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Abstract 
 
Computer-aided drug design, an important component of the early stages of the drug discovery 
pipeline, routinely identifies large numbers of false positive hits that are subsequently confirmed 
to be experimentally inactive compounds. We have developed a methodology to improve true 
positive prediction rates in structure-based drug design and have successfully applied the protocol 
to twenty target systems and identified the top three performing conformers for each of the targets. 
Receptor performance was evaluated based on the area under the curve of the receiver operating 
characteristic curve for two independent sets of known actives. For a subset of five diverse cancer-
related disease targets, we validated our approach through experimental testing of the top 50 
compounds from a blind screening of a small molecule library containing hundreds of thousands 
of compounds. Our methods of receptor and compound selection resulted in the identification of 
22 novel inhibitors in the low 𝜇𝑀 − 𝑛𝑀 range, with the most potent being an EGFR inhibitor with 
an IC50 value of 7.96 𝑛𝑀. Additionally for a subset of five independent target systems, we 
demonstrated the utility of Gaussian accelerated Molecular Dynamics to thoroughly explore a 
target system’s potential energy surface and generate highly predictive receptor conformations.  
 
Introduction 
 
In 2019 alone, the pharmaceutical industry spent $83 billion USD on drug research and 
development 1. Despite this large investment, there is a critical need for methodological 
improvement in all aspects of the drug discovery pipeline. Computational methods are a central 
part of the early stages of the drug discovery pipeline, with a focus on computer-aided drug 
discovery (CADD) methods such as structure based drug design (SBDD) and ligand based drug 
design (LBDD) 2. SBDD utilizes the three-dimensional structure of a protein target obtained 
through structural biology methods such as X-ray crystallography, nuclear magnetic resonance 
(NMR), or cryo-electron microscopy (cryo-EM) to identify possible small molecule binding sites 
and interactions that are important to biological function. Potential small molecule inhibitors are 
subsequently designed utilizing the structural information to disrupt biological pathways essential 
for the survival of the targeted pathogen or host proteins 3. Proteins are intrinsically flexible 
entities. Thus,  there exists a multitude of potential structures or conformations that may be relevant 
for SBDD for all drug targets where the predominant mechanism underlying ligand binding is 
conformational selection4. It is possible to elucidate these conformations through structural 
biology techniques or molecular dynamics (MD) simulations. However, determining which of 



these target conformations should be used in SBDD drug screenings is non-obvious and the choice 
of target conformation is crucial for the success of identifying small molecule inhibitors.  
 
The identification of high performing receptors for SBDD has been the focus of several studies. It 
is commonly accepted that the use of multiple receptor conformations generally leads to better 
performance when compared to a single receptor conformation. The relaxed complex scheme 
(RCS)5, 6 has been developed to screen against multiple conformations and account for the 
flexibility of both the receptor and docked ligands. There have been many attempts in creating 
guidelines for selecting the best performing subset of conformers. Rueda and coworkers found no 
correlation between receptor performance and binding site volume, number of atomic contacts, X-
ray resolution, B-factors, or flexibility descriptors obtained from an elastic network normal mode 
analysis 7. Others have attempted to generate high performing receptor conformations through the 
use of molecular dynamics 8,9,10. Swift and colleagues created three methods for selecting 
structure-based ensembles 11. The common performance metrics for virtual screening of single or 
multiple receptor conformations have been receiver operating characteristic (ROC) curves and 
enrichment factors 7-12, 13, 14. In a virtual screening application, ROC curves evaluate the 
performance of a specific conformation by calculating the true positive rate (identification of 
known inhibitors) and false positive rate (identification of known/assumed decoy molecules) based 
on the ranked ordering by docking score of all compounds. The diagnostic ability of this metric 
informs on the predictability of a single conformation in virtual screening. Conformers that 
perform better will have a higher area under the ROC curve (AUC) value, with the maximum value 
equaling 1. Additionally, the enrichment factor measures the number of active compounds found 
within a defined early recognition fraction of the ordered list relative to that of a random 
distribution.  
 
In this work, we examined the effect of conformational selection on success in SBDD and present 
a simplified use of the ROC AUC metric to streamline the selection of top performing receptor 
conformations. We then validated the success of our approach with a blind screening and 
experimental follow-up on a subset of targets. This method was applied to 20 target systems 
identified through the Database of Useful Decoys Enhanced (DUD-E). Experimentally determined 
protein conformations were retrieved from the Protein Data Bank (PDB) for all target systems.  
Co-crystalized inhibitors (known actives) were separated into two sets (set A and set B) of similar 
average molecular weight and screened with a set of decoy small molecules to calculate the ROC 
AUC. Predictiveness of receptor conformations was initially calculated with the actives in set A 
and then confirmed independently with the actives in set B. The top three performing conformers 
were selected based on their AUC values. From the 20 targets for which this method was applied, 
we identified five cancer related drug targets for further blind screening and experimental follow-
up. We performed blind virtual screenings into the three top performing conformers using a diverse 
library of over 500,000 drug-like and lead-like compounds. The compound library was prefiltered 
utilizing a cheminformatics approach in order to streamline the docking process. We then created 
a ranking of the top 50 docked compounds for experimental testing based on an averaged ligand 
Z-score across all receptors. We performed radiometric HotSpotTM kinase assays to measure the 
effects of our proposed inhibitors on kinase activity and obtain IC50 values for all identified 
inhibitors.  The methodology described in this work led to the identification of 22 novel inhibitors 
in the low 𝜇𝑀 − 𝑛𝑀 range. Our method resulted in a 8.8% success rate across all five targets, with 
the highest success rate of any one target being 24%. Furthermore, for a subset of five targets we 
explored the use of Gaussian accelerated Molecular Dynamics (GaMD) in order to create 



additional receptor conformations for actives/decoys screening. For two of the five systems we 
created clustered conformers that, based on the ROC AUC metric, are among the top three most 
predictive receptor conformations to identify known binders. We also identified general trends of 
the predictability of clustered GaMD conformations and hypothesized methods for selection of 
generating more highly predictive conformations.  
 
Methods 
 
Protein Target Selection and Preparation 
We identified 20 different target systems through a randomized selection of the targets available 
in the Database of Useful Decoys: Enhanced (DUD∙E) 15. The 20 target systems used in our studies 
were: 11-beta-hydroxysteroid dehydrogenase (11b-HSD1), acetylcholinesterase (hAChE), aldose 
reductase (ALDR), coagulation factor X (FA10), epidermal growth factor receptor erbB-1 
(EGFR), estrogen receptor alpha (ESR1), fatty acid binding protein adipocyte (FABP4), fibroblast 
growth factor receptor 1 (FGFR1), heat shock protein 90 (HSP90), histone deacetylase 8 
(HDAC8), human immunodeficiency virus type 1 reverse transcriptase (HIVRT), inhibitor of 
apoptosis protein 3 (XIAP), insulin-like growth factor I receptor (IGF1R), macrophage colony 
stimulating factor receptor (CSF1R), MAP kinase-activated protein kinase 2 (MAPK2), rho-
associated protein kinase 1 (ROCK1), serine/threonine-protein kinase (AKT1), stem cell growth 
factor receptor (KIT), thyroid hormone receptor beta-1 (THB), vascular endothelial growth factor 
receptor 2 (VEGFR2). A comprehensive search of experimental receptor structures was performed 
for each target. We collected the structures listed in DUD∙E and added additional, more recent 
structures deposited in the RCSB protein data bank 16. Known inhibitors, co-crystallized with their 
target protein, are henceforth referred to as actives. The number of receptors and actives per target, 
along with respective PDB codes, is summarized in Table S1.  
 
All structures were imported into Schrödinger’s Maestro 17 and prepared using Schrödinger’s 
Protein Preparation Wizard 18. For each structure the C-terminus was capped by the addition of an 
N-methyl amide and the N-terminus with the addition of an acetyl group. The protonation states 
of all titratable residues were assigned using EPIK 19 with a pH constraint of 7.4	 ± 1.0 20.  
 
Receptor Grid Generation 
Receptor grids for structures with co-crystalized ligands were generated by selecting the ligand 
within the Maestro workspace. For structures without a ligand bound, the center of the search space 
was determined by submitting a PDB file of the apo receptor to the FTMap Server, 21 where 
fragments were globally docked into the protein structure to identify potential small molecule 
binding sites. The resulting output of the receptor and docked fragments was then imported into 
PyMOL22, where the align function was utilized to overlay the FTMap PDB file and that of a 
experimentally derived co-crystalized protein-ligand structure of the same target protein system. 
The coordinates for the center of the receptor grid were subsequently obtained by extracting the 
center of mass of one of the fragments in the FTMap generated docking sites which overlayed the 
coordinates of the ligand from the ligand-bound structure. For the ligand-free structures, these 3-
dimensional coordinates were manually entered into the receptor grid generation tool. The search 
area was centered on the ligand (or the manually entered coordinates for ligand-free structures) 
and allowed the centroids of any docked species to fully explore a 10 × 10 × 10	Å! inner search 
space, while the periphery of the ligand was able to extend out to 20 × 20 × 20	Å!. The OPLS3e 



forcefield 23 was used to generate the desired search grid. All hydroxyl groups were selected to be 
freely rotatable in the search area. 
 
Ligand Preparation 
The LigPrep 24 tool of the Schrödinger Software Suite was used to prepare each ligand for docking. 
All protomers, tautomers, and stereoisomers were generated for each ligand. Protonation states 
were assigned using EPIK with a pH value of 7.4	 ± 1.0 20, 25. The coordinates of all co-crystallized 
ligands were extracted from their respective PDBs. Small molecules from the Schrödinger decoy 
sets and the ChemBridge EXPRESS-Pick Collection used in our docking protocol originated from 
SDF files containing 3-dimensional coordinates.  
 
Active/Decoy Screening and Receptor Performance Analysis 
For each of the 20 targets, we identified between 9 and 68 active compounds. For each target 
system respectively, active compounds were evenly separated into two sets of similar average 
molecular weights, actives set A and B. Diversity of small molecules between sets A and B was 
confirmed using the mutual Tanimoto coefficients26 with respect to all compounds. Set A was 
considered as known actives used for receptor identification and set B was considered to be 
unknown actives for independent verification. To quantify how well actives rank in virtual 
screening, we assembled two decoy sets. The two sets of small molecules considered to be decoy 
ligands were obtained from Schrödinger, with average molecular weights of each set being 360 
g/mol and 400 g/mol, respectively27. For each target system, we used the decoy set whose average 
molecular weight was closest to that of the average molecular weight of the active compounds. All 
compounds were subjected to ligand preparation as detailed above. Docking of actives set A, B, 
and decoy compounds post-LigPrep was performed using Schrödinger’s Glide SP 27, 28. Default 
parameters were maintained for this method as implemented in the Schrödinger 2018-3 release. 
The resulting docked poses were ranked by their docking score, with the top scoring pose of each 
protomer/stereoisomer being kept. For every receptor in every target system, the true positive rates 
(TPRs) and false positive rates (FPRs) were calculated to generate receiver operating characteristic 
(ROC) curves for actives sets A and B respectively. The area under the ROC curve (AUC) was 
calculated using Python’s scikit-learn library (ver. 0.22.1) 29. The AUC of actives set A was 
compared against the AUC of actives set B for all receptors in each target protein system. This 
was done to determine the predictability of the receptor based on both sets of actives. Additionally, 
we averaged the AUC values for both sets of actives for each receptor conformation. We used this 
average AUC value to propose the top three most predictive receptor conformations for each target 
for potential further utilization in blind screenings. As a second metric to confirm the high 
predictability of the top three performing receptor conformations, the enrichment factor (EF) was 
calculated for each set of actives per conformation for a subset of the targets according to the 
following equation: 
 

𝐸𝐹 = 	
𝑁"#$%&'(	%*	$+,	-.

50 	×	
𝑁/'#+0( +	𝑁"#$%&'(

𝑁"#$%&'(
 

where 𝑁/'#+0( = 1,000 and 𝑁"#$%&'( corresponds to the number of actives in either set A or B for 
each of the target systems. 
 
 
 



Enhanced Sampling with Gaussian Accelerated Molecular Dynamics (GaMD)  
In addition to using experimental structures from the DUD∙E and PDB databases, we wanted to 
explore whether non-experimental conformations can exhibit high predictability as well. In order 
to account for protein conformational flexibility that may not be sufficiently represented in the 
protein data bank, additional protein receptor conformations were obtained from 300 ns Gaussian 
accelerated Molecular Dynamics (GaMD) production simulations performed with Amber20 30-32. 
A subset of five target protein systems were selected based on having a broad range of average 
AUC values across their experimental receptor conformations. The target systems selected were 
hAChE, FABP4, HSP90, HDAC8, and HIVRT. For each target, five receptors were selected for 
GaMD simulations; two receptors with the lowest average AUC values, two receptors with the 
highest average AUC values, and one receptor with an AUC closest to the mean average AUC 
value. For receptors with a small molecule bound, the small molecule was parameterized using the 
second generation of the generalized amber forcefield (GAFF2)33 and AMBER’s Antechamber 30 
software. In order to reduce computational expense, any homo-multimeric protein structure was 
reduced to a single monomer while maintaining the integrity of the ligand binding site. The 
proteins or protein-ligand complexes were solvated with TIP3P34 water molecules in a 10 Å 
octahedron and neutralized with sodium ions. All GaMD simulations were performed using 
ff14SB31.  
 
All systems were minimized with strong restraints on the protein and small molecule (if applicable) 
using 2500 steps of steepest decent minimization followed by 2500 steps of conjugate gradient 
descent. A second, unrestrained minimization was performed using 2500 steps of steepest decent 
minimization followed by 2500 steps of conjugate gradient descent. The system was subsequently 
heated to 310 K over a span of 1 ns using the Langevin thermostat35. For each system, a short 
equilibration conventional MD simulation of 10 ns was performed at a constant temperature (310 
K) and pressure (1 bar) prior to the GaMD preparation simulations. During the GaMD preparation 
runs, statistics to calculate appropriate boosts to apply to the dihedral and total potential energies 
were collected. Statistics were obtained from a second 10 ns conventional MD run, initial boosts 
applied, and subsequently updated during a 50 ns GaMD biasing run. The final GaMD restart 
parameters (VmaxP, VminP, VavgP, sigmaVP, VmaxD, VminD, VavgD, and sigmaVD) were 
then read in for 300ns GaMD production runs. The upper limit for the dihedral and total boost 
potentials was set to 6 kcal/mol. All simulations were run with a 12 Å cutoff for electrostatic and 
van der Waals interactions and used a 2 fs timestep with the SHAKE algorithm36. Periodic 
boundary conditions were under an NPT ensemble with a pressure set at 1 bar using a Berendsen 
barostat37 and Langevin thermostat. Coordinates were saved every 4 ps resulting in 75,000 frames.  
The final structures used for docking studies were obtained by clustering each 300 ns GaMD 
simulation individually. For the clustering analysis of each trajectory, all waters, ions, and ligands 
were stripped and every fourth frame was analyzed resulting in 18,750 frames available for 
clustering. The density-based clustering algorithm (DBScan)38 implemented in AMBER’s 
CPPTRAJ was used to cluster the processed trajectories to obtain approximately 10 new 
conformations. Trajectories were clustered using the backbone atoms of residues in the ligand 
binding site. Residues in the ligand binging site were identified using the ligand interaction preset 
in PyMOL and cross-referenced using the ligand interaction tool in the Maestro workspace. 
Residues used for clustering in each target system can be found in Table S2. 238 clustered 
conformers were created for further docking studies. For each clustered conformation, actives set 
A, B, and the appropriate decoy set for that target were docked using Glide SP. ROC curves were 



generated for each clustered conformation, and the AUC of actives set A was compared against 
the AUC of actives set B for all conformations in each target protein system. The AUC value for 
both sets of actives for each conformer was averaged in order to assess the predictability of the 
clustered conformer. 
 
Cancer Target Subset Selection for Blind Screening 
To experimentally verify the increased success rate of the identified most predictive receptor 
conformations in true blind screening scenarios, we selected five targets that were related to 
various types of cancers: AKT1, CSF1R, EGFR, FGFR1, and VEGFR2. These five targets were 
selected based on low mutual sequence identities, existence of receptors with AUC values showing 
high predictability, and commercial availability from Reaction Biology Corporation (RBC). The 
mutual sequence identities were calculated using the LALIGN/PLALIGN server provided by the 
University of Virginia 39. Mutual sequence identities for the five targets are shown in Figure S1. 
 
Small Molecule Library Selection and Blind Screening 
To identify novel inhibitors for the five cancer targets, we selected the ChemBridge EXPRESS-
Pick Collection for screening in this study. It contained 501,916 small drug-like molecules. We 
prefiltered the compounds of this collection based on molecular weight (MW) and predicted 
solubility (logP), while additionally excluding compounds with functional groups implicated as 
pan-assay inference compounds40, and those violating Lipinski’s rule of five41. The prescreening 
of this collection of compounds was done to increase the efficiency of our docking process, and 
was performed using the 2020.09.1 release of RDKit 42 package implemented through Python 3.7. 
Compounds with a MW over 500 g/mol were removed, in order to maintain an average compound 
MW closer to that of the known actives for our set of targets. LogP parameters were calculated in 
RDKit using the Wildman and Crippen’s model 43, and compounds with a predicted logP value 
over 5.0 were discarded. PAINS filters A, B, and C were used to remove potentially promiscuous 
compounds from our database40. Compounds found to have more than five hydrogen bond donors 
and more than ten hydrogen bond acceptors were removed from the library in accordance with the 
remaining conditions of Lipinski’s rule of five which were not previously imposed as hard cut-
offs. Upon implementation of these filters, the EXPRESS-Pick library was reduced to 409,672 
compounds. The initial filtration based on MW and logP values removed 60,945 compounds. The 
PAINS filter removed an additional 30,556 compounds, and filtering the remaining compounds 
based on Lipinski’s rule of five removed another 743 compounds. The remaining 409,672 
compounds were prepared with Schrödinger’s LigPrep module resulting in 633,076 
stereoisomers/enantiomers used for screening.  
 
All resulting compounds (633,076) were docked into the three most predictive receptor 
conformations as determined by the average AUC value for all five target systems (AKT1, CSF1R, 
EGFR, FGFR1, VEGFR2). For each docked compound, a Z-score of the ligand was calculated 
based on the respective docking scores as described by Kim et al. 44. The Z-score was calculated 
for each docked compound in every receptor conformation. The compound’s Z-score was then 
averaged across all three receptors to create an unbiased ranking of docked compounds for the 
target system. This was done to avoid any bias in compound selection as a result of different ranges 
of docking scores across the receptors. The top 50 ranked compounds by averaged Z-score were 
ordered directly from ChemBridge and tested in vitro by Reaction Biology Corporation. 
 



Radiometric HotSpotTM Kinase Assays 
Experimental testing of the identified 250 potential cancer target inhibitors was performed by RBC 
using their HotSpotTM assay, a miniaturized assay which significantly reduces the consumption of 
radioisotope materials, kinase targets, substrates, and compounds making this method highly 
appropriate for high throughput screening45. Substrate was prepared in a base reaction buffer 
consisting of 10 mM Hepes (pH 7.5), 10 mM MgCl2, 1mM EGTA, 0.01% Brij35, 0.02 mg/ml 
BSA, 0.1 mM Na3VO4, 2 mM DTT, and 1% DMSO. For CSF1R, EGFR, FGFR1, and VEGFR2 
cofactor MnCl2 was then added to the substrate solution at a concentration of 0.2 mg/ml. The 
kinase was then added to the substrate solution and gently mixed. Enzyme and substrate specific 
conditions for all five cancer-related targets are listed in Table S3. Compounds were received as 
power stock from ChemBridge and dissolved to 10 mM in DMSO. Compounds were initially 
tested in single dose duplicate mode at a concentration of 10 𝜇𝑀 and delivered into the kinase 
reaction mixture by Acoustic technology (Echo550; nanoliter range) and incubated for 20 minutes 
at room temperature 46. Compounds that resulted in an average percent enzyme activity relative to 
DMSO controls of less than	 55%	were	 determined	 to	 be	 inhibitors.	 For	 the	 22 identified 
inhibitors, 10-dose IC50 values were obtained. All compounds were tested in a 10-dose IC50 mode 
with a 3-fold serial dilution starting at 50 𝜇𝑀, except for compound 7572363 which was tested at 
a 3-fold dilution starting at 10	 𝜇𝑀 due to the compound’s high potency. Control compound, 
Staurosporine, was tested in 10-dose IC50 mode with 4-fold serial dilution starting at 20 𝜇𝑀. 
Experimental conditions for the IC50 experiments can be found in Table S4. 
 
Results and Discussion 
 



Here we are presenting novel methodology to reliably and straightforwardly identify receptor 
conformations with a significantly improved success rate in virtual screening. Based on the 
knowledge of a few known binders, we employed a custom use of ROC curve AUC values to 
identify and confirm an ensemble of three highly predictive receptor conformations for every 
investigated target system. To independently verify the strength of our approach we conducted 
blind virtual screening of a large compound library on five cancer targets, selected promising 
potential small molecule inhibitors and performed radiometric HotSpot kinase assays to test their 
inhibition of enzyme activity. Through the utilization of this method, we identified several high-
affinity, novel anticancer agents for five target systems (AKT1, CSF1R, EGFR, FGFR1, 
VEGFR2). A summary of the workflow for this work can be found in Figure 1.  
 
Knowledge of only a few Active Compounds can Confidently Identify Highly Predictive 
Receptor Conformation   
We first investigated whether knowledge of known binders enables reliable identification of 
predictive receptor conformations for SBDD. Utilizing the Glide SP docking methodology, we 
evaluated 20 individual target systems and a total of 533 receptor conformations (between 9 and 
68 per target, see Table S1) obtained from the protein data bank (see Figure 1a). For each target 
system, 9-68 known small molecule binders (“actives”) were obtained from the co-crystallized 
structures and separated into two unique sets of similar molecular weight (actives set A and B). 
This allowed us to test whether knowledge of as little as five actives is sufficient for predictive 
receptor identification. Diversity between the two sets of actives was confirmed using Tanimoto 
coefficients, with none of the target systems having a coefficient above 0.476.  The average mutual 
Tanimoto coefficient of all actives within each target is summarized in Table S5. Actives sets A 
and B were docked alongside 1000 assumed small molecule decoys (see Figure 1b). Active/Decoy 
screening was performed for all receptor conformations across the 20 target systems. We 
calculated the respective true positive rates (TPRs) and false positive rates (FPRs) (see Figure 1c), 
and plotted the 
AUC of the 
generated ROC 
curves for set A 
and B of all 533 
receptor 
conformations as 
shown in Figure 2.  
We observed a 
strong correlation 
such that target 
conformations 
with favorable 
screening results 
(high AUCs) for 
actives of set A 
also exhibited high 
success rates (high 
AUCs) for 
completely 



independent actives of set B. Additionally, it was also true that target conformations with poor 
screening results (low AUCs) for actives of set A exhibited similarly low success rates for 
independent actives set B. This strongly suggested that the knowledge of as few as five known 
actives allowed for reliable identification of strongly predictive receptor conformations for virtual 
screening of unknown compounds. Highly predictive receptor ensembles were  
 

Table 1. Top Three Performing Receptor Conformations Resulting from Active/Decoy Screens 

Target System Top Performing 
Receptor Conformations Average AUCs 

11b-HSD1 3D4N, 1XU7, 1XU9 0.604, 0.603, 0.594 
hAChE 6U34, 3LII, 4EY6 0.756, 0.728, 0.727 
ALDR 1X96, 2NVC, 1XGD 0.702, 0.693, 0.683 
FA10 1IQI, 1IQN, 1IQL 0.961, 0.953, 0.946 
EGFR 1XKK, 4RJ7, 2J6M 0.827, 0.818, 0.771 
ESR1 6VNN, 6VMU, 3DT3 0.967, 0.964, 0.962 

FABP4 5D4A, 3P6F, 5D47 0.872, 0.862, 0.857 
FGFR1 6C19, 6C18, 3TT0 0.883, 0.876, 0.874 
HSP90 3EKR, 1YC3, 2BYH 0.734, 0.697, 0.693 
HDAC8 6ODA, 6ODB, 3F07 0.859, 0.837, 0.823 
HIVRT 1TKT, 1TL3, 1TKZ 0.892, 0.876, 0.871 
XIAP 3HL5, 3CM2, 2JK7 0.972, 0.969, 0.965 
IGF1R 3LVP, 1K3A, 4D2R 0.842, 0.827, 0.791 
CSF1R 3BEA, 3DPK, 2I0V 0.900, 0.880, 0.877 
MAPK2 3R30, 3KA0, 3M42 0.985, 0.958, 0.947 
ROCK1 5WNG, 5WNE, 5UZJ 0.934, 0.929, 0.915 
AKT1 3MVH, 3OW4, 3L9M 0.880, 0.860, 0.857 
KIT 6XV9, 6GQK, 4U0I 0.946, 0.939, 0.929 
THB 1NQ0, 1Q4X, 1NAX 0.972, 0.887, 0.852 

VEGFR2 3B8Q, 2RL5, 6GQQ 0.919, 0.908, 0.905 
 

identified for each target consisting of the three best performing receptor conformations based on 
Active/Decoy screening (Table 1). With a few exceptions, we were able to identify conformations 
with average AUC > 0.8 for almost all target systems. Ligand-bound conformers accounted for 
97% (58/60) of the top performing conformations amongst all target systems. Of the 20 target 
systems, apo (ligand unbound) conformers were identified for 14 targets. However, for only two 
targets (hAChE and ALDR) a single apo conformer ranked in the top three performing 
conformations. Conformer 3LII ranked second for hAChE with an averaged AUC of 0.728 and 
conformer 1XGD ranked third for ALDR with an averaged AUC of 0.683. These results support 
previous work that concluded ligand-bound conformations are significantly more suited for virtual 
screening studies than apo conformers 7. Individual AUC plots of all target systems with the top 
three performing conformations labeled are shown in Figure S2.  
 
Receptor Selection Strategy Successfully Identified 22 Novel Cancer Inhibitors  
After identification of the top three predictive receptor conformations for all 20 target protein 
systems, we sought to experimentally validate our receptor selection method through a blind 
screening of five cancer related targets with the goal of identifying novel anticancer agents. Five 



targets (AKT1, CSF1R, EGFR, FGFR1, and VEGFR2) were selected for the blind screening based 
on low mutual sequence identities and high AUC values. The respective sequence identities of all 
five targets compared to one another are summarized in Figure S1. With the exception of one 
target (EGFR, average AUC range 0.827 – 0.771), all receptors utilized for the blind screening 
were found to have high average AUC values: AKT1 0.880 – 0.857, CSF1R 0.900 – 0.877, FGFR1 
0.883 – 0.874, and VEGFR2 0.919 – 0.905.  Individual plots of the Active/Decoy screening 
performance of all receptor conformations of the five cancer targets are shown in Figure 3. The 
top performing conformers identified by AUC values, also showed high enrichment factors (EFs). 
Averaged EFs for a single receptor ranged from 6.02 – 17.26 across all five cancer targets, with as 
many as 10 true actives being identified within the top 50 predicted compounds (PBD 3B8Q).  
Example ROC curves, including EF analysis, are shown in Figure 4, whereas all ROC curves of 
the top three performing conformations for the five cancer-related targets are provided in Figure 
S3.  
 
We utilized the Glide SP docking algorithm to dock 633,076 Lig-Prepped small molecules from 
the ChemBridge EXPRESS-Pick Collection into the top three receptor conformations for each of 
the five cancer targets. 
The small-molecule 
library was prefiltered 
based on MW and logP, 
PAINS functional 
groups, and Lipinski’s 
rule of five (see Figure 
1e). After the docking 
simulations we created 
a ranked ordering of 
compounds based on 
the averaged Z-score of 



each ligand across all receptor conformations for each target. Using the Z-score ranking prevented 
compound selection bias based on different docking score ranges of individual receptor 
conformations. The top 50 compounds for each of the five cancer targets were ordered from 
ChemBridge and subsequently tested in vitro using Radiometric HotSpot Kinase Assays (see 
Figure 1f).  
 
Radiometric based filtration binding assays are well suited for detecting kinase reactions45. We 
utilized RBC’s HotSpotTM kinase assay, a miniaturized assay platform optimized for high-
throughput screening. In total 250 compounds (50 compounds per target system) were initially 
tested in a single dose duplicate at a concentration of 10 𝜇M. Compounds which showed an average 
enzyme activity relative to DMSO controls of less than 55% were identified as promising inhibitor 
hits. In total, 22 compounds were identified as hits (see Figure 5). We subsequently obtained IC50 
values for all 22 compounds using a 10-dose measurement. The average percent enzyme activity 
and IC50 values for all inhibitors are reported in Table 2. 
 
We successfully identified a total of 22 compounds that exhibited strong (low 𝜇𝑀 − 𝑛𝑀) 
inhibition. For target systems AKT1, FGFR1, and VEGFR2 we identified two novel potent 
inhibitors each. We identified hit compounds with low and sub- 𝜇M inhibition (7955978 IC50 = 
6.47 𝜇M and 7925143 IC50 = 0.17 𝜇M) for AKT1. Interestingly, compound 7925143 was one of 
the most potent known inhibitors for this specific kinase. For FGFR1, we identified inhibitors with 
low 𝜇𝑀 affinity, compound 5217589 (IC50 = 33.1 𝜇𝑀) and compound 9256805 (IC50 = 10.8 𝜇𝑀). 
Additionally for kinase VEGFR2, we identified novel inhibitors with low 𝜇𝑀 IC50 values. 
Compounds 7845036 and 7603465 exhibited IC50 values of 6.24 𝜇𝑀 and 5.38 𝜇𝑀, respectively.  

Figure 5. 2D structures of inhibitors along with their unique ChemBridge IDs. 



We identified a total of four highly potent inhibitors for target system EGFR., with IC50 values 
ranging from 7.96 𝑛M – 8.2 𝜇M. Compound 7572363 was our most potent inhibitor (IC50 = 7.96 
𝑛𝑀) and compound 7643078 also displayed sub-𝜇M inhibition (IC50 = 0.252 𝜇𝑀). Additionally, 
compounds 6551496 and 6523784 exhibited low micromolar inhibition with IC50 values of 5.7 
𝜇M and 8.2 𝜇M, respectively. We were extraordinarily successful at identifying small molecule 
inhibitors for target system CSF1R, where 24% of the tested compounds showed inhibition. Of the 
12 identified CSF1R inhibitors, nine compounds possessed IC50 values under 10	𝜇M, ranging from 
1.41 – 9.34 𝜇M. The most potent inhibitors for this kinase ( 5468327, 7729573, and 7502411) had 
IC50 values of 1.41 𝜇M, 1.42 𝜇M, and 1.76 𝜇M, respectively. Furthermore, compounds 9078402, 
7694345, 9234942, 9117508, 7176509, and 9121656 possessed IC50 values of 2.30 𝜇M, 2.51 𝜇M, 
4.16 𝜇M, 5.06 𝜇M, 5.58 𝜇M, and 9.34 𝜇M, respectively. Additionally, three CSF1R inhibitors 
exhibited low micromolar IC50 values in the range of 10 –15 𝜇M (compound 5808852 [IC50 = 10.8 
𝜇M], compound 7746499 [IC50 = 12.8 𝜇M], and compound 7677556 [IC50 = 14.7 𝜇M]).  
 

Table 2. Inhibitor Compounds HotSpotTM Data 
System ChemBridge 

Compound ID 
Average % 

Enzyme Activity  IC50 (M) 

AKT1 7925143 34.11 1.74 × 10!" 
AKT1 7955978 47.88 6.47 × 10!# 
EGFR 7643078 17.14 2.52 × 10!" 
EGFR 6551496 35.38 5.70 × 10!# 
EGFR 6523784 43.25 8.20 × 10!# 
EGFR 7572363 1.12 7.96 × 10!$ 
FGFR1 5217589 50.53 3.31 × 10!% 
FGFR1 9256805 48.06 1.08 × 10!% 
CSF1R 7694345 16.42 2.51 × 10!# 
CSF1R 7677556 41.29 1.47 × 10!% 
CSF1R 7502411 34.39 1.76 × 10!# 
CSF1R 7746499 46.30 1.28 × 10!% 
CSF1R 9121656 45.33 9.34 × 10!# 
CSF1R 7729573 16.69 1.42 × 10!# 
CSF1R 5808851 42.84 1.08 × 10!% 
CSF1R 7176509 40.27 5.58 × 10!# 
CSF1R 9234942 28.28 4.16 × 10!# 
CSF1R 9078402 30.52 2.30 × 10!# 
CSF1R 5468327 26.06 1.41 × 10!# 
CSF1R 9117508 42.53 5.06 × 10!# 

VEGFR2 7845036 29.57 6.24 × 10!# 
VEGFR2 7603465 53.96 5.38 × 10!# 

 
In addition to assessing the potency of the identified inhibitors, we also characterized their 
structural uniqueness. This property was determined by calculating the Tanimoto coefficients 
between each inhibitor and all known actives utilized in the active/decoy screening process with 



respect to the individual target systems. The average Tanimoto coefficients for each inhibitor can 
be found in Table S6. Tanimoto coefficients of ≥ 0.6 are considered to be structurally similar, 
while coefficients below this threshold are considered to be dissimilar. The greatest coefficient 
was found to be 0.428 for compounds 7572363 and 7176509, and the lowest coefficient being 
0.299 for compound 7955978. This data suggests that all of our 22 novel inhibitors are representing 
significantly novel actives.  
 
For three of the tested kinases, the methods described in this work have led to a meaningful 
improvement for virtual screening performance as compared to published virtual screens and using 
the same stringent criteria for defining compounds as inhibitors (hits) as detailed above. For 
instance, Fretev and coworkers identified 0/9 tested compounds for AKT1 showing inhibition rates 
greater than 45% at compound concentrations of 10	𝜇M 47. Chuang, et al. also performed a virtual 
screening to identify AKT1 inhibitors 48. Applying our hit selection criteria to this study results in 
the identification of only two hit compounds (a46 and a48) with IC50 values of 11.1	𝜇M and 9.5	
𝜇M, respectively. Notably, the hit compounds identified here are slightly more potent. 
Ravindranathan and coworkers performed a virtual screening for FGFR1 which initially identified 
one hit compound when using  our inhibitor criteria 49. The EGFR kinase was utilized in a virtual 
screening study by Lee and coworkers50. This study proposed a significantly more intensive 
methodology using consensus scoring across 11 different scoring functions, resulting in the 
identification of four compounds having low 𝜇𝑀	IC50 values ranging from 1.53	 ± 0.15 𝜇𝑀 – 
12.52	 ± 0.37 𝜇𝑀. In comparison, while we also identified four inhibitors, our methods were 
considerably less costly and time intensive as we utilized only one scoring metric. Additionally, 
the inhibitors identified in the present work are considerably more potent. Despite an extensive 
literature search, we could not locate any comparable virtual screens with subsequent experimental 
verification of potential inhibitors for target system CSF1R. For VEGFR2, a virtual screening was 
performed by Lee and coworkers 51. Five different small molecule databases were used for 
screening (Key Organics, Maybridge, OTAVA, Life Chemicals, and Asinex), and 10 compounds 
were found to show low 𝜇𝑀 inhibition with IC50 values ranging from 1.6 – 10	 𝜇𝑀. The ten 
inhibitors spanned three databases with four compounds coming from the OTAVA library, three 
belonging to the Asinex library, and three compounds originating from the Life Chemicals library. 
Therefore, we found our methods to have comparable success rates identifying compounds of 
similar potency (IC50 values below 10	𝜇𝑀) when evaluating a single library. Further analysis was 
performed to determine the novelty of our hits compared to the compounds identified by Lee. 
Tanimoto coefficients were calculated between the two sets of hit compounds (summarized in 
Table S7), with the averaged Tanimoto coefficients for ChemBridge compounds 7845036 and 
7603465 being 0.395 and 0.335, respectively. Thus, supporting the assertion that the inhibitors 
identified in this work are novel actives. Additionally, compared to other recent virtual screening 
studies across numerous target systems, our method showed a higher virtual screening success rate 
given its more rigorous definition of inhibitor compounds 52 53 54 55 56 57 58 59 60 61 62.   
 
GaMD Generated Highly Predictive Receptor Conformations 
In addition to using experimental structures obtained from the protein data bank, we explored the 
use of enhanced computational sampling techniques to create potentially highly predictive receptor 
conformations that may not be represented by current experimental structures. Thus, for a subset 
of five target systems (hAChE, FABP4, HSP90, HDAC8, and HIVRT) we performed 300 ns 
GaMD simulations on five crystal structures, respectively. The crystal structures used in the GaMD  



 
simulations were based on their respective actives/decoys screening performance. Of the five 
conformers per target, we selected the two highest average AUC values, the two lowest average 
AUC and the conformer with the average AUC closest to the mean of all receptors for that target 
system. In total, we performed 25 separate 300 ns GaMD simulations and clustered the resulting 
trajectories. Through clustering, we identified an additional 238 conformations for actives/decoys 
screening that were distinct from those of the crystal structures. Figure 6 shows AUC values of 
actives sets A and B for all receptor conformations (crystal structures and GaMD clustered 
conformations). For kinases hAChe and FABP4, we successfully generated conformers that ranked 
among the top three most predictive receptor conformations. For the hAChe system, the clustered 
conformation 6NTO_c5 was the second most predictive conformer; while for the FABP4 system, 
the clustered conformation 1TOU_c12 was the most predictive receptor conformer based on 
average AUC. This impressively demonstrates that GaMD simulations have the potential to 
generate conformations that are highly predictive for drug discovery and even outperform the best 
experimental structures. We also observed general trends with respect to the predictability of the 
GaMD conformations. For instance, if the crystal structure used as the initial starting structure of 
the GaMD simulation performed well (AUC ≥ 0.8), then we always observed a decrease in 
performance for all clustered conformations. However, clustered conformations resulting from 
crystal structures that had low or near-mean average AUC values tended to have a wide range of 

Figure 6. AUC of actives set B plotted against AUC of actives set A for all receptor conformations (crystal 
structures (grey) and GaMD clustered conformations (colors)) for five target systems. The three most predictive 
conformations based on averaged AUC are labeled. The crystal conformers which served as the initial structure 
for 300ns GaMD are labeled in a darker shade and the clustered conformers of the corresponding GaMD 
simulations are displayed in a lighter shade of the same color.  
 



predictability performance with some conformers performing considerably better in the 
actives/decoys screening than the original crystal structure. Conformers 6NTO_c5 and 1TOU_c12 
both derived from the original crystal structure that was closest to the mean average AUC value 
for their respective target systems. Based on these observations, we hypothesize that selecting 
crystal structures with near mean actives/decoys screening performance for advanced sampling 
methods of the target’s potential energy surface such as GaMD, would have the highest chance to 
generate new highly predictive conformers.  Therefore, we recommend utilizing conformers with 
near mean AUC values for initial starting structures for GaMD. 
 
Conclusions 
 
Here we explored the role of conformational selection in virtual screening. We have successfully 
demonstrated that knowledge of known actives significantly improves virtual screening. 
Previously, we had employed a similar strategy for a single target system, cardiac troponin with 
noteworthy success63,64. In this work, we verified the strength and generalizability of this approach 
over a diverse selection of target systems. We successfully developed an easy-to-follow protocol 
of assessing receptor conformation predictability based on knowledge of few know actives for a 
particular target protein. We verified our protocol for 538 conformers obtained via X-ray 
crystallography, NMR, and cryo-EM across 20 diverse target systems. For all 20 targets, the top 
three most predictive conformers were identified based on the averaged ROC curve AUC from 
two independent sets of known actives. A blind screening using the ChemBridge EXPRESS-Pick 
library was performed for five cancer-related targets, with experimental testing of the top 50 
ranked compounds via radiometric based filtration binding assays. 22 novel kinase inhibitors were 
identified in the low 𝜇𝑀	 − 𝑛𝑀 range, with several compounds being strong candidates for further 
lead optimization. The inhibitors identified in this study were not only shown to be highly potent, 
but also structurally unique compared to the known actives utilized in the active/decoy screenings. 
Additionally, we demonstrated the effectiveness of enhanced sampling methods such as GaMD 
for creating highly predictive clustered conformers. For a subset of five distinct target systems an 
additional 238 clustered conformers were created from 25 independent 300ns GaMD simulations. 
For two targets (hAChE and FABP4) clustered conformers ranked in the top three performing 
conformers. We also suggest the use of near mean average AUC conformers to serve as initial 
starting structures of GaMD simulations for the greatest probability of clustering highly predictive 
receptor conformations.  
 
While this work was focused on improving selection and sampling of a target’s conformational 
space, we acknowledge that conformational selection may not be the driving force in ligand 
binding for all target systems. Knowledge of a specific target’s biological function is crucial to the 
success of any virtual screening study, and other mechanisms of enzyme-substrate interaction, 
such as induced fit, may play an important part in governing ligand binding. However, our protocol 
has been shown to work very well for almost all targets in the benchmark set, suggesting that 
conformational selection is a crucial mechanism of ligand-protein interaction for many receptors. 
Our methods have proven to significantly improve the success rate of virtual screening compared 
to previous studies of numerous drug targets. The simplicity and adaptability of this work permits 
the protocol to be applied to any system of interest, with confidence of identifying novel inhibitors. 
We have provided our protocols, analysis scripts, and clustered models in pdb format as supporting 



information to allow users to follow a similar protocol to identify the most predictive 
conformations for their targets of interest.  
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