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Large benchmark sets like GMTKN55 [Goerigk et al., Phys.
Chem. Chem. Phys., 2017, 19, 32184] let us analyse the
performance of density functional theory over a diverse
range of systems and bonding types. However, assess-
ing over a large and diverse set can miss cases where
approaches fail badly, and can give a misleading sense
of security. To this end we introduce a series of ‘poison’
benchmark sets, P30-5, P30-10 and P30-20, comprising
systems with up to 5, 10 and 20 atoms, respectively. These
sets represent the most difficult-to-model systems in
GMTKN55. We expect them to be useful in developing new
approximations, identifying weak points in existing ones,
and to aid in selecting appropriate DFAs for computational
studies involving difficult physics, e.g. catalysis.

It is becoming rare to find a physical chemistry paper that does
not contain results from a density functional theory (DFT) calcu-
lation. DFT provides quantum chemical insights at low cost, by
using density functional approximations (DFAs) to capture diffi-
cult quantum mechanics. [note, many authors erroneously use
DFT to refer to DFAs] Popularity has brought with it diversity
– there is now a ‘zoo’ of hundreds, if not thousands of DFAs to
choose from.1–4 The zoo continues to grow, as density functional
developers produce new DFAs to solve outstanding problems and
to cook new DFAs using new ingredients.

Selecting the best DFA for a given study has thus become an
onerous task, which has given rise to benchmarking studies that
seek to make the task less onerous. Benchmarking helps to iden-
tify useful DFAs by scrutinizing their performance on relevant re-
actions. In broad terms, the process of benchmarking first re-
quires computing,

Err(d, I) =|∆Ed
I −∆Eref

I | (1)

for DFA d on ‘reaction’ I, which might be a traditional reaction or
another important energy difference like an ionisation potential.
∆Ed

I is the energy difference calculated using the DFA. ∆Eref
I is a

reference value for the reaction computed using a high-level the-
ory or obtained from appropriately modified experimental data.
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Their absolute difference is thus a reasonable metric for the error
of the given DFA on the given reaction.

The “general main group thermochemistry, kinetics, and non-
covalent interactions” (GMTKN55) benchmark database5, con-
sisting of ∼ 1500 reactions and ∼ 2500 individual energies, goes
one step further than traditional benchmarking approaches. It
condenses performance on a large benchmark set into a single
number (WTMAD-2) for a given DFA, which is designed to assess
a variety of predictions with different energy scales. GMTKN55
may thus be used to assess performance of existing DFAs, and
also aid in optimising and scrutinising new approaches. Other
sets, like MGCDB846 and MB16-43,7 serve similar roles.

The WTMAD-2 scheme (see Sec 4 of GMTKN555 for details)
defines an overall quality metric,

WTMAD(d) :=
1

NGMTKN55
∑
I

WIErr(d, I) (2)

using eq. (1) and weights, WI , that depend only on the benchmark
set B(I) containing I. These weights normalise the deviations to
ensure that sets with large energies, yet small relative errors, do
not dominate over sets with small energies, yet relatively large
and important errors. Thus, WTMAD-2 can be used to assess the
effectiveness of a DFA, in practice.

However, a problem with any ranking protocol defined on a
very large number of systems, such as WTMAD-2, is that the sin-
gle number can mask systematic deficiencies of DFAs. For exam-
ple, a DFA that very accurately predicts 1450 reactions can fail
rather badly on the remaining 50 outliers without much statisti-
cal impact. One of the authors8 previously showed that WTMAD-
2 statistics could be reproduced imperfectly by just 50 carefully
chosen reactions, and nearly perfectly by 150 reactions, using
‘Diet-GMTKN55’ benchmark sets. The ability to reduce the bench-
mark set size without impacting statistics might suggest that out-
liers are unlikely to be disastrous, since they are likely to have a
greater impact on the smaller set. A more troubling possibility is
that outliers simply did not make it into the ‘diet’ sets due to their
low statistical importance.

When assessing DFAs, it would be useful to know how well
they work for difficult cases, to test their overall robustness and
reliability. The present work thus seeks to answer the following
questions:
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1. What reactions in GMTKN55 are most difficult for DFA to
reproduce?

2. How well does performance on WTMAD-2 predict perfor-
mance on outliers?

3. Can we better understand density functional approximations
by using outliers?

Answering these questions will be the subject of the rest of this
manuscript.

What reactions in GMTKN55 are most difficult for DFA to repro-
duce?

Answering the first question requires identifying what makes a
reaction difficult. Any given DFA will struggle with some reactions
– statistics basically guarantee it. A difficult reaction is therefore
one which is difficult for a large number of DFAs to reproduce and
which therefore poisons the statistics for a large number of DFAs.
One therefore seeks systems that are outliers across many DFAs.

Identifying these reactions involves turning the usual bench-
marking problem on its head. Eq. (2) assigns each given DFA,
d, a (weighted) average of its performance across all reactions,
I, which can be used to rank it – lower values indicated better
quality. By contrast, the expression,

Poison(I) =
1

NDFA
∑

d∈DFA
Err(d, I) , (3)

yields higher value for any reaction that is difficult for all NDFA

DFAs to reproduce, and which thus poisons the most DFAs. The
reactions may then be sorted from worst (largest Poison(I) value)
to best (smallest Poison(I) value).

Selecting reactions with only the largest values of Poison(I)
therefore defines a new benchmark set that is, by design, difficult
for DFAs to reproduce. The smaller this set, the more difficult it
will be for DFAs to reproduce the systems (by contrast, the entire
set simply reproduces GMTKN55). However, smaller sets expose
a potential deficiency in eq. (3) – it is based on absolute ener-
gies only and so may be biased to large systems with more bonds,
since each bond can introduce error when computed using a DFA.

Maximal discriminatory power is therefore obtained by select-
ing a sufficiently small set of poison species, and ensuring it is not
biased toward large systems. Poison30-Natom (P30-N) bench-
mark sets achieve this task, by using the thirty most difficult sys-
tems, as ranked by eq. (3), whose reactions contain at most Natom

atoms. Thirty reactions (2% of the total GMTKN55 set) is chosen
as a manageable number, with enough reactions for variety but
few enough reactions to contain only outliers. The issue of bonds
is avoided by using only reactions with up to a given number of
atoms in its largest molecule. The present work settles on P30-
5, P30-10 and P30-20, with five, ten and 20 atoms respectively.
[One may also weight eq. (3) by WI before sorting, but defining a
useful weight is not a trivial task.]

Figure 1 shows the molecules (but not atoms) used in P30-
5. The other two sets are shown as Supplementary Figure 1 in
the Supporting Information. Reactions in all poison sets come
from just eight of the 55 sets in GMTKN55: (1) ALK85; (2)
ALKBDE109; (3) BH7610–12; (4) DC1312–23; (5) G2RC12,24;

Fig. 1 The 39 molecules of up to five atoms (atoms not shown) used to
form the 30 ‘poison’ reactions in the P30-5 benchmark set.

(6) MB16-437; (7) SIE4x45; and (8) W4-1125, with MB16-43,
SIE4x4 and W4-11 making up the majority of the P30 sets in
which they feature. Text descriptors in Figure 1 and its support-
ing counterparts show the original database, using these labels,
and descriptions of each molecule from each original database.

The reactions identified for each P30 set can be rationalised by
a combination of chemical and density-functional theorist intu-
ition. The requirements to be selected in a poison set is to possess
the highest error below a certain system size. The highest errors
will therefore come from cases where (a) DFT performs particu-
larly poorly, and/or (b) bond energies (and by extension errors)
are particularly high, preferably both.

The three benchmark sets that feature prominently in the P30
sets match this intuition. Self-interaction error26–34 is a well
known DFA error which is often tested using dissociation of ho-
modiatomic charged molecules. The SIE4x4 set is specifically de-
signed to test for self-interaction error, so clearly satisfies (a), with
charge imbalances common in these systems driving up energy
differences satisfying (b) also. W4-11 is a set of total atomisa-
tion energies which satisfy requirement (b). Taking a closer look
at some of the specific systems reveals a preference for homoneu-
clear molecules or multiple double bonds, systems known to exac-
erbate static/strong correlation35–38 which is poorly described by
DFAs and thus satisfy (a). MB16-43 is a set of randomly generated
‘artificial molecules’ and in not following the “narrow structural
space of chemical intuition”7 so it is not hard to image satisfying
requirements (a) and (b). The remaining contributors to the P30
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Fig. 2 Errors found in P30-5 (top), P30-10 (middle) and P30-20
(bottom). Bars above zero indicate the MAD across the ‘poison’ sets,
while bars below zero indicate WTMAD-2. Results are divided into four
rungs: double-hybrid DFAs (reds), hybrid DFAs (greens), meta-GGAs
(earth tones) and GGAs (blues). Numbers below zero indicate
top-ranked approximations on WTMAD-2. Only the ten highest ranked
DFAs are shown. Kendall rank correlation coefficients, τ, are also
reported for the four DFA rungs, as well as across all DFA.

sets from other benchmark sets also fit into the arguments given
here.

How well does performance on WTMAD-2 predict performance on
outliers?

With the P30-N sets established, the second question may now
be addressed. First, the unweighted MAD,

MADP30-N(d) =
1

30 ∑
I∈P30-N

Err(d, I) (4)

gives an error metic for each DFA, d, on poison set P30-N. Then,
the error of each DFA on P30-N may be compared against the
WTMAD-2 value for the same DFA using eq. (2).

Following GMTKN55, DFAs are divided into different rungs of
“Jacob’s ladder”.39 The lowest rung is GGAs, which are function-

als of the density, n and its gradient, |∇n|, only. The next rung
is meta-GGAs (MGGAs) which introduce the kinetic energy den-
sity, τ, and Laplacians of the density, ∇2n. The next rung is hy-
brids, which introduce some Hartree-Fock (HF) exchange into the
functional – we do not distinguish between range-separated and
traditional hybrids. The highest rung is double hybrids, (DHDF)
which add a wave-function based correlation energy (usually sec-
ond order Møller Plesset perturbation theory) into the mixture.
As a rule of thumb, higher rungs are expected to be more accu-
rate than lower ones, but also take longer to compute. A D3(BJ)
dispersion correction is used in almost all cases due to its ability
to improve most DFAs in GMTKN55, with exceptions being ap-
proaches where D3(0) or another dispersion correction are more
appropriate. Choices are made consistent with Sec 3.2 of Sec 4 of
GMTKN555.

Figures 2 shows average errors for P30-5, P30-10 and P30-20.
Only the ten best methods of each rung are reported, when there
are more than ten available. The reported hybrids vary signifi-
cantly with the number of atoms in the poison set. However, this
most likely reflects the fact that there are 47 hybrids to choose
from, many with similar performance, versus 17 GGAs in the DFA
suite. All 7 double hybrids and 8 meta-GGAs are reported. Sup-
plementary Figure 2 shows errors for all DFAs broken down by set
and rung.

To go beyond visual comparisons, a Kendall rank correlation
coefficient40 is computed for each of the rungs (including DFAs
not shown), using,

τ
N
rung =

∑d 6=d′∈rung SN(d,d′)SW (d,d′)
nrung(nrung−1)

. (5)

Here, SN(d,d′) = sgn[MADP30-N(d)−MADP30-N(d′)] SW (d,d′) =
sgn[WTMAD(d)−WTMAD(d′)] and nrung is the number of DFA
in the given rung. τ reveals how similar the poison sets rank
DFAs compared to WTMAD-2. A value of 100% indicates perfect
agreement between the two rankings, -100% indicates a perfect
reversal of ranking, and 0% indicates no relationship between the
poison and WTMAD-2 rankings. Values are shown in the relevant
figures. A Kendall coefficient, τP30-N , for all DFAs is also provided.

Four main conclusions may be drawn from the Kendall coeffi-
cients and Figure 2: i) hybrids and GGAs have minimal correla-
tion between the poison sets and WTMAD-2; ii) double hybrids
are reliable in the sense that they performance on difficult (poi-
son) systems reflects their overall performance, as indicated by
relative large values of τ; iii) meta-GGAs tend to sacrifice qual-
ity on poison reactions for better overall accuracy, as indicated by
negative values of τ; iv) correlation is much lower in P30-20 than
the other two sets, as indicated by |τ| approaching zero.

Can we better understand density functional approximations by
using outliers?

Finally, we address the question of what we can learn from
the poison sets. Many of the most accurate DFAs on GMTKN55
involve multiple empirical numbers of parameters that are opti-
mized on large benchmark sets. Unsurprisingly, these also per-
form well on the poison sets, albeit less well and less consistently
than on the complete set. Unfortunately, the large number of pa-
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rameters make it difficult to understand sources of errors.
PBE041,42 and B3LYP43,44 offer a simpler level of empiricism,

which do allow analysis. PBE0 may be considered to have one
empirical parameter being the fraction of Hartree-Fock exchange
used in the hybrid,

PBE0α := α×xHF+(1−α)×xPBE+ cPBE , (6)

and which is set to 0.25 in regular PBE0. B3LYP enhances this
with a second parameter for the mixture of LDA and GGA and
uses α ≈ 0.2. Since PBE0 has just one parameter we investigate it
further. Barring exceptional cases, each reaction will have a value,
α0, such that the errors of HF and PBE cancel out. That is, we can
find α0(I) for each reaction I such that Err(PBE0α0(I), I) = 0.

We compute errors as a function of α for all reactions in P30-
5. This lets us determine α0, which we plot in the left panel of
Figure 3. The right plot shows errors as a function of α, broken
down by subset (i.e. MAD within each subset) and over the full
poison set – we restrict to subsets with more than two reactions
present in P30-5. In some cases, calculations with 0 ≤ α ≤ 1 did
not contain the optimal value, so we extrapolated α0 – see Sup-
porting Information. G2RC:11 (exchange of Si and C in SiF4 and
CCl4) is particularly bad, with a predicted and highly unphysical
α0 ≈−2.
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Fig. 3 Optimal HF exchange mixing parameter, α0, for the thirty
reactions in P30-5. The left plot shows α0 as a function of the PBE0
error for each reaction. The right plot shows the MAD for each subset as
a function of α, and across the full poison set. Colours indicate the
subset. The arrow indicates α0 outside of the reported range.

We return to the prominent benchmark sets SIE4x4 and W4-11
in order to discuss patterns in α0 revealed by Figure 3. SIE4x4
consistently gives α0 ≈ 0.7. Self-interaction errors are not present
in HF theory and so these larger α values effectively offset er-
rors seen in SIE4x4. W4-11 is an atomisation benchmark set
yielding α0 scattered around 0.25. This is consistent with the
ideal α observed in most hybrid studies which focus on atom-
ization energies as the benchmark, especially the earliest hybrid
works.42,43,45

Remarkably, the optimal α for all full poison sets, that is P30-5,
P30-10 and P30-20, is also close to the PBE0 value of 0.25. This
can be seen from the right plot of Figure 3 and Supplementary
Figure 3. However, we also note that the optimal value of α is
clearly an average, and that α0 is very system specific. Indeed,
much has been made of the seemingly fortuitous one quarter bal-
ance of exact exchange, but with little consensus emerging in the
last two decades. Optimally tuned hybrid functionals,46–68 which
identify an optimal α for a given reaction using accessible criteria,

Table 1 DM21 results compared against various global hybrid DFA. All
energies in kcal/mol.

Set DM21 ωB97X-V M052X PBE0 B3LYP
WTMAD-2 3.98 3.93 4.62 6.59 6.39
P30-5 5.60 9.46 11.15 11.75 11.94
P30-10 6.53 10.22 10.72 12.97 13.48
P30-20 7.32 38.07 25.59 19.70 31.73

are an increasingly common way to avoid the ‘scatter’ in α0.
This analysis may offer insights into the good behaviour of the

recently introduced DM21 DFA,69 which is based on a machine-
learned local-hybrid ansatz in which α varies in space. Because
α can vary in space, DM21 is able to ‘see’ local conditions and
adjust the weight accordingly. This feature cannot be replicated
by global hybrids where α is a unique constant – all hybrid DFA
reported except DM21 are global in nature. As is revealed in
Table 1, DM21 out-performs global hybrids (by a factor of five
on P30-20, versus ωB97x-V70) for difficult ‘poison’ cases, with-
out sacrificing its strong overall performance (here illustrated by
WTMAD-2) which is as good as top-performing (on WTMAD-2)
ωB97x-V and better than second-ranked M052X.

Interestingly, PBE0 (one parameter) performs much better on
the largest poison set than the highly-empirical and accurate
ωB97x-V (around 15 parameters) and M052X71 (around 20 pa-
rameters), and the popular B3LYP (two parameters). [Note,
DM21 has effectively thousands of parameters] The reason for
this unusual success should be investigated thoroughly as it may
offer strategies to improve robustness of global hybrid DFAs.

To conclude, this work introduced several new benchmark sets
of difficult ‘poison’ reactions. The three sets, P30-5, P30-10 and
P30-20, consist of thirty reactions involving systems with up to
five, ten and 20 atoms, respectively. Each set is composed of the
reactions in GMTKN55 that are most difficult for DFAs to repro-
duce, and which likely offer the most challenging test for any DFA.
They thus provide benchmark sets that are particularly difficult to
model, and which serve as a stringent test of any DFA.

With the exception of double hybrid DFAs, which are quite ex-
pensive to compute, a high overall ranking on WTMAD-2 did not
necessarily mean good success on P30-N. This means that overall
success is only weakly correlated with success on difficult systems,
especially as they become larger and especially for meta-GGAs,
which should therefore be used with caution. Selection of a DFA
using WTMAD-2 (or, we expect, similar metrics) may therefore
be of little predictive value when studying difficult reaction pro-
cesses, such as those involved in complex catalysis.
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