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Abstract
Motivation: Aim of a successful drug design and development is to produce a drug which
can  inhibit  the  target  protein  and  has  a  balanced  physicochemical  and  toxicity  profile.
Traditionally,  this  is  a  multi-step  process  where  different  parameters  such  as  activity,
physicochemical  and pharmacokinetic  properties are optimized sequentially,  which often
leads to high attrition rate during later stages of drug design and development.
Results: We have developed a deep learning-based  de novo drug design method which
can  design  novel  small  molecules  by  optimizing  target-specificity  as  well  as  multiple
parameters (including late stage parameters) in a single step. The model predictions were
explained in two ways to remediate the black box nature of deep learning models: (1) the
contribution of each parameter during multi-parameter optimization was computed using an
adaptation of the SHAP algorithm and (2) an explainable predictive model was used to
identify  functional  groups  responsible  for  the  property  being  optimized.  The  proposed
method was validated against the human 5-hydroxy tryptamine receptor 1B (5-HT1B), a
protein from the central nervous system (CNS). Various physicochemical properties specific
to  CNS drugs were considered along with  the  target  specificity  and blood-brain  barrier
(BBB), which acts as an additional challenge for CNS drug delivery. The contribution of
each parameter towards molecule design was identified. The optimized generative model
was able to design similar and better inhibitors compared to known inhibitors of 5-HT1B. In
addition,  the  functional  groups  of  the  generated  small  molecules  that  guide  the  BBB
permeability predictive model were identified through feature attribution techniques.
Contact: roy.arijit3@tcs.com 

1 Introduction 

Drug design and development is a long process with low success rate (Chen et al., 2018). It
has been observed that  due to undesirable biological  profiles,  majority of  the drugs fail
during various stages of the drug development. For example, during hit-identification, the
activity  of  the  drug-like  molecules  against  the  target  protein  remains  the  main  focus
(Hughes et al., 2011), while the other parameters are mostly optimized during later stages
of drug development (Wager 2016). Optimization of multiple parameters during the initial



stages of drug design, can leads to better success rate and reduction in time can be
achieved.  Although  multi-parameter  optimization  (MPO)  in  initial  stages  is  desirable,
choosing  the  optimal  combination  of  parameters  to  be  optimized  is  often  challenging.
Various parameters for drug-like molecules are often conflicting (Vallianatou et al., 2015)
because  improving  the  parameter  of  interest  might  adversely  affect  other  related
parameters (Segall et al., 2012). Consequently, appropriate selection of the parameters to
be optimized can be a multi-parameter optimization problem in itself (Segall et al., 2012).
The  pharmacological  properties  to  be  optimized  also  depend  on  the  target  tissue  of
interest.  One  classic  example  is  the  drug  candidates  of  the  central  nervous  system
(Wagger et  al.,  2016;  Wagger et  al.,  2011),  where multiple physicochemical  properties
influence ADME, binding efficiency and safety. Apart from target specificity, these drugs
additionally require effective blood-brain barrier (BBB) permeability (Morofuji et al., 2020).
Multiple  properties  such  as  octanol-water  partition  coefficient  (logP),  molecular  weight
(MW), polar surface area (PSA), and hydrogen bonding (Fong et al., 2015, Wager 2010,
Wager 2016) are important factors governing the BBB permeability of molecules targeting
proteins of the central nervous system. 
Recent  advances in the field of  artificial  intelligence and the success of reinforcement
learning techniques in molecular optimization, have shown promising results (Segler et al.
2017; Olivecrona et al., 2017; Popova et al. 2018 Stahl et al., 2019; Winter et al., 2019;
Born et al., 2020; Krishnan et al., 2021a; Bung et al., 2021, Krishnan et al., 2021b; He et
al., 2021; Pereira et al., 2021). There have been various methods which attempted MPO to
optimize different properties of generated molecules (Stahl et al., 2019;  Winter et al., 2019;
Deng et al., 2020; He et al., 2021; Pereira et al., 2021). Winter et al., applied the particle
swarm optimization algorithm during drug design (Winter et al., 2019) while another study
has used matched molecular pairs (MMP) to learn the chemical transformation involved in
molecular optimization and have tested their  model’s  ability  to simultaneously optimize
logD, solubility and clearance properties (He et al., 2021). Recently, two other studies have
used MPO to optimize the BBB permeability along with other properties (Deng et al., 2020;
Pereira  et  al.,  2021).  Although  the  study  by  Deng  et  al.,  does  not  consider  the  BBB
permeability explicitly for optimization, it uses related basic properties to model the BBB
permeability, which might not capture the complexity involved in BBB permeability (Deng
et al., 2020). The study by Pereira et al., optimized a BBB permeability prediction model
and binding affinity model  to design molecules against  a target protein (Pereira et  al.,
2021). Most of these methods used maximum two parameter optimization. Also, there has
been no attempt to rank the contributions of individual parameter towards the optimization
process, which would help understand the relative importance of each parameter during
the optimization.
Most deep learning based de novo drug design methods are ligand based which require a
target-specific  ligand dataset  for  initial  training.  This  restricts  the application  of  ligand-
based deep neural  network models against  novel  drug targets or cases where limited
experimental data is available. In our earlier work, we have proposed a method which can
overcome the  issue  of  insufficiency  in  target-specific  ligand  dataset  and  design  small
molecules specific to novel target proteins (Krishnan et al., 2021a). In this work, the  de
novo ligand-based drug design algorithm includes optimization of multiple physicochemical
and  late-stage  pharmacological  properties  along  with  target  specificity  for  CNS  drug
candidates.  The  reward  function  of  the  reinforcement  learning  framework  used  in  our



previous  study  (Krishnan  et  al.,  2021a)  was  modified  to  adapt  the  method  to  multi-
parameter optimization. The method helps confine the design and optimization process to
a specific region of the chemical space and desired property range. 
As a proof of concept, the method was used to design novel small molecules against the
human 5-hydroxy tryptamine receptor 1B (5-HT1B) protein, which acts as a major target
protein for therapeutics in the central nervous system (CNS). 5-HT1B belongs to the G-
protein coupled receptor family and is the target of serotonin (5-HT). It has been implicated
in  cancer  proliferation  (Gurbuz  et  al.,  2014),  and  several  CNS  disorders  including
obsessive-compulsive disorder (OCD) (Pittenger  et  al.,  2016),  depression (Tiger et  al.,
2018), migraine, Parkinson’s disease (Zhang et al., 2008). The  3D-structure of 5-HT1B
protein  has been crystallized in  complex  with  the  agonist  ergotamine (PDB ID:  4IAR)
(Wang  et  al.,  2013).  While  designing  novel  small  molecules,  various  parameters  like
binding affinity, physicochemical properties like logP and MW, and probability of crossing
the  BBB  were  also  optimized.  Further,  the  BBB  permeability  prediction  model  was
interpreted using feature attribution methods to understand the key molecular features
learned by the model, which were also cross validated against known molecular features
governing BBB permeability reported in literature (Ghose et al., 2012). We propose that
incorporation  of  late-stage  pharmacological  property  such  as  BBB permeability  in  the
early-stage  drug  design  process,  can  improve  the  success  rate  of  drug  design  and
development. We also propose a novel method for quantifying the contribution of each
parameter during the MPO, which influences the quality of the small molecules designed
by the generative model. 

2 Methods

1  Dataset curation and pre-processing

The  dataset  for  pre-training  the  generative  model  was  obtained  from  the  ChEMBL
database (Gaulton et al., 2012). The molecules were represented in the SMILES format
(Weininger et al., 1989) to leverage the effectiveness of recurrent neural networks (RNNs)
in handling sequential data through existing natural language processing algorithms. The
RDKit library in Python was used for dataset pre-processing.

2  Pre-training the generative model and predictive models

The generative model was pre-trained on a dataset of ~1.6 million SMILES strings from
the ChEMBL database as mentioned in our earlier studies (Bung et al. 2021; Krishnan et
al. 2021), the aim of which is to learn the features of the existing small molecules and
produce novel small molecules. The use of stack-augmented memory (Joulin and Mikolov,
2015) enabled the generation of chemically valid SMILES with high accuracy of 96.6%
(Krishnan et al. 2021).

The  predictive  models  learn  a  mapping  between  the  small  molecules  and  their
corresponding property values (Olivecrona et al., 2017; Popova et al., 2018). In this study,
three predictive models were trained to predict the blood-brain barrier (BBB) permeability,
logP and  docking  score  against  the  5-HT1B  protein.  The  corresponding  datasets  for
training BBB, logP and docking score were obtained from MoleculeNet (Wu et al., 2017),
an earlier work (Popova et al., 2018) and Ex-CAPE DB (Sun et al., 2017) respectively. The



predictive model uses gated recurrent units (GRU) as the internal memory followed by
three dense layers (Bung et al., 2021). The models were trained using mini-batch gradient
descent with the Adam optimizer (Kingma and Ba, 2014).

3  Ligand-based drug design via transfer learning 

A ligand-based drug design requires a target-specific ligand dataset  to understand the
chemical space and create more potent drug-like molecules. In most cases, there is limited
or no knowledge about the small molecules that can bind to the target protein. In order to
show that the proposed method can be applied against novel protein or against proteins
where there  is  limited  experimental  target-specific  ligand data,  an  initial  target-specific
small molecule dataset was curated from existing inhibitors of proteins whose active sites
are  similar  to  that  of  the  target  protein  (step  b,  Fig.  1).  In  this  case,  the  model  was
validated against  the 5-hydroxy tryptamine receptor  1B (5-HT1B) protein.  A dataset  of
2,917 small molecules specific to other receptors in the 5-HT1 family, namely: 5-HT1A, 5-
HT1D, 5-HT1E, and 5-HT1F were collected from ExCAPE-DB (Sun et al., 2017) along with
their pIC50 values. 185 known inhibitors of 5-HT1B were collected from ExCAPE-DB (Sun
et al., 2017) and used only for comparing with the generated molecules. Redundancies
within  the training dataset  (inhibitors  of  the  homologs)  and with  the  validation dataset
(known inhibitors of  5-HT1B) were resolved by assigning a target protein  to the small
molecule based on the maximum pIC50 value. The suitability of this dataset was further
enhanced by docking these molecules in the active site of the target protein of interest.
The molecules with high docking scores (<= -7.0) were used to re-train the generative
model to capture the molecular features specific to the target protein of interest through
transfer learning (step c, Fig. 1). For this purpose, docking was performed at the 5-HT1B
active site,  and small  molecules with  a docking score less than -7.0 were chosen for
training.  Thus,  the  final  training  dataset  for  transfer  learning  consisted  of  2,807 small
molecules.  During  transfer  learning,  the  weights  of  all  the  layers  of  the  pre-trained
generative model (prior network) were frozen except the last dense layer (Tan et al., 2018).

Fig. 1. Ligand-based de novo small molecule design. (a) Pre-trained generative model on the ChEMBL database; (b)
A dataset curated from small molecules that modulate the activity of structurally related proteins; (c) Transfer learning
with the curated dataset;  (d)  MPO using reinforcement learning;  (e)  Physicochemical properties and structural alerts
(rule-based filters) were used to filter drug-like molecules specific to the target protein of interest.



The model was trained until the inferred molecules showed an observable shift in similarity
with  respect  to  the  training  dataset,  quantified  using  the  Tanimoto  coefficient  (Lipkus,
1999).

4  Multi-parameter optimization with reinforcement learning

The generative model obtained after transfer learning was combined with the predictive
model  to  bias  the  generative  model  towards  the  property  space  of  interest  using
reinforcement learning (RL) (step d, Fig. 1) (Olivecrona et al.,  2017). The method was
modified  to  support  simultaneous  multi-parameter  optimization.  Four  parameters  were
optimized including docking score, BBB permeability, logP, MW. All possible combinations
of  these  four  parameters  were  considered,  for  example  single,  double,  triple,  and
maximum four combinations (table S1) were optimized to find an optimal  combination.
Since these parameters can conflict with each other, the percentage of newly designed
molecules which satisfy all four parameters were checked after RL optimization of each
combination. In addition, for each designed molecule, the physicochemical properties like
topological  polar  surface  area  (TPSA),  hydrogen  bond  donor  (HBD),  hydrogen  bond
acceptor  (HBA) were computed.  This  helped to  monitor  the number of  molecules that
satisfy the last three physico-chemical properties, which were not considered during the
RL step. 

This  reward  function  (equation  1)  helps  in  simultaneous  optimization  of  all  the  four
parameters of the generated molecules. To avoid the catastrophic forgetting behavior of
the canonical policy gradient algorithm, regularization was required to keep the new policy
anchored to the learned prior policy of the agent (Jaques et al., 2016; Olivecrona et al.,
2017).  The  regularized  policy  gradient  method  was  trained  using  mini-batch  gradient
descent  with  AMSGrad  optimizer  (Tran  2019).  Variants  of  the  above  reward  function
(equation  1)  with  a combination of  the  appropriate  parameters,  were used to  train  all
possible single, double and triple parameter optimized generative models after transfer
learning. 
The molecules obtained after RL step were further subjected to four empirical rule-based
filters – PAINS, BRENK, NIH and ZINC, to remove molecules with potentially unwanted
subgroups (step e, Fig. 1).

5  Evaluating the contribution of each parameter towards multi-parameter 
optimization

The  physicochemical  properties  and  molecular  properties,  including  target  affinity
influences drug safety, activity and pharmacokinetic and pharmacodynamic properties, can



be  often  conflicting  (Vallianatou  et  al.,  2015;  Oprea  et  al.,  2000). To  evaluate  the
contribution  of  each  property  during  the  molecule  design,  the  SHapley  Additive
exPlanations (SHAP) method was used (Lundberg et al., 2017). The SHAP method is one
of the most widely used explainability methods in machine learning, which calculates the
contribution  of  different  input  features  to  the  predicted  output  for  a  pre-trained  model
(Lundberg et al.,  2017; Rodríguez-Pérez et al.,  2019).  Analogously,  the four properties
considered for  the MPO were used as inputs,  and the percentage of  generated small
molecules which passed all the property filters after the optimization was considered as
the output.
Using the model before RL as the model with no input features (null model in SHAP), the
SHAP contributions for each of the four parameters to the model decision were calculated
(see Supplementary information, Section 1).

6  Explaining BBB permeability model predictions with gradient-based feature 
attribution

The  Integrated  gradient  (IG)  explainability  method  (Sundararajan  et  al.,  2017)  as
implemented in PyTorch library, Captum (Kokhlikyan et al., 2020), was used to compute
the  feature  attributions  for  the  BBB  permeability  prediction  model.  The  IG  method
computes the gradient of the model’s prediction output with respect to its input features, to
extract the importance attributed to every input feature by the pre-trained predictive model.
The feature attributions were obtained for  every character in  the input SMILES string.
Since the SMILES string contains both atomic symbols and tokens capturing molecular
connectivity (including double bond, triple bond, branches and ring numbering), the feature
attributions were extracted only for the atomic symbols. The resultant attributions were
used to classify atoms in the molecule as either positively or negatively contributing to the
model  prediction,  depending  on  the  sign  of  the  attribution.  The  results  from  the
classification  were  visualized  based  on  a  coloring  scheme  (red  atoms  for  positive
attribution and cyan atoms for negative attribution) using RDKit. 

3 Results and Discussion

The proposed method was validated by designing small molecules against the 5-hydroxy
tryptamine receptor 1B (5-HT1B) receptor. The 5-HT1B receptor is responsible for several
CNS disorders including obsessive-compulsive disorder (OCD) (Pittenger et  al.,  2016),
depression (Tiger et al., 2018), migraine, Parkinson’s disease (Zhang et al., 2008). 
As  mentioned  in  the  Methods  section,  first  a  pre-trained  generative  model  learnt  the
grammar  of  the  SMILES.  Next,  transfer  learning  was  performed  on  the  pre-trained
generative model with the training dataset of 2,807 small  molecules so that the model
focuses towards the chemical space specific to the target protein. Transfer learning was
performed  for  100  epochs  by  monitoring  the  distribution  of  the  maximum  Tanimoto
coefficient of the generated molecules with respect to the validation dataset (Fig. 2a). The
model obtained after transfer learning was subjected to MPO using reinforcement learning.

1  Performance of the predictive models

To optimize the generative model using reinforcement learning three predictive models,
blood-brain  barrier  (BBB) permeability,  logP and docking score specific  to  the 5-HT1B



protein  were  trained  (see  Methods).  The  task  of  the  BBB  permeability  model  was
classification, whereas task of the docking score prediction model and the logP prediction
model were regression. The ROC-AUC score was monitored for the classification task
while, root mean square error (RMSE) and R2 scores were monitored for the regression
task. After extensive hyperparameter tuning, a ROC-AUC score of 0.90 was attained for
the BBB permeability model. The docking score prediction model had a RMSE of 0.28 and
an R2 score of 0.82. The logP prediction model had a RMSE of 0.43 and an R 2  score of
0.91. 
 

Table 1: Results from all MPO experiments where docking score was optimized along
with other parameters. For level 1, the applied property filters were: 200 Da < MW <
600 Da, 0 < logP <= 5.0, Docking score <= -7.0, and BBB permeability = 1. And for
level 2 additional property filters such as HBA <= 6, HBD <= 2 and TPSA <= 100 Å2

were applied. The percentage of molecules passing each filter before the RL training
phase is also provided.

Optimization experiment
Unique and valid

molecules
Level 1 Filters

(%)
Level 2 filters

(%)

Before RL 8120 64.30 53.20
1MPO – Docking score 7856 61.12 50.9
2MPO – Docking score + MW 8930 70.7 59.2
2MPO – Docking score + BBB 8552 71.45 63.52
2MPO – Docking score + logP 8278 68.95 56.29
3MPO – Docking score + MW + BBB 8728 69.64 57.98
3MPO – Docking score + logP + BBB 8596 69.89 57.42
3MPO – Docking score + LogP + MW 8089 65.37 54.34
4MPO – Docking score + MW + logP +
BBB

8646 75.06 67.63

2  Multi-parameter optimization using reinforcement learning

The  choice  of  parameters  for  optimization  should  be  such  that  the  objectives  are
independent  of  one  another.  For  the  current  study,  all  combination  of  activity,
physicochemical and pharmacological properties such as docking score, logP, molecular
weight and BBB permeability were considered for the optimization process (see Table S1
for all combinations). During training the deep learning model, the distributions of predicted
docking score, logP, MW and BBB permeability were monitored. The generative model for
the inference was selected based on the various factors such as 1) the rate of redundancy
in the generated molecules, 2) optimization of the properties to the desired range and 3)
the  proportion  of  duplicates  with  respect  to  the  training  dataset.  After  reinforcement
learning, 10,000 molecules were sampled from each of the 15 trained generative model
(Table S1). The redundant and duplicate molecules with respect to the ChEMBL dataset
were removed. For each combination of the RL optimization, the percentage of molecules
that pass through all 4 parameters (predicted docking score <= -7, 200 Da < MW < 600
Da,  0  <  logP <=  5.0  and  BBB  permeability  =  1)  were  computed  irrespective  of  the
parameters being optimized in the particular combination. This is referred to as the level 1



filters in the Table 1 and Table S2. The same percentage was computed for the model
before RL step and compared with the models with single (1-MPO) or multi-parameter (2-
MPO, 3-MPO and 4-MPO) optimization. The percentage of molecules that passed other
parameters (HBA <= 6, HBD <= 2 and TPSA <= 100 Å2) not considered for RL, were also
computed and referred to as level 2 filters. To understand the effect of single or multi-
parameter optimization on the generative model, the percentage of molecules that passed
level 1 filter were considered.

Table 1 shows the percentage of molecules that passed level 1 and 2 filters with single and
multiple parameter optimization involving docking score (see Supporting table S2 for all
combination).  While the percentage of molecules that passed level  1 filters was 64.30
before optimization (after transfer learning), the same was reduced (61.30) during docking
score  optimization  alone.  This  was  mainly  due  to  the  fact  that  in  some  cases,  the
molecules  with  better  docking  score  tend  to  have  higher  MW.  In  all  cases,  single
parameter (1-MPO) optimization reduced the efficiency of the model since they adversely
affect other properties (see table S2). During two parameter optimization (2-MPO), three
models (docking score + MW, docking score + BBB and docking score +log P) performed
better  compared to the single parameter optimization.  All  combinations (see Table S2)
without  docking  score  predictive  model  performed  poorly.  For  3-MPO,  most  models
performed poorly or in a similar way compared to the 2-MPO models. Interestingly, from
single  to  3-MPO  models,  logP optimizations  have  decreased  the  performance  of  the
model. Finally, it was observed that the 4-MPO model performed best. 

Fig.  2.  Distributions  monitored  over  the  course  of  transfer  learning  (TL)  and  reinforcement
learning (RL). (a) Maximum Tanimoto coefficient distribution before and after 100 epochs of transfer
learning with respect to the validation dataset. Distribution of (b) predicted docking score, (c) predicted
logP,  (d) molecular weight, and (e) proportion of BBB permeable and impermeable molecules among
generated small molecules and the training dataset.



To  understand  the  individual  contribution  of  four  parameters  in  the  multi-parameter
optimization  process,  a  variant  of  the  SHAP method was utilized (see  Methods).  The
docking score optimization contributes the most to the optimization by increasing the filter-
1  pass percentage by  7.7% (Table  2).  Surprisingly,  logP contributes  negatively  to  the
overall optimization. It decreases the percentage of generated small molecules passing
the property filters by ~1.3%. As evident from Table 2, the contribution of four parameters
can  be  ranked  as:  Docking  score  >  BBB  permeability  >  MW  >  logP (Table  2).  The
molecular weight and logP of the molecules generated after transfer learning was within
the desired range, but the affinity of the molecules towards the target (docking score) was
low. While maximizing the docking score, the molecular weight and logP deviates from the

Fig. 3. Embedding of the validation dataset and the generated small molecules in the property space.
The logP, MW and docking score values of the generated small molecules (grey) and the validation dataset
(blue) were used to create the embedding. A selected set of small molecules occupying the distinct regions of
the property space are shown in red. Their corresponding logP, MW and docking score values are shown
within parentheses in black, mauve, and pink figures, respectively. b) A radial plot showing the property
distribution of both known and generated BBB permeable molecules.



required optimal range as the generative model samples molecules in the high range for
both  the  properties.  In  such  cases,  including  the  conflicting  parameter  in  the  RL
optimization  step  can  improve  the  model  performance  as  evident  from  4-MPO
optimization. The results show the usefulness of the SHAP method. This is the first attempt
to repurpose the SHAP method for understanding the contribution of each drug design
related parameters during multi-property optimization.

Table 2: Final parameter-level contributions obtained from the SHAP-based method for the
multi-parameter optimization model.

As discussed above, four parameter optimization provides the highest improvement (75.06
%) in the percentage of molecules which pass the property filters (Table 1). Hence, the
molecules generated after four parameter optimizations were used for further analysis in
this work. The distribution of the optimized parameters with respect to the training dataset
is shown in the plot (Fig. 2b-e). The docking score of the generated molecules is better
when compared to the training set molecules (Fig. 2b). The generated molecules are also
BBB permeable, and other physicochemical properties such as logP and MW follow a
similar  distribution  as  that  of  the  training  dataset  (Fig.  2c,  2d).  A lower  dimensional
embedding of  the generated small  molecule’s  property  space is  highlighted in  Fig.  3a
along with a few molecules from different property ranges.
The mean properties of the generated and existing BBB permeable set of molecules are
shown using a radial plot (Fig. 3b). The generated small molecules not only satisfy the
target specificity and BBB permeability,  but also satisfy various drug-like properties. All
relevant properties like heavy atom count, molecular weight, molar refractivity, logP, TPSA,
aromatic rings, rings, number of rotatable bonds, hydrogen bond donor, hydrogen bond
acceptor were considered. It is evident from the radial plot that the generated molecules
stay  within  the  desired  property  ranges  although  some  of  them  were  not  explicitly
considered during RL optimization. Possibly, in this case, some of the molecular properties
remain correlated, and optimization of few properties (MW and LogP) further optimizes the
related properties. 

Property MPO attribution (%)

logP -1.243

MW 1.945

Docking score 7.700

BBB permeability 2.358



A datatset of 7125 molecules was obtained upon application of rule-based filters to remove
molecules with potentially undesirable subgroups. These molecules were docked at the 5-
HT1B active site using Autodock Vina (Trott  et  al.,  2010) to obtain a final  set of  7080
molecules with docking score less than -7.0. Only, 45 molecules were removed based on
docking  score  indicating  the  effectiveness  of  reinforcement  learning  in  optimizing  the
generative model. To further assess the performance of docking score predictive model,
the docking scores obtained from Autodock Vina were compared with the scores obtained
from predictive model.  A high Pearson correlation coefficient  (r)  of  0.88 was observed
between the actual and predicted docking scores (Fig. 4).

3  Model could reproduce molecules similar to known 5-HT1B inhibitors

The final set of 7080 molecules was compared against the validation dataset of 5-HT1B-
specific  molecules.  It  was  observed  that,  165  molecules  from  the  generated  set  of
molecules had Tanimoto coefficient above 0.75 (Lipkus, 1999) compared to the molecules
from the validation dataset, indicating high similarity. Few of such highly similar molecules
are shown in Supplementary figure S2. Based on the virtual screening results, some of the
generated  molecules  with  the  desired  property  profile  were  also  found to  have better
docking score than the existing inhibitors of 5-HT1B. The embedding (see Supplementary
information, Fig. S3) highlights the molecule with the highest docking score and molecules
which show high similarity compared to the training and validation datasets. 

4  Analysis of the fragment distribution

The  sub-structural  fragment  distribution  was  analyzed  to  understand  whether  the
generated small molecules captured the features of the validation dataset. The generated
molecules showed the presence of tertiary amines and secondary amines in accordance

Fig.  4. Docking score comparison. The  actual  and predicted docking scores  of  the
generated molecules after RL (4-MPO) are compared. The dashed black lines show the
regression fit between the two datasets. 



with the natural ligand (serotonin, which contains an amine), of 5-HT1B receptor (Matzen
et al., 2000). Also, bicyclic and tricyclic groups containing aromatic heterocyclics (anilines,
piperazines,  piperidines and indoles)  were  more  frequently  observed,  which  is  also  in
alignment with their well-known capability to act as selective 5-HT1B inhibitors (Matzen et
al., 2000; Halazy et al., 2005). These results indicate that the generative model was able
to capture and generate molecules with features specific to inhibit the 5-HT1B protein and
enhance the binding affinity using transfer learning and reinforcement learning.

5  Interactions with 5-HT1B binding site

The generated small molecules were docked in the active site of 5-HT1B receptor to study
the interactions that stabilize the complex. It was observed that the molecule with highest
binding affinity (Mol_7422) binds in the same pocket as ergotamine (Fig. 5a). Residues
Q41 and D352 form hydrogen bonds with Mol_7422 molecule, while residues D129 and
T134 which are proposed to be important for anchoring the small molecule in the pocket
are  in  the  vicinity  of  a  nitrogen  atom with  a  positive  charge  (Fig.  5b).  The  positively
charged nitrogen atom is commonly observed in the small  molecules that are targeted
towards 5HT family of receptors (Wang et al., 2013; Peng et al., 2018). The Mol_7422 is in
the pocket formed by several  hydrophobic residues such as I180,  A216,  W327, F330,
F331, L348 and F351.

6  Feature attribution method rationally explain the importance of enriched 
fragments in BBB permeable molecules 

To understand the rationale behind the BBB permeability model predictions, the Integrated
gradient (IG) feature attribution method (Sundararajan et al., 2017) was utilized. Ghose et
al.,  have computed the fragments that  are predominantly  present  in CNS drugs when
compared to non-CNS drugs and vice versa (Ghose et al., 2012). The feature attribution
obtained  from the  BBB predictive  model  were  compared  with  the  fragments  that  are
predominant in the CNS drugs (Ghose et al., 2012). It was observed that while classifying
the molecules as BBB permeable, the predictive model indeed considered the fragments
which are preferred in the CNS drugs. Figure 6, shows some generated molecules that are
classified as BBB permeable. It is known that the fragments like 1-ethylpiperidine, pyrrole,
1-ethylpiperazine,  diphenylmethane  contribute  towards  increasing  the  probability  of
crossing  the  BBB  (Ghose  et  al.,  2012).  Similar  trend  was  observed  for  the  BBB

Fig.  5.  Interactions of  de novo generated molecule with 5-HT1B receptor. (a) Binding pocket  of
agonist ergotamine (blue sticks) and Mol_7422 (magenta sticks) molecules. The receptor is shown in
green sticks.  (b) Residues of 5-HT1B receptor interacting with the Mol_7422 molecule (magenta) are
shown in green sticks.



impermeable molecules where the fragments remain predominant with enriched fragments
found in non-CNS drugs (e.g. acetamide, phenethylamine, phenetole and acetate groups).
These fragments contribute towards decreasing the probability of BBB permeability (Fig.
6). A complete list of fragments along with the percentage of molecules with important
fragments  identified  by  the  explainability  method  is  provided in  supporting  information
(Table S3 & S4).

Fig. 6. Subset of small molecules showing the fragments that are enriched in BBB permeable molecules  ((i) 1-
ethylpiperidine, (ii) pyrrole, (iii) 1-ethylpiperazine, (iv) diphenylmethane) and in BBB impermeable molecules ((v)
acetamide, (vi) Phenethylamine, (vii) Phenetole and (viii) acetate) as reported by Ghose et al. (Ghose et al., 2012). The
red  color  indicates  positive  contribution,  while  the  cyan  color  indicates  negative  contribution  towards  BBB
permeability probability.

Fig.  7.  Generated  molecules  that  are  similar to Robalzotan  (CHEMBL1628569). The  Robalzotan  molecule  is
known to  cross  the  BBB.  Different  fragment  substitutions  to  the  Robalzotan  that  make them BBB permeable  or
impermeable are highlighted using box.



Figure 7 shows that the generative model learnt to substitute fragments which enhance
their predicted BBB permeability probability. For example, a compound from the training
dataset (CHEMBL1628569) known as NAD-299 or Robalzotan was part of the training
dataset. This is known to be a potent BBB permeable lead compound targeting the 5-
HT1A receptor (Johansson et al., 1997; Jerning et al., 1998). Some generated molecules
were found to be similar to Robalzotan with some difference in their functional groups and
varied predicted BBB permeability score (Fig. 7). The fragment substitutions made were
found  to  correlate  with  the  observation  that,  a  balance  between  polar  and  non-polar
substitutions  is  necessary  to  achieve  optimal  BBB  permeability.  The  presence  of  the
hydroxyl group in the designed molecule, Mol_755 (in Fig.7) makes it more polar. This was
predicted to have a low BBB permeability probability of 0.39 (Fig. 7). On the other hand,
the substitutions of aromatic,  alkyl,  and cyclic groups were found to increase the BBB
permeability probability to over 0.95, although the overall similarity among the molecules
was very high. 

4 Conclusion

We have proposed a ligand-based  de novo drug design algorithm for generating small
molecules  with  multiple  optimized  parameters,  crucial  for  improving  the  drug-like
molecules. Traditionally, some of these parameters are optimized during later stages of
drug design and development. We showed that they can be included during initial stage of
drug  design.  For  the  current  case  study,  transfer  learning  followed  by  reinforcement
learning generated a focused library of molecules against 5-HT1b, a target protein from
central nervous system. It was also observed that four parameters (docking score, logP,
MW and BBB permeability) during RL optimization gave best optimization result, where
generated molecules satisfied most of the parameters important for a high-quality CNS
drug. Around 168 generated molecules showed high similarity with known inhibitors of 5-
HT1b, although these known inhibitors were never used for training. Using a SHAP-based
scoring method, the contribution of each parameter during multi-parameter optimization
was explained.  It  was observed that  the parameters can be conflicting,  and favorable
combination  of  parameters  are  required  during  multi-parameter  optimization.  The
integrated gradients method for explainability identified fragments which were shown to be
preferred for predicted BBB permeable molecules. This correlated well with the fragments
enriched in FDA-approved BBB permeable drug molecules. This study showed that it is
possible  to  consider  appropriate  combination  of  physicochemical  and  late-stage
pharmacological  properties  during  initial  stages  of  drug  design.  Hopefully,  this  would
significantly reduce the design cycles and improve the success rate of overall drug design
and development.
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