 ∙ cos 𝜃 (18) 

Equating Equations 17 and 18, solving for 𝑟1, integrating according to Equation 13, and assuming 
large values of 𝐿 (i.e. 𝐿 ≫ 1) yields Equation 19. 

 
𝐴𝑐 =

2 ∙ 𝜋 ∙ 𝑏

(
1
𝑟2
 −  

2
𝐿 ∙ 𝑟)

1/2
 

(19) 

The denominator in Equation 19 does not lend itself to simple integration. Thus, we make the 
approximation of Equation 20. This assumption preserves the anomaly occurring where 𝑟 = 𝐿 2⁄  in 
which the cross-sectional area becomes infinite. At the midpoint between source and sink, the line of 
equal potential is tangent to streamline, and extends to infinity. 

 
(
1

𝑟2
−

2

𝐿 ∙ 𝑟
)
1/2

= (
1

𝑟
)
1/2

∙ (
1

𝑟
−
2

𝐿
)
1/2

≈ (
1

𝑟
−
2

𝐿
) 

(20) 

Equations 19 and 20 are combined with Equation 3 in radial space (𝑑𝑥 = 𝑑𝑟) and integrated similar 
to Equation 10. The resulting reservoir impedance is given in Equation 21, where 𝑒 is Euler’s number. 

 ∆𝑃𝑡𝑜𝑡
𝑚̇𝑡𝑜𝑡

=
𝜇̅

𝜌̅

1

𝜋 ∙ 𝜅 ∙ 𝑏
[ln (

𝐿

𝐷 ∙ 𝑒
) +

𝐷

𝐿
] 

(21) 

Equation 21, for the “ID, potential flow” solution is very similar to Equation 12, for the “ID, radial” 
solution, differing only by the factor of 𝑒 within the natural logarithm. The factor 𝐷 𝐿⁄  is comparatively 
small for large values of 𝐿 𝐷⁄  and can thus be neglected. For reservoir length to well diameter ratios of 
1000 (i.e. 𝐿 𝐷 = 1000⁄ ), Equation 21 provides a reservoir impedance value approximately 15% smaller 
than Equation 12. The impedance value decreases to 22% for a ratio of 100. This decreased impedance 
using the “ID, potential flow” method (Equation 21) is enabled by the infinite reservoir area, whereas 
the “ID, radial solution” (Equation 21) has a finite swept volume. 

2.1.4. Tessellated, Developed Field (TDF), Hybrid 
In a 5-spot TDF, the cross-sectional area divided by the reservoir thickness is best represented by a 

circular arc near the well, but it is best represented by a straight line at the midpoint. We define a hybrid 
cross-sectional area in Equation 22. The hybrid area divided by the reservoir thickness is illustrated in 
Fig. 1(b) by the lines “TDF Hybrid”: 

 
𝐴𝑐 = 

2𝑏

𝐿
2 − 𝑥𝑜

(𝑥2 (1 −
𝜋

4
) + 𝑥 (

𝐿𝜋

8
− 𝑥𝑜)) 

(22) 

Otherwise, the impedance calculation follows the approach used in Sec. 2.1.1 and 2.1.2 to find the 
reservoir impedance: 

 ∆𝑃𝑡𝑜𝑡
𝑚̇𝑡𝑜𝑡

=
𝜇̅

𝜌̅

1

𝜋 ∙ 𝜅 ∙ 𝑏
ln (

𝜋

4

𝐿

𝐷
) 

(23) 

Care should be used with all of the derivations from Sec. 2.1, as they are one-dimensional, rely on 
average fluid properties, and assume a uniform velocity profile through a cross-sectional area. Thus, they 
do not account for flow deviations, heterogeneities, or buoyancy. They do, at minimum, provide an order-
of-magnitude approximation of the reservoir behavior for use within a geothermal system. 

2.2. Wellbore Heat Loss 
Heat loss to the rock surrounding the wellbore is implemented using a semi-analytical approach. In 

each wellbore element that is numerically integrated [Adams et al., 2015], an analytical heat solution for 
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a semi-infinite solid is applied from Zhang et al., [2011]. This approach assumes: heat conduction only 
occurs radially to the far-field and the wellbore wall temperature is constant with time. 

Similar to [Adams et al., 2015], the wellbore elements are evaluated numerically, with pressure 
(Equation 24) and energy (Equation 25) balances across each element, where ∆𝑧 is the change in element 
elevation, ∆𝑃𝐿𝑜𝑠𝑠  is the pipe frictional loss, ℎ is the enthalpy, 𝑄𝐿𝑜𝑠𝑠 is the heat exchange to the 
surroundings, 𝑚̇ is the fluid mass flowrate, and an “i” subscript indicates the value at the ith element. 
The pressure loss equation is identical to Adams et al. [2015], while the energy equation includes the 
new heat exchange term. 

 𝑃𝑖+1 = 𝑃𝑖 − 𝜌𝑖 ∙ 𝑔 ∙ ∆𝑧 − ∆𝑃𝐿𝑜𝑠𝑠,𝑖 (24) 

 
ℎ𝑖+1 = ℎ𝑖 − 𝑔 ∙ ∆𝑧 −

𝑄𝐿𝑜𝑠𝑠,𝑖
𝑚̇

 
(25) 

The heat loss is solved using Equation 26 from Zhang et al. [2011], where 𝑘𝑒𝑓𝑓  is the effective thermal 

conductivity of rock/water porous media mixture, 𝛽 is a non-dimensional, time-dependent factor for heat 
transfer, 𝑇𝑤 is the well casing temperature and 𝑇𝑒 is the background, far-field temperature at depth equal 
to the product of geologic temperature gradient and depth plus the average surface temperature. It is 
assumed that the well casing and fluid heat transfer resistances are small compared to conduction through 
the rock and are thus neglected. 

 𝑄𝐿𝑜𝑠𝑠,𝑖 = ∆𝑧 ∙ 2 ∙ 𝜋 ∙ 𝑘𝑒𝑓𝑓 ∙ 𝛽 ∙ (𝑇𝑤,𝑖 − 𝑇𝑒,𝑖) (26) 

The wall temperature is an intermediate temperature between the wellbore fluid temperature and far-
field temperature. Without any heat loss, the wellbore elements are assumed to be sufficiently long that 
the fluid temperature is in thermal equilibrium with the well wall. Thus, the well wall temperature, 𝑇𝑤, 
is assumed to be the resulting fluid temperature for an enthalpy of ℎ𝑖  and pressure of 𝑃𝑖  if the heat loss 
term in Equation 25 were zero. 

The dimensionless factor 𝛽 is given by Zhang et al. [2011] as Equation 27, where 𝑡𝑑  is the 
dimensionless time. 

 

𝛽 =

{
 
 

 
 
(𝜋 ⋅ 𝑡𝑑)

−1/2 +
1

2
−
1

4
(
𝑡𝑑
𝜋
)

1
2
+
1

8
𝑡𝑑  ,               𝑡𝑑 ≤ 2.8

2

ln(4 ⋅ 𝑡𝑑) − 1.16
−

1.16

(ln(4 ⋅ 𝑡𝑑) − 1.16)2
 ,       𝑡𝑑 > 2.8 

 

 

(27) 

The dimensionless time, 𝑡𝑑 , is given in Equation 28, where ω is the thermal diffusivity of the rock/fluid 
porous media mixture and 𝑡 is the time. 

 
𝑡𝑑 = 𝜔

4 ⋅ 𝑡

𝐷2
 

(28) 

2.3.  Reservoir Heat Depletion 
Recent work used numerical solutions to show how reservoir heat depletion affects electric power 

output [Adams et al., 2020]. We adapt a heat depletion analytical solution from Carslaw and Jager [1986] 
to estimate the sedimentary basin heat depletion. This approach is similar to that used by Zhang et al. 
[2011].  

The reservoir is treated as a sphere with infinite thermal conductivity, which is situated within a semi-
infinite media at the background, far-field geothermal temperature. The temperature of the reservoir is 
[Carslaw and Jager, 1986]: 

 
𝑇𝑟 =

−𝑄

4𝜋𝑎𝐴𝑘𝑒𝑓𝑓
𝜖(𝑡) + 𝑇𝑒  

(29) 

where 𝑄 is the rate of heat removal from the reservoir, 𝑎 is the equivalent radius of the reservoir and its 
subscript is discussed in more detail later in this section, and 𝜖 is a function of time and parameters 
related to reservoir size, geometry, and thermal diffusivity.  

The rate of heat removal from a reservoir is: 
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 𝑄 = −𝑚̇𝑐𝐹𝑙𝑢𝑖𝑑(𝑇𝑖𝑛𝑗 − 𝑇𝑟) (30) 

where 𝑇𝑖𝑛𝑗 is the temperature of the injection fluid and 𝑐𝐹𝑙𝑢𝑖𝑑  is the working fluid’s heat capacity. We 

assume that that heat extraction rate is constant (to be consistent with Equation 29) and we substitute 
Equation 30 into Equation 29. While 𝑄 will actually decrease with time as the reservoir temperature 
decreases (assuming a constant mass flowrate), Equation 29 will give approximate values of reservoir 
temperature at early time, before the temperature declines are substantial. We are most interested in 
temperature depletion at these early times. For later times, when the temperature depletion is large, the 
solution to Equation 29 will be conservative and over predict temperature depletion. 

With algebraic manipulation of Equations 29 and 30, a non-dimensional reservoir temperature is 
expressed as: 

 
Γ =

𝑇𝑟 − 𝑇𝑖𝑛𝑗
𝑇𝑒 − 𝑇𝑖𝑛𝑗

= (
𝑚̇𝑐𝐹𝑙𝑢𝑖𝑑𝜖

4𝜋𝑎𝐴𝑘𝑒𝑓𝑓
+ 1)

−1

 
(31) 

And 𝜖 is defined as: 

 

𝜖 =
1 + 𝑎𝑉𝜆

𝑎𝑉𝜆
−
2𝑎𝑉

2𝜉2𝜆2

𝜋
∫

exp (
𝜔𝑢2𝑡
𝑎𝑉
2 ) 𝑑𝑢

[(𝑢2(1 + 𝑎𝑉𝜆) − 𝜉𝑎𝑉𝜆)]2 + [𝑢3 − 𝜉𝑎𝑉𝜆𝑢]2

∞

0

 

(32) 

where 𝜆 is the inverse of the product of the contact resistance between the reservoir and surrounding 
rock/fluid mixture and the thermal conductivity of the surrounding rock/fluid mixture, 𝜉 has a value of 
three when the density and heat capacity of the reservoir are the same as the surrounding rock (as we 
assume), and 𝑢 is a variable of integration.  

 As an aside, we note that the non-dimensional temperature in the absence of conduction is: 

 
Γ =

𝑇𝑟 − 𝑇𝑖𝑛𝑗
𝑇𝑒 − 𝑇𝑖𝑛𝑗

= (
𝑡𝑚̇𝑐𝐹𝑙𝑢𝑖𝑑

𝑉𝑟𝑒𝑠𝜌𝑒𝑓𝑓𝑐𝑒𝑓𝑓
+ 1)

−1

 
(33) 

where 𝑉𝑟𝑒𝑠 is the reservoir volume.  

 In the limit as 𝜆 approaches infinity, 𝜖 can be expressed more simply as: 

 

𝜖 = 1 −
2𝜉2

𝜋
∫

exp(
𝜔𝑢2𝑡

𝑎𝑉
2 )𝑑𝑢

(𝑢2−𝜉)2+(𝜉𝑢)2
∞

0
  

(34) 

 Analytical solutions of 𝜖 exist for both early and late time [Carslaw and Jager, 1986], but we solve 
the integral in Equation 34 numerically so that the solution covers all timeframes that are relevant for 
geothermal development, including intermediate times that the analytical solutions do not represent well.  

 In the original Carslaw and Jager [1986] solution, 𝑎 represents the radius of the sphere. However, 
since geothermal reservoirs are not typically spherical, we found that careful specification of the 
equivalent radius can improve the solution. The equivalent radius could be specified to match the 
reservoir volume, 𝑎𝑉, or the surface area over which conduction occurs, 𝑎𝐴:  

 
𝑎𝑉 = (

3𝑉𝑟𝑒𝑠

4𝜋
)

1

3
  

(35) 

 
𝑎𝐴 = √

𝐴𝑟𝑒𝑠

4𝜋
  

(36) 

where 𝐴𝑟𝑒𝑠 is the surface area of the reservoir exposed to conduction from the surroundings. 

 In offline comparisons to the numerical solution for reservoir heat depletion (see Sec. 2.4), we found 
that it is best to use the area-based equivalent radius outside of 𝜖 (i.e., in Equations 29 and 31). This 
ensures that the temperature is correct as the time approaches infinity because the late-time steady state 
temperature occurs when the heat extraction rate is equal to the rate of conductive heat flow into the 
reservoir. We use the volume-based radius within the calculation of 𝜖 (Equation 34), which gives the 
reservoir the right initial amount of heat. 
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2.4. Numerical Simulation 
 We also perform thermo-hydraulic reservoir simulations for comparison to the analytical solutions. 
The simulations calculate reservoir impedance, which is necessary to estimate electric power generation. 
The simulations also calculate the temperature at the production well with respect to time.  

 The simulations are performed using the reservoir simulator TOUGH2 and investigate one-eighth of 
a five-spot TDF, similar to Adams et al. [2015]. The input file and mesh (included in the Supplemental 
Information) are based on an example in the TOUGH2 manual and were intentionally changed as little 
as possible. The mesh contains 37 elements, consistent with the TOUGH2 manual example and previous 
studies [Adams et al., 2015; Randolph and Saar, 2011]. We apply fixed mass flow rate boundary 
conditions at the injection and production cells. We maintain the pressure at the corner node as the 
hydrostatic reservoir pressure by supplying constant pressure fluid as needed. Due to symmetry, there is 
no flux of heat or fluid across the vertical boundaries. There is also no fluid flux through the top or 
bottom boundaries because the overlying and underlying rock are assumed to be impermeable. Heat is 
conducted into the reservoir from the top and bottom boundaries according to a built-in TOUGH2 
analytical functionality, which assumes Cartesian, one-dimensional heat conduction coming from the 
background geothermal temperature (𝑇𝑒), which acts as a local thermal source term to the numerical 
solution on the grid. The working fluid is water.  

 In Sec. 3.4, we also present results for a thin reservoir with a thickness of 30 m, one-tenth the base 
case’s thickness. 

2.5. Estimating Electricity Generation 
The electrical power generation is estimated with a similar approach to Adams et al. [2015] for the 

indirect water system (see Fig. 2), with two changes. First, the TOUGH2 reservoir simulator is replaced 
with an analytical solution for impedance (see Sec 2.1). Second, wellbore heat loss is included for the 
production well (see Sec. 2.2), which was not considered in Adams et al. [2015]. Power generation is 
found without considering pressure depletion in the reservoir. 

 

Fig. 2. Cycle schematics for an indirect subsurface-water Organic Rankine Cycle (ORC) geothermal power plant. Modified from Adams et 

al. (2015). 

Fig. 2 shows the cycle schematics for the indirect water Organic Rankine Cycle (ORC). In the lower 
loop, the primary fluid (water) is circulated from the surface; through the reservoir, where it gains heat; 
and back to the surface, where it gives heat to the secondary working fluid. In the upper loop, the 
secondary fluid (R245fa) is heated from the primary fluid and drives the ORC to produce electricity. For 
more description of the ORC, see Adams et al. [2015]. 

3. Results and Discussion 
In much of Sec. 2, we derived equations for a 5-spot within a tessellated, developed field (TDF). In 

Sec. 3.1, we show that, for the assumptions employed, the subsurface response for a 5-spot TDF is 
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identical to that of a doublet TDF, and therefore equations for a 5-spot TDF apply equally to a doublet 
TDF. In Sec. 3.2, we summarize the analytical reservoir impedance solutions and compare them to the 
numerical solution. In Sec. 3.3, we use the reservoir impedance from Sec. 2.1, the wellbore heat loss 
from Sec. 2.2, and the power cycle model to calculate the initial electric power generation. In Sec. 3.4, 
we compare reservoir heat depletion results.  

3.1. Similarities Between 5-Spot and Doublet Tessellated, Developed Fields 
Fig. 3 shows a well pattern in plan view. The black dashed line indicates the boundaries of one unit 

of a 5-spot TDF, while the blue solid line shows the boundaries of one unit of a doublet TDF. The five-
spot TDF has a power plant located at the injection well and takes one-fourth of the fluid from each of 
the four neighboring production wells. In contrast, the doublet TDF has a power plant located between 
the injection and production wells and circulates flow only between these two wells.  

We infer from Fig. 3 that the only difference between the two TDF setups is the surface location of 
the power plants and piping, for the assumptions (e.g., a homogeneous, horizontal-isotropic, laterally-
extensive reservoir) utilized in this study. Therefore, we conclude that the reservoir impedance and the 
thermal recovery will be the same in a TDF full of five-spots as a TDF full of doublets, and the analysis 
of a five-spot TDF applies equally to a doublet TDF. We do not distinguish between a 5-spot TDF and 
a doublet TDF for the rest of the paper. From a practical standpoint, it is advantageous to build surface 
infrastructure as a TDF doublet pattern rather than a TDF 5-spot pattern because it reduces the amount 
of piping to bring fluid to and from the powerplants. The piping required for one unit of a doublet TDF 
has an approximate length of 𝐿, whereas the piping needed for one unit of a 5-spot TDF has an 
approximate length of 4𝐿, as can be seen in Fig. 3.  

 

 

Fig. 3. Plan-view comparison of 5-spot TDF and doublet TDF. The surface infrasturcutre is different, but the subsurface response is 

identical. 

3.2. Reservoir Impedance 
We find that the reservoir impedance solutions from Sec. 2.1 can be expressed more concisely. The 

solutions can be calculated generally as a function of the location of the well/porous media interface (i.e., 
𝑥0 or 𝑟0) and the cross-sectional area (𝐴𝑐) and then expressed in terms of constants 𝐶1 and 𝐶2: 

 ∆𝑃𝑡𝑜𝑡

𝑚̇𝑡𝑜𝑡
=

2𝜇̅

𝜌̅

1

𝜅
∫

𝑑𝑥

𝐴𝑐(𝑥)

𝐿

2
𝑥𝑜

=
𝜇̅

𝜌̅

1

𝜅𝑏
𝐶1 ln 𝐶2  

(37) 

The solutions of Sec. 2.1 are summarized in Table II using the variables 𝐴𝑐, 𝐶1, 𝐶2, and 𝑥0 or 𝑟0 from 
Equation 37. The final column shows the value of 𝐶1 ln 𝐶2, which is proportional to the impedance, with 
an assumed value of 𝐿/𝐷 = 1000. Notably, the differences in impedance are small amongst all 

1 km
Injection Well

Production Well

PP

PP 5-spot TDF Power Plant

PP

Doublet TDF Boundary

5-spot TDF Boundary

1.4 km

0.7 km
PP Doublet TDF Power Plant
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analytical solutions (the range for 𝐶1 ln 𝐶2 is 1.8 to 2.2), which indicates that the ID does not have a 
significantly different impedance than the TDF. It is also notable that the TDF hybrid solution has a 
value between the TDF radial solution and the TDF cartesian solution. We used the TDF hybrid solution 
moving forward because it honors the radial flow near the well and the linear flow near 𝑥 = 𝐿/2, as 
discussed in Sec. 2.1.4. We use the “ID, potential” solution for the ID cases because it includes all the 
swept area. 

TABLE II.  ANALYTICAL IMPEDANCE. RIGHT COLUMN INDICATES VALUE FOR 𝐿 = 1000𝐷. 

Well Pattern 𝒙𝟎 or 𝒓𝟎 𝑨𝒄 𝑪𝟏 𝑪𝟐 𝑪𝟏𝒍𝒏(𝑪𝟐) 

ID, Radial (Sec. 2.1.2) 
𝐷

2
 2𝜋𝑟𝑏 

1

𝜋
 

𝐿

𝐷
 2.2 

ID, Potential Flow (Sec. 2.1.3) 
𝐷

2
 

2 ∙ 𝜋 ∙ 𝑏

(
1
𝑟2
 –  

2
𝐿 ∙ 𝑟)

1/2 1

𝜋
 

𝐿

𝐷𝑒
 1.9 

TDF, Cartesian (Sec. 2.1.1) 
𝜋𝐷

8
 2𝑥𝑏 

1

4
 

4

𝜋

𝐿

𝐷
 1.8 

TDF, Radial (Sec. 2.1.2) 
𝐷

2
 

𝜋𝑟𝑏

2
 

1

𝜋
 

𝐿

𝐷
 2.2 

TDF, Hybrid (Sec. 2.1.4) 
𝐷

2
 

2𝑏

𝐿
2 − 𝑥𝑜

(𝑥2 (1 −
𝜋

4
) + 𝑥 (

𝐿𝜋

8
− 𝑥𝑜)) 1

𝜋
 

𝜋

4

𝐿

𝐷
 2.1 

 
    We compare the impedance as a function of time for the numerical and two analytical solutions in 

Fig. 4. The analytical solutions represent the most-accurate TDF and ID solutions (i.e., the “ID, 
streamlines” and “TDF, hybrid” entries from Table II). Fluid properties are pressure- and temperature-
dependent, which is accounted for internally in TOUGH2. For the analytical solution, the temperature 
from Equation 31 and the hydrostatic pressure are inputs to the CoolProp [Bell et al., 2014] python 
library, which calculates the fluid properties.  

 

Fig. 4. The TDF numerical solution uses TOUGH2. The TDF analytical solution uses the hybrid approach. The ID analytical solution uses 

the stream lines approach. 

In all three solutions, the impedance increases with time due to the increase in water’s kinematic 
viscosity as the reservoir cools, although the shape of the impedance curves differ because of to the way 
the viscosity is calculated. In the analytical solution, the kinematic viscosity varies both spatially and 
temporally as the reservoir cools. Since the region near the injection well starts cooling almost 
immediately, the kinematic viscosity near the injection well also increases at early times. The impedance 
increases steadily throughout time as the cooled region grows, and the impedance doubles by the tenth 
year of operation. In contrast, the analytical solution uses the average reservoir temperature and pressure 
to calculate the average kinematic viscosity of the reservoir, which does not account for spatial variations 
in fluid properties. It takes approximately ten years for the average temperature to change by 10% (see 
Sec 3.4), and therefore the average kinematic viscosity and the average impedance only increase by 
approximately 10% after ten years. However, as the reservoir continues to cool, the impedance continues 
to increase, doubling after approximately 200 years. 



 

13 

 

The numerical solution gives a lower impedance than either of the analytical solutions, which are 
similar to each other, differing by only 13%. At early and late times when the fluid properties are in 
agreement, the analytical solutions calculate reservoir impedance roughly twice the numerical solution. 
Ravilov [2019] found that reservoir impedance increases with the number of nodes. Thus, the numerical 
solution in Fig. 4, with its relatively few nodes, likely provides a lower bound for the reservoir 
impedance. It is possible that the early- and late-time numerical solution would converge to the analytical 
solution with finer and finer discretization. 

The Ravilov [2019] study raises an important consideration: the mesh discretization can have a large 
effect on reservoir impedance in numerical simulation. As the number of nodes increased from 1300 to 
600,000, the reservoir impedance increased from 38 to 48 kPa-s/kg. Through extrapolation, Ravilov 
[2019] predicted that an infinite number of nodes would lead to a reservoir impedance of 58 kPa-s/kg. It 
is difficult to know if the impedance asymptotes to a fixed value as the number of nodes goes to infinity. 
If this asymptote does exist, it is also difficult to know what its value of impedance will be. Ravilov's 
[2019] work suggests that getting an accurate reservoir impedance value using a numerical simulator 
requires nearly infinite computational resources. 

It is difficult to say if the analytical or numerical impedance solutions are better. Each has its strengths 
and weaknesses and may be useful depending on the problem of interest. The analytical solution has a 
smaller computational expense than the numerical solution. On the other hand, the analytical solution 
also relies on simplifications, such as the use of average fluid properties, a one-dimensional coordinate 
system, and a uniform flow field. The numerical simulation does not rely on these simplifications, but it 
does depend on mesh discretization, as discussed in the previous paragraph. At the end of the day, the 
numerical and analytical solutions both give estimates of impedance; while we do not know which is 
better, we assume they represent a reasonable range. 

3.3. Electric Power Generation 
Fig. 5 shows the reservoir impedance and electric power generation as a function of transmissivity 

for various assumptions about reservoir impedance and wellbore heat exchange. These results follow the 
approach in Adams et al. [2015], except they include wellbore heat loss (from Sec. 2.2) and use the 
analytical solution for impedance (from Sec. 2.1) instead of the numerical solution.  
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Fig. 5. Plot (a) illustrates the (in)sensitivity of power generation to the impedance model utilized. Plot (b) shows the (in)sensitivity of power 
generation to assumptions about wellbore heat loss. Both plots show four analytical impedance models, and (a) also shows the numerical 

impedance model. Horizontal arrows associate the curve to the relevant y-axis. 

 

Fig. 5(a) shows the electric power generation as a function of transmissivity for various impedance 
models. There is little difference in the electric power generation (<10%) between the four analytical 
impedance models because the differences in impedance among the analytical solutions are small 
(≤18%). However, the numerical impedance in our model is roughly half of the analytical impedance, 
resulting in up to twice the electric power generation. As was stated in Sec. 3.2, the numerical and 
analytical solutions represent a range of impedances, and it is unclear which is better. In some 
applications, the uncertainty in the reservoir transmissivity may be much larger than the uncertainty 
introduced by the reservoir impedance model. Therefore, to calculate electric power generation 
accurately, it is crucial to reduce uncertainty in the reservoir transmissivity. However, there will likely 
always be some uncertainty in the prediction of electric power generation because it is difficult to reduce 
the uncertainty introduced by the reservoir impedance model to zero. 

(a)

(b)
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Fig. 5(b) compares the solution with wellbore heat loss (Sec. 2.2) to an adiabatic solution to 
investigate the influence of wellbore heat loss on electrical power generation. At high transmissivity (≥
32,000 mD-m), the production temperature is almost the same with and without heat loss (i.e., Γ > 0.98 
with heat loss and Γ = 1.0 without heat loss), which is in agreement with previous work [Randolph and 
Saar, 2012]. The high transmissivity allow high flow rate, which allow the temperature to stay high 
[Ramey, 1962]. Namely, heat is flowing through the well at a high rate, and the conductive heat losses 
are small enough that they cannot significantly reduce the fluid temperature. The small difference in 
temperature between the heat-loss and adiabatic cases coincides with a small difference in electric power 
generation, which is different by < 4% for transmissivity > 32,000 mD-m. The flow rate is small for 
low transmissivity (< 3,200 mD-m), which results in power generation less than 0.2 MWe. At these low 
transmissivities (and flow rates), the production temperature is different between the adiabatic and heat-
loss cases, but the absolute difference that it causes in electric power generation is small. For intermediate 
transmissivity in the range of 3200 − 32,000 mD-m, wellbore heat losses seem to be most relevant for 
power generation. The flow rate in this range of transmissivity is low enough that wellbore heat losses 
decrease the temperature while still large enough that a significant amount of electric power is generated. 
However, even in this “sensitive” range, the effect of heat loss on power production is somewhat modest. 
At 10,000 mD-m, the adiabatic approach predicts < 0.1 MWe more power production, which is a 
difference < 30% compared to the approach with heat loss. 

3.4. Reservoir Heat Depletion 
 As the temperature of a reservoir reduces, so does power generation. Therefore, understanding the 
reservoir temperature as a function of time offers insights for power generation as a function of time and 
reservoir lifetime. 

 Fig. 6 shows the non-dimensional reservoir temperature versus time for both the analytical and 
numerical solutions, which are calculated, respectively, from Equation 31 and in a post-processing step 
from the numerical solution. The solutions that neglect conduction (dotted lines in Fig. 6) are calculated 
from Equation 33. Subplot (a) uses the logarithm of time to illustrate late-time behavior, while (b) uses 
a linear scale to emphasize the shape of the curves at early times and the (un)importance of heat 
conduction to the reservoir temperature. 

 

Fig. 6. The normalized reservoir temperature versus (a) logarithm of time and (b) time. In (a), mass flow rates are indicated for the three 

green, analtyical curves. All other curves use 100 kg/s. Dotted lines indicate scenarios that do not include heat conduction from the 

surroundings to the resrvoir, following the same color scheme. 

3.4.1. Comparison of Solutions 
The shape of the analytical and numerical solutions is different because they represent the temperature 

at different locations in the reservoir. The analytical solution shows the average temperature of the 
reservoir, which decreases at a decreasing rate at all times. In contrast, the numerical solution shows the 
production well's temperature, which decreases at an increasing rate until the thermal front reaches the 
production well. Then the temperature continues to decrease, but at a decreasing rate. This temperature 
versus time pattern in the numerical solution is a classic example of thermal breakthrough. It seems that 
both solutions are valid, but they measure different aspects of the temperature.  

Another difference comes in the way that heat is removed from the reservoir. In the analytical 
solution, heat is removed at a constant rate. In the numerical solution, a flow rate and injection 
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temperature are specified such that the initial heat removal rate matches the rate in the analytical solution. 
However, as the reservoir cools, the heat removal rate decreases. The numerical solution may be more 
realistic for sedimentary basin geothermal systems in this aspect, but the analytical solution represents a 
worst-case (i.e., cold) bound for heat depletion, especially at later times.  

Other differences between the numerical and analytical solutions may be due to differences in 
problem geometry. The numerical solution uses a 3D geometry with 1D, cartesian heat conduction from 
above and below the reservoir. In contrast, the analytical solution follows a 1D radial geometry, and the 
equivalent radius is adjusted to match the volume and surface area of the numerical solution (see Sec. 
2.3).  

Despite the differences discussed in the previous three paragraphs, both the analytical and numerical 
solutions describe heat depletion from a reservoir with the same volume and amount of removable heat. 
Conduction into the reservoir from the outsides is treated similarly in that they both use 1D analytical 
approaches. (Recall from Sec. 2.4 that in the numerical simulator the conduction into the reservoir is an 
analytical solution that is built into TOUGH2). The average temperature over the first 100 years is 
approximately the same for the base-case analytical and numerical solution, and the temperatures 
approach the same late-time steady state. Thus, it is possible to get an estimate of thermal depletion using 
both solutions. 

The analytical solution could be used in at least two ways. Firstly, it can be interpreted as the average 
reservoir temperature. Under this approach, it provides a lower-bound on the reservoir temperature at all 
times due to its assumed constant rate of heat removal, as discussed earlier in this section. Secondly, the 
analytical solution could be interpreted as the temperature used for power production. Under this 
interpretation, the analytical solution is conservative at early times because it predicts a temperature 
lower than the production temperature from the numerical solution. The analytical solution is a 
computationally-cheap, lower-bound.  

In many cases, the numerical solution may be more useful for power generation calculations, but it is 
useful to have the analytical solution as a computationally-cheap, lower-bound for use in power 
generation calculations, especially if the alternative is to neglect heat depletion as many studies have 
[Randolph and Saar, 2011; Adams et al. 2015].   

3.4.2. Physical Insights on Heat Depletion and Conduction 
Fig. 6(a) shows different flow rates and their effect on the analytical solution (see three green curves). 

For high flow rates, the temperature decreases more quickly. At late times, the temperature approaches 
a steady state greater than 𝑇𝑖𝑛𝑗 because conduction brings heat into the system at the same rate the 

working fluid removes it. This steady state is achieved at earlier times and lower temperatures for higher 
flow rates. In contrast, the no-conduction analytical solutions all approach 𝑇𝑖𝑛𝑗 at a late time because 

there is no heat recharge. 

 Fig. 6(b) compares the base case to a thin reservoir, highlighting that reservoir size and aspect ratio 
affect how long before thermal depletion occurs and how important conduction is. The base-case 
reservoir has a large volume, and therefore holds a lot of heat initially, which takes a long time to deplete, 
even if no conduction occurs. It takes 20 and 44 years, respectively, for the average temperature and the 
production temperature to deplete by 20%. Neglecting conduction makes little difference to these results; 
the times for the average and production temperature to deplete by 20% are reduced by only 7% and 
10%, respectively. On the other hand, the thinner reservoir holds less heat initially, and the average and 
production temperature deplete by 20% after only 4 and 6 years, respectively. Conduction seems to play 
a relatively larger role for the thin reservoir. If conduction is neglected, the time for the average and 
production temperature to deplete by 20% are reduced by 60% and 40%, respectively. 

 It seems that conduction matters more for a reservoir with high surface area to volume ratio. However, 
in our example, the conduction is similar for the base-case and thin reservoir scenarios because the 
surface area is the same. Perhaps the initial amount of heat in the reservoir (which is related to the 
reservoir volume) is more critical than conduction for avoiding early temperature depletion. It is prudent 
to consider if the reservoir's initial amount of energy will last for the geothermal project's proposed 
lifetime. 

 Conduction matters less for reservoirs with higher flow rates, as shown in the analytical solutions in 
Fig. 6(a). It takes 30% less time for the average temperature without conduction to reach 20% 
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temperature depletion, compared to the solution with conduction. For 500 kg/s, the same difference is 
only 3%. High flow rates are common in geothermal power production. For example, a recently-built 
geothermal project has 250 kg/s flow rates per well [Adams et al., 2020]. Under these high-flowrates, 
the reservoir temperature is less sensitive to conduction, and having enough energy (related to reservoir 
volume) in the reservoir to last for the proposed lifetime is again worth considering. 

4. Conclusions 
 This paper introduced and used analytical solutions to approximate reservoir impedance, wellbore 
heat loss, and reservoir heat depletion. The reservoir impedance and wellbore heat loss solutions were 
coupled to a power cycle model to calculate the electric power generation. The reservoir heat depletion 
solution gave insights about power generation decline over the reservoir lifetime. There are pros and 
cons to using analytical and numerical reservoir models. A careful weighing of objectives should be 
made when constructing a geothermal power plant model that couples reservoir performance with 
electricity generation. Some of the conclusions below can provide guidance when weighing these 
objectives. Others offer insights into the behavior of geothermal reservoirs and power production.  

1. Under the assumptions in this paper (e.g., homogeneous, laterally-extensive reservoir), there 
is no difference in the subsurface between a TDF of 5-spots and a TDF of doublets. Therefore, 

these can both be treated as a TDF, and the equations for a 5-spot TDF also apply to a doublet 

TDF. Furthermore, the doublet pattern can potentially reduce the amount of surface piping 

compared to the 5-spot TDF pattern. 

2. We cannot know whether the analytical or numerical impedance solution is better. The 

numerical solution gave a lower impedance than the analytical solutions, by approximately one-

half, which resulted in more power generation by up to a factor of two. Amongst the analytical 

solutions, we recommend the use of the “ID, Potential Flow” solution (Equation 21) for IDs 

and the “TDF, Hybrid” solution (Equation 23) for TDFs. The analytical solution utilizes 

simplifications (e.g., average fluid properties and uniform velocity profile through the cross-

sectional area). However, the analytical solution also has several benefits: (a) it is independent 

of grid resolution, (b) it is computationally inexpensive, and (c) it is probably easier to use than 

the numerical simulator for most people. 

3. Wellbore heat losses may be justifiably neglected for small and large transmissivity (see Fig. 

5(b)). For the reservoir we investigated, wellbore heat loss had a moderate effect on power 

generation for transmissivities between 3,200 mD-m and 32,000 mD-m. Below 3,200 mD-m, 

the flow rate was low, which resulted in little electricity generation (<0.2 MWe), with or 

without wellbore heat loss. Above 32,000 mD-m, the flow rate was large enough that the 

production temperature depletion was insignificant (i.e., Γ > 0.98), and the power generation 

was very similar with and without wellbore heat loss. 

4. The reservoir heat depletion analytical and numerical solutions measure temperatures at 

different regions of the reservoir, but fundamentally they both reflect the temperature of 
reservoirs with the same initial amount of removable heat, which is replenished by conduction 

from the surroundings. It seems the analytical solution (Equation 31) represents a lower bound 

on the average reservoir temperature for all positive time and represents a lower bound on the 

production temperature in early years (see Sec. 3.4).  

5. The amount of heat initially in the reservoir is closely related to the reservoir size and can be 
approximated from a lumped mass, with (Equation 31) or without (Equation 33) conduction. 

The thin reservoir reached 20% heat depletion faster than the thick reservoir. For the thin 

reservoir, all approaches (analytical and numerical with and without conduction) predicted <10 

years before 20% heat depletion, whereas all approaches predict >20 years before 20% 

depletion for the thicker, base-case reservoir. 
6. Reservoir temperature is more sensitive to conduction from the surroundings in cases with low 

flow rates (see Fig. 6(a)) or a high ratio of surface area to volume (e.g., the thin reservoir in 

Sec. 3.4). 
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