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ABSTRACT The encapsulation of chemotherapeutics by biocompatible carrier structures holds 

great promise to preserve their therapeutic activity and favor their delivery to tumor sites. To 

enhance the bioavailability of a drug at the targeted tissue, triggered release mechanisms have 

received increasing research interest. Many approaches rely on exogeneous triggers such as the 

irradiation of ultrasound, visible or even ionizing electromagnetic waves. However, such 

exogenous triggers can be challenging to implement in a specific manner. Therefore, designing 

carriers responsive to endogenous moieties, such as nucleic acid biomarkers, is a desirable step in 

the search of personalized drug delivery nanoplatforms. This study presents an approach to 

building a biocompatible DNA-liposome hybrid nanocarrier for potential triggered release 

purposes. We form a DNA mesh on large unilamellar liposomes incorporating a trigger-responsive 

DNA building block. Upon incubation with a single-stranded DNA trigger sequence a hairpin 

closes and the building block is allowed to self-contract. By this process, we demonstrate elevated 

release of the dye calcein and the drug doxorubicin. The incubation of the doxorubicin-laden active 

hybrid carrier with HEK293T cells suggests increased cytotoxicity relative to a control carrier 

without the triggered release mechanism. In the future, the trigger could be provided by 

peritumoral nucleic acid sequences and lead to site-selective release of encapsulated 

chemotherapeutics. 
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TEXT  

Treatment with many drugs, especially chemotherapeutics, can be associated with severe side 

effects. Following administration, drug molecules can circulate throughout the blood stream and 

can be internalized by a range of cells depending on their rate of metabolism – regardless of 

whether they are of cancerous or of healthy origin.1,2 Another limitation is that small molecules 

are generally cleared out of the organism rapidly. To address these challenges, the development of  

larger carrier constructs has shown promise, especially if these are targeted.3–6 Thus, the 

encapsulation of small therapeutic molecules by carrier structures holds great potential to 

maximize delivery efficiency. To fulfil a therapeutic effect, however, the drug must become 

bioavailable by being released from the carrier.7–9 This requires the precise control over the 

mechanism and timing of cargo release.7  

Exogenous triggers, such as electromagnetic radiation, allow the precise timing of trigger 

deployment, but in many cases require additional intrusion and interference with the organism, or 

the use of highly specialized materials. Moreover, the irradiation of e.g. ultraviolet or visible light 

as trigger types is hampered by the shallow penetration depths in biological tissues.10–12 X-rays in 

particular offer greater penetration and can be used in combination with radiotherapy.2,13 In other 

applications, however, ionizing radiation imposes an additional risk. For these reasons, an entirely 

autonomous device with release properties dependent on an endogenous  trigger event may be a 

preferrable solution.14  

DNA as a building material has great potential to create a drug delivery vehicle responding to 

endogenous triggers.15–18 The triggered hybridization of DNA can produce forces large enough to 

facilitate the transition between secondary structures.19–21 It has been previously shown that the 
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binding of an aptamer sequence to its target structure can displace pre-hybridized complementary 

DNA from the aptamer.16 This approach has the advantage that an overexpressed protein can 

facilitate targeted delivery and selective drug release at the same time. Interestingly, also nucleic 

acids can be overexpressed by tumor cells and be present at elevated concentrations in the 

peritumoral environment.22–24 The hybridization of these nucleic acids with a corresponding 

carrier-associated DNA motif could therefore initiate the conversion between secondary structures 

and thus trigger drug release by direct mechanical interference with the delivery vehicle, such as 

a lipid vesicle. 

Lipid vesicles represent a biocompatible carrier structure that can be produced with high 

throughput.25,26 DNA can be easily anchored to the lipid bilayer mediated by chemically attached 

hydrophobic moieties.27–31 Several studies demonstrate a strong link between the conformation of 

the DNA structures and the shape or integrity of the lipid bilayer.27,32,33 However, many current 

approaches rely on stochastic modes of deforming lipid vesicles. Triggering the structural 

activation of liposome-associated DNA building blocks to affect the permeability of the lipid 

bilayer to specific molecules could offer a potent strategy of generating a drug delivery vehicle 

with a selective release feature.  

This study presents a method to release small molecules from liposomes by the triggered 

contraction of ‘active DNA building blocks’ (aDBB). These are arranged on the surface of the 

liposomes and integrated into a DNA coat, following a modified assembly method of an approach 

which we described previously.34 The addressability of the aDBB leverages the triggered self-

hybridization of a DNA hairpin (H), resulting in a contraction of the aDBB. To instate control over 

the hairpin closure, a spacer strand (S) was pre-annealed with the hairpin to keep it in an open, or 

stand-by state (Figure 1a). When adding a trigger sequence (C), S can be displaced in a toehold-
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mediated reaction. The HS DNA duplex (aDBB) was inserted between a cholesterol-triethylene 

glycol (TEG)-modified linker (L composed of L1 and L2, Figure 1a) and a DNA triskelion (T) by 

hybridization via the oligonucleotides L2 (part of the linker and partially complementary to H) and 

M (linking H to T). The cholesterol-TEG modification of L allowed the aDBB to insert into lipid 

membranes (Figure 1b). In this manner, several of these motifs could be connected on the surface 

of liposomes in a two-step polymerization process: first, the combination of the aDBB, the 

cholesterol-TEG-labelled L, and M (referred to as LHS) was incubated with large unilamellar 

vesicles (LUVs). Second, the DNA triskelion was added to finalize the coating process (Figure 

1c). The element-wise contraction of the DNA building blocks integrated in the DNA coat could 

alter the permeability of the assembled structures and facilitate the release of encapsulated 

molecules.  

To probe the ability of the active building block to contract upon stimulation with the trigger 

sequence C (Figure 1a), S was modified with a Cy3 fluorophore (pink sphere, Figure 2a), whereas 

C was modified with a BlackHole II quencher (black sphere) in the complementary position 

(Figure 2a). Figure 2 shows the fluorescence signal decrease as a result of the hybridization of C 

and S, indicating the success of the displacement reaction. As a reference, a control sequence CC 

was added (blue data trace). Here, only an insignificant drop of the fluorescence intensity due to 

stochastic quenching could be observed, comparable to the effect of dilution as simulated by 

adding pure PBS (grey data trace). Single-molecule Förster resonance energy transfer (FRET)  

measurements were performed to measure the inter-dye distance, quantified by the FRET 

efficiency, upon contraction of the aDBB. To this end, the DNA strands adjacent to H were labelled 

with a Cy3 fluorophore (pink sphere) as donor molecule (strand L2, Figure 2c), and a Cy5 

fluorophore (red sphere) as acceptor molecule (strand M, Figure 2c). Before addition of C, the 
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FRET efficiency was zero (Figure 2c) which is reasonable for an estimated donor acceptor distance 

of approximately 15 nm (see Supporting Information for details) and a Förster-radius of ca. 5.3 

nm.35 After the displacement of S, however, the FRET efficiency shifted to around 45%, which 

accounts for a distance of approximately 6 nm for this donor-acceptor pair (using Gamma-

corrected values, see also experimental section).35–37 This finding suggests that the displacement 

of S upon hybridization with C indeed causes a contraction of up to ca. 9 nm of the building block 

by allowing H to self-hybridize. 

To confirm the desired integration of the aDBB in the formerly established DNA coat, dynamic 

light scattering (DLS) and ζ-potential measurements were performed. An increase of the 

hydrodynamic diameter was observed, accompanied by a decrease of the ζ-potential, when the 

DNA coats are assembled on the vesicle surfaces (Supporting Information, Figure S2). 

Furthermore, the addition of a detergent led to a double peak in the DLS spectrum denoting 

detergent-lipid micelles and coexisting DNA assemblies, as we previously described.34 Next, we 

sought to gain further insight of the functionality of the aDBB when integrated in the DNA coats 

on liposomes. To this end, we studied DNA-coated giant unilamellar vesicles (GUVs) by confocal 

microscopy and fluorescence recovery after photobleaching (FRAP) measurements. Initially, the 

fluorescence recovery profiles of the ATTO550-labelled S and the ATTO647N-labelled T were 

measured before adding the trigger sequence C. The two species showed similar recovery kinetics 

and levels of recovered fluorescence (Figure 3a and c). In comparison to our previously established 

DNA coats without the aDBB, here a construct with higher mobility and fewer constraints is 

present. This may be related to lower polymerization efficiency or to the introduction of more 

degrees of freedom by structures of larger flexibility (additional sites of ssDNA as knickpoints, 

refer to Figure 1a).34 After adding C, the recovery traces of S and T diverged (Figure 3b) and two 
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populations of recovery behaviors emerge: while S shows faster recovery kinetics and higher 

recovered fluorescence intensity levels (Figure 3c and d), the recovery of T is represented by 

slower kinetics and only marginal recovered fluorescence intensity (Figure 3e and f). This result 

corroborates the hypothesis that S is removed by C, which can consequently dissociate from the 

DNA coat and hence is not restraint in its mobility by the DNA coat anymore. These results suggest 

that the transition of the SC duplex into the solution is limited by steric hindrance imposed by the 

DNA coat, and magnesium-assisted unspecific adsorption to the lipid bilayer, which allowed the 

observation by FRAP with overall reduced signal intensity (relative to the ATTO647N-labelled T 

by approximately 50%, see also Supporting Information, Figure S3).38 At the same time, the 

hairpin can self-hybridize and may stiffen or compact the DNA coat, as indicated by the slow 

recovery kinetics of T and the reduced post-bleaching fluorescence intensities which exhibit 

similar properties to the DNA coats we previously described.34 During this process, we could not 

detect visible deformation or disruption of the GUVs (Supporting Information, Figure S3). By 

contrast, when the displacement reaction is performed under hyperosmotic pressure, membrane 

budding or tubulation can be observed in some cases (Figure 3g).  

As an indicator of the applicability of the DNA-liposome hybrid structures as triggered-release 

delivery vehicles, we investigated potential changes of the permeability to entrapped small 

molecules. Therefore, the lipid films were rehydrated in a calcein-containing solution to generate 

calcein-laden LUVs. The leakage of calcein from the LUVs is expressed by an increase of the 

fluorescence intensity, as the consequent dilution of the fluorophore results in a loss of self-

quenching which only occurs at high concentrations. Initially, we measured the passive leakage of 

calcein from pure liposomes (V) in comparison to the coated structures VLHST and VLT. The 

addition of the DNA coats, significantly reduced the leakage of calcein over the course of the 
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measurement. To study the active release, the trigger sequence C was added to the samples V, 

VLHST and VLT (as inactive control of the hybrid carriers). In contrast to VLT, the trigger-

responsive carrier (VLHST) responded to the supplementation of C by an elevated permeability to 

the entrapped calcein, close to pure POPC liposomes (Figure 4a). In addition, we performed a 

control experiment where an inactive sequence CC was incubated with VLHST. CC did not cause a 

similar permeability benefit, excluding the possibility that the release was only an effect of osmotic 

changes. 

To further explore controlled drug delivery and release applications, we produced LUVs that 

encapsulated the widely-used chemotherapeutic doxorubicin (DOX).39–41 As a model culture, 

HEK293T cells were then incubated with DOX-laden VLHST, and VLT. The trigger strand C was 

added to the DOX-laden carriers, whereby only the VLHST design is expected to respond to the 

trigger and increase the permeability to DOX. After the incubation time, the cytotoxic effect of the 

two carriers was estimated using a luciferase viability assay. Figure 4b shows that upon addition 

of C the toxicity of the trigger-responsive carrier design (VLHST) is significantly increased with 

respect to the non-responsive VLT design which we assigned to the enhanced permeability of the 

vesicle promoted by the activation of the aDBB.  

In conclusion, in this study we demonstrate an approach to add release functionality to DNA-

coated vesicles. We provide evidence that the triggered closure of a DNA hairpin can influence 

the DNA coat and lipid membrane properties. This effect is likely to originate from the contraction 

of the hairpin following its self-hybridization. This strategy can be applied to triggered release 

purposes, which we evidence by the release of dye molecules and the enhanced cytotoxicity 

induced by the DOX-laden trigger-responsive coated liposomes. In the future, the presented 

method may inspire similar approaches with maximized control of the deformation of liposomes. 
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We believe that a system like this can have significant potential for nanotherapeutic applications 

as it allows molecules to be transported and released only when a trigger is present. This could be 

exploited for instance in the proximity of tumors, where the bioavailability of enclosed molecules 

can be increased by triggering the release through the interaction with pathophysiologically over-

expressed biomolecules and the carriers.3,42–46 

Method Section 

Folding of the Active DNA Building Block 

 The aDBB was folded in two steps. First the strands S and H were hybridized using a custom 

thermal protocol: in 1x PBS (pH = 7.4, or an aqueous solution 75 mM Na2HPO4, pH = 7.4 for the 

leakage measurements) 6 μM of the two oligonucleotides was suspended and heated to 85 °C for 

5 min, before cooling to room temperature at a rate of -0.5 °C per minute. Eventually, the samples 

were kept at 4 °C. In the second step, the S-H-duplex was incubated with L (separately annealed 

following our previously published protocol34) and the strand M. All oligonucleotides were 

purchased from Integrated DNA Technologies (IDT). The sequences of all involved 

oligonucleotide sequences can be reviewed in the Supporting Information, Table S1. 

Gel Electrophoresis 

Polyacrylamide gel-electrophoresis (PAGE) was performed to evaluate the folding success the 

DNA structures. The gels were prepared with 10% polyacrylamide in 11 mM MgCl2 buffered at 

pH = 8.3 with 0.5x TBE and run for 60 min at 100 V, immersed in a solution containing 11 mM 

MgCl2 buffered at pH = 8.3 with 0.5x TBE. 
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Fluorescence quenching measurements 

The efficacy of the toehold-mediated displacement reaction in removing the spacer strand was 

further verified by measuring fluorescence quenching when hybridizing with the displacement 

strand. To this end, C was labelled with an Iowa Black-quencher in the 5’-terminal and S with a 

Cy3 fluorophore in the 3’-terminal (purchased from IDT). The degree of fluorescence quenching 

upon addition of the displacement strand correlates with the amount of displaced spacer. The 

aDBB was studied at a concentration of 2 μM; the displacement strand was added at 2x excess (to 

increase the displacement success, following PAGE results). As a control, a non-hybridizing 

sequence CC was labelled with an Iowa Black-quencher and added under the same concentration 

conditions. As a further control, PBS was added at the same volume as CC to compare the 

stochastic quenching originating from the addition of CC to the fluorescence reduction originating 

from dilution. 

Single-Molecule FRET Measurements 

All oligonucleotides where purchases at a concentration of 100 μM from IDT in nuclease- and 

salt-free buffer for the single-molecule FRET measurements. For assembling of the aDBB, the 

oligonucleotides were mixed according to Table S2 in aliquots of 20 μL in a solution containing 

12.5 mM MgCl2 buffered with 10x TAE. The sample solution was subjected to the thermal 

protocol summarized above. Finally, the mixture was purified with a 4% 1x TBE agarose gel, 

which was run for 30 min at 160V in the same buffer. The slowest band (formed by the desired 

product) was cut out and the structure was extracted by squeezing the cut-out between cover slides. 

Prior to the single-molecule FRET measurements, the samples were diluted in 1x PBS to achieve 

a concentration of 100 pM. The displacement reaction was performed by adding D at a 
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concentration of 8 μM. The single-molecule FRET experiments by pulsed interleaved excitation 

(PIE)47 were carried out with a custom-built confocal microscope. To this end, the DNA was 

placed in custom-built 60 μL imaging chambers. The fluorescent donor molecules were excited by 

a pulsed diode laser (LDH-P- FA-530B, PicoQuant, Germany), at 532 nm operated with a 20 MHz 

repetition rate. The excitation intensity was adjusted to 30 μW. The fluorescent acceptor molecules 

were excited by a pulsed diode laser (LDH-D-C-640, PicoQuant), at 639 nm operated with a 20 

MHz repetition rate. The excitation intensity of the sample was adjusted to 30 μW. The laser pulses 

were separated by 25 ns by a multichannel picosecond diode laser driver (PDL 828 “Sepia II”, 

PicoQuant) with an oscillator module (SOM 828, PicoQuant). The lasers were coupled into a 

single mode fiber (P3-488PM-FC, Thorlabs, USA) to obtain a Gaussian beam profile and 

overlaying laser beams. Circular polarized light was obtained by a linear polarizer (LPVISE100-

A, Thorlabs) and a quarter-wave plate (AQWP05M- 600, Thorlabs). The laser light was guided 

into the epi-illuminated confocal microscope (Olympus IX71, Olympus, Japan) by dual-edge beam 

splitter (z532/633, AHF Analysentechnik AG, Germany) focused by an oil immersion objective 

(UPLSAPO100XO, NA 1.40, Olympus). The emitted fluorescence was collected through the 

objective and spatially filtered using a pinhole with 50 μm diameter and spectrally split into donor 

and acceptor channel by a single-edge dichroic mirror (640DCXR, AHF Analysentechnik AG). 

Fluorescence emission was filtered (donor: Brightline HC582/75 (AHF Analysentechnik AG) and 

RazorEdge LP 532 (Laser 2000, Germany); acceptor: Shortpass 750 (AHF Analysentechnik AG) 

and RazorEdge LP 647 (Laser 2000)) and focused on avalanche photodiodes (SPCM-AQRH-14-

TR, Excelitas Technoligies, USA). The detector outputs were recorded by a time-correlated single 

photon counting module (HydraHarp 400, PicoQuant). The setup was controlled by a commercial 

software package (SymPhoTime64, Picoquant). Data analysis was performed using the "PAM" 
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software package as described by Schrimpf et al.48 Single-molecule events were identified using a 

two channel APBS-algorithm with a threshold of 10 photons per time window of 500 μsec and a 

minimum photon count of 30. Gamma correction was performed using the protocol published by 

Hellenkamp et al.37 To remove donor or acceptor only events, the ALEX-2CDE filter was applied 

using an upper threshold of 15.49 

Fabrication of DNA-Liposome Hybrid Carriers 

LUVs were prepared by extrusion of a 2 mM 1-palmitoyl- 2-oleoyl-sn-glycero-3-

phosphocholine (POPC, purchased as powder from Sigma-Aldrich and stored dissolved in 

chloroform) lipid suspension. The lipids were suspended in 1x PBS, sonicated, and extruded 

through a 200 nm pore size membrane.  

The coated liposomes were prepared in aliquots of 100 μL. 50 μL of the LUVs were incubated 

with approximately 1 μM of the aDBB (pre-annealed with the cholesterol-labelled linker) 

overnight at room temperature (diluting the POPC lipids to 1.2 mM), rendering VLHS. 

Subsequently, the triskelion was added to obtain a final concentration of approximately 550 nM 

and incubated with VL at 4 °C for 50 min (VLHS pre-tempered). This led to a dilution of the linker 

to approximately 830 nM. Due to the addition of the DNA, the liposomes were effectively diluted 

by half.  

Characterization by Dynamic Light Scattering and ζ -Potential Measurements 

Hydrodynamic diameters and ζ-potentials were measured with a ZetaSizer Nano ZSP by 

Malvern Panalytics. All samples were measured in disposable cuvettes at a final lipid 
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concentration of 1 mM in PBS. To measure the ζ-potential, the samples were additionally diluted 

1:8 in PBS.  

Confocal Microscopy and FRAP Measurements 

Confocal microscopy was performed to assess the ability of the DNA structures to coat and 

deform the membranes of GUVs. Thus, GUVs (including 200:1 (w/w) NBD-labelled PC) were 

generated by electroformation, using the protocol described in our previous study.34 The linker 

was annealed with the active hairpin (pre-assembled with the spacer strand as described above) 

and subsequently added at a concentration of 200 nM and incubated for 2 hours. Finally, the 

triskelion was added at room temperature and incubated by another hour (2 μL of 6 μM T). The 

spacer strand was purchased with a 5’-ATTO550 modification from IDT. All three arms of the 

triskelion were labelled with an ATTO647N fluorophore at the 5’-terminal (purchased by IDT). 

Imaging was conducted using an Olympus F1200 microscope and a 60X oil immersion objective. 

The samples were illuminated with a 488 nm (NBD-labelled PC lipids to visualize the lipid 

membranes), 535 nm (ATTO550-labelled spacer), and 635 nm (ATTO647N-labelled triskelion) 

laser in line-sequential acquisition. The coated GUVs were treated with the displacement strand C 

for 3 hours to remove the spacer strand and allow the hairpin to close in order to achieve 

deformation of the vesicles. Before and after this displacement reaction, FRAP analysis was 

performed to evaluate the diffusion properties of the spacer and triskelion (as an indicator of the 

extend of DNA polymerization) by bleaching a 3 μm large area with the 535 nm and 635 nm lasers 

into the DNA coats. The hyperosmotic pressure was induced by performing the displacement 

reaction in a solution with an approximately 10% higher osmolarity (by adjusting the glucose 

concentration). 
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Calcein Release Experiments 

Evidence whether the DNA contraction triggered the release of molecules from the coated 

liposomes was provided by measuring the leakage of entrapped calcein. POPC lipid films were 

rehydrated (day 1) in a 60 mM calcein solution diluted in 75 mM Na2HPO4 (pH = 7.4). The LUVs 

were purified from free dye by gel filtration using Sephadex G50. Subsequently, the DNA was 

added as described in the section above, outlining the DLS experiments. The modified linker in 

combination with the active hairpin (VLHS) was added at day 1, as well as a version with the 

inactive hairpin, by omitting S (VLH). On day 2, the T1 triskelion was added to both VLHS and 

VLH and incubated for 1 hour at 4 °C. Finally, the displacement strand S was added to all samples 

(to account for dilution effects in the non-trigger-responsive samples), and the fluorescence 

intensity was recorded over time with a ClarioStar Plus plate reader (BMG Labtech, Germany) 

excitation wavelength 488 nm ± 15 nm, emission recorded at 515 nm ± 20 nm) at room 

temperature. As a control, Cc was added (altered sequence to prevent hybridization with the spacer 

strand S). At the end of the acquisition time, 1% of Triton X-100 was added to disrupt the vesicles 

and record the maximal achievable fluorescence intensity.  

Incubation of the DNA-Liposome Hybrid Carriers with HEK293T Cells 

The coated liposomes were fabricated to encapsulate doxorubicin (DOX) and incubated with 

HEK293T cells. DOX is a widely used anti-cancer drug and imposes toxicity towards cells by 

inducing DNA strand breaks.50,51 Coated liposomes were prepared by rehydrating POPC lipids in 

a solution of 5 mg/mL DOX in sterile 1x PBS. DOX was purchased as powder from Stratech 

Scientific, UK. The remaining fabrication steps followed the protocol summarized above for 
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calcein. 2500 cells were seeded per well of a 96 well plate and covered by 100 μL DMEM 

supplemented with 10% fetal bovine serum and glutamax. The cells were environmentally 

controlled at 37 °C and 5% CO2 incubated for three days to allow adherence and confluence. On 

the third day, the incubation with the coated liposomes was performed. Alongside the VLHST 

carriers, the previously established VLT (all prepared with entrapped DOX) was incubated. For 

each sample, three wells were prepared for incubation by adding 90 μL of sample solution per well 

for approximately 30 min. Afterwards, 5 μL of the displacement strand D, present in a 30 μM 

solution in 1x PBS were added. To three separate wells, 95 μL of 1x PBS only was added as a non-

toxic control. After an incubation time of approximately 3.5 hours, the supernatant was removed 

from each well and 30 μL of trypsin solution was added to detach the cells. After 2 min of 

trypsination, the reaction was blocked by adding 100 μL of fresh culture medium. The cells were 

then transferred into centrifugation tubes and spun down for 5 min at 300 rcf. Finally, the 

supernatant was removed and the cell pellets resuspended in 1x PBS and counted using an 

automated cell counter (Countess, Thermo Scientific, USA) to adjust for deviating cell numbers 

for the subsequent viability assay. To assess the viability of the HEK293T cells after the treatment, 

an ATP-sensitive luciferase bioluminescence assay was performed with CellTiter Glo (Promega, 

USA). To perform the assay, 100 μL of the cells in 1x PBS were pipetted into wells of a black 96-

well plate (Greiner, Austria) at an approximate concentration of 10000 per μL. 30 μL of the 

luciferase buffer were added to each well and incubated for 10 min at 37 °C. The luminescence 

emission was analyzed using a ClarioStar Plus plate reader. 
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FIGURES  

 

Figure 1. Assembly principle of the active DNA building block and the trigger-responsive DNA-

liposomal hybrid nanocarrier. (a) Trigger mechanism of the aDBB. The building block comprises 

a hairpin H and a pre-annealed, partially complementary sequence S. Mediated by a toehold at the 

5’-terminal of S, a complementary trigger strand C hybridizes with S, allowing H to close. This 

leads to a contraction of the two opposite ends. (b) The aDBB is first annealed with a cholesterol-

TEG-modified linker L (comprised of L2 and the cholesterol-TEG-labelled L1) and a connecting 

strand M, to render LHS. (c) LHS is incubated with large unilamellar POPC vesicles (V) and is 

anchored to the lipid membranes via the cholesterol-TEG modification (rendering VLHS). This 

allows for polymerization of a triskelion T which is added in the subsequent step on the surface of 

the vesicles and hybridizes with M and L1 (resulting in the final structure VLHST). 
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Figure 2. Fluorescence-based assessment of the contraction of the active DNA building block. (a) 

The addition of C to the aDBB in solution leads to a steep drop of the fluorescence intensity, 

indicating high quenching efficiencies of the fluorophore placed at the 3’-terminal of S by the 

quencher placed at the 5’-terminal of C. (b) The strong relative fluorescence decrease suggests 

successful displacement of S. A control sequence Cc leads to weak unspecific quenching, 

comparable to the effect caused by dilution with PBS (error bars represent the standard deviation, 

n = 3). (c) Single-molecule FRET measurements support the assumption that the displacement of 

S results in the contraction of the opposite ends of H due to self-hybridization. This is indicated 

by an increase of the FRET efficiency between a donor-acceptor pair placed at the two opposite 

ends of H. 
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Figure 3. Characterization of DNA-coated GUVs by confocal microscopy and FRAP. (a) 

Representative FRAP traces recorded on GUVs before the addition of C. S was labelled with 

ATTO550 (pink data), and T with ATTO647N (blue data). Both species exhibit similar 

fluorescence recovery dynamics (described by the recovered fluorescence intensities and recovery 

halftimes obtained from exponential fitting curves, n = 8). (b) After the addition of C, the 

fluorescence recovery kinetics of S and T split into two populations: S is characterized by increased 

mobility, while T remains mostly static: the recovered relative fluorescence intensity (c) and the 

recovery halftime (d) of S is slightly higher. By contrast, a drop of the levels of recovered 

fluorescence (e) and slow recovery kinetics (f) can be observed for T (box plots show the upper 

and lower quartiles, as well as the mean, n = 8). (g) In the presence of a hyperosmotic pressure, 

visible deformation and tubulation (see arrows) of the coated GUVs could be observed after the 

displacement of S had been performed (cyan: NBD-labelled PC lipids, red: ATTO647N-labelled 

T). Scale bars: 10 μm. 
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Figure 4. Triggered release of calcein and doxorubicin. (a) The addition of C to VLHST induces 

elevated permeability of the carriers to entrapped calcein (VLHST + C), close to uncoated POPC 

vesicles (V + C), whereas an inactive version (VLT + C) retains calcein to a larger degree. In 

comparison to VLHST + C, the calcein release was statistically significantly lower (p = 0.0060, df 

= 4, t = 5.3227), similar to the addition of a non-hybridizing Cc to VLHST (p = 0.0118, df = 4, t = 

4.3926). (b) DOX is released from the active carrier upon addition of C (VLHST + C), provoking 

cytotoxicity in a HEK293T cell culture. In comparison to VLT, the cytotoxic response is 

statistically significantly increased (p = 0.0358, df = 4, t = 3.1106). Error bars represent the 

standard deviation (n = 3), the asterisk highlights statistically significant results (p < 0.05). 
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