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Abstract 

Multivariate chemical reaction optimization involving catalytic systems is a non-trivial task 

due to the high number of tuneable parameters and discrete choices. Closed-loop 

optimization featuring active Machine Learning (ML) represents a powerful strategy for 

automating reaction optimization. However, the translation of chemical reaction conditions 

into a machine-readable format comes with the challenge of finding highly informative 

features which accurately capture the factors for reaction success and allow the model to 

learn efficiently. Herein, we compare the efficacy of different calculated chemical descriptors 

for a high throughput generated dataset to determine the impact on a supervised ML model 

when predicting reaction yield. Then, the effect of featurization and size of the initial dataset 

within a closed-loop reaction optimization was examined. Finally, the balance between 

descriptor complexity and dataset size was considered. Ultimately, tailored descriptors did 

not outperform simple generic representations, however, a larger initial dataset accelerated 

reaction optimization. 
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Introduction 

Identifying the optimal reaction conditions to enact a specific transformation is a major 

challenge for chemists, particularly in the field of small molecule drug synthesis and natural 

product synthesis.1, 2 The field of laboratory automation allows for the rapid and systematic 

generation of high-quality data, which, when used in combination with ML-directed self-

optimization algorithms can become a powerful tool for research.3-8 In order to apply such 

tools, a chemical reaction must be represented in a machine-readable format. This 

representation must be composed of descriptors that are simple and relevant enough to 

avoid the introduction of undesired noise, yet complex-enough to account for properties that 

impact reaction success such as sterics and electronics.  

 

Unlike the large datasets used for ML in other disciplines (e.g., image recognition), synthetic 

chemistry datasets are often extremely small and, to compensate, researchers often develop 

bespoke descriptors, which are based on expert knowledge such as mechanistic 

understanding or quantum chemical calculations.9-12 However, it is possible that the 

descriptors generated contain little relevant information and are simply perceived as 

distracting noise by the ML model. In this publication, we aim to investigate the relationship 

between descriptor complexity and ML model performance when predicting the yield of 

chemical reactions. Furthermore, we aim to explore how the descriptor complexity impacts 

closed-loop optimization, a strategy that may help to guide synthetic chemists towards 

optimal reaction conditions. 

 

Whilst it can be challenging for humans to identify complex relationships in large datasets, 

ML relies on building statistical models that adjust to the given input data and has recently 

proven to be a powerful tool for the successful identification of nuanced patterns in complex 

data.13-17 Trained ML models can be used to make predictions given inputs that lie within the 

defined parameters of the training dataset, referred to as interpolative tasks. This includes 

new combinations of already known components, such as catalysts/ligands/additives. In 

contrast, extrapolative tasks, which are represented by predictions of inputs which are not 
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represented in the training data are challenging, with the predictive power of a ML model 

decreasing as structural differences between the training and test data increase. These 

extrapolative tasks require the ML model to learn about the fundamental chemical properties 

and, as such, the inputs are generally molecular descriptors that are based on fundamental 

molecular properties such as atomic distances, orbital energies or charge distributions.18 

 

The application of ML as a decision-making tool during reaction optimization represents an 

effective combination as it accelerates experimental workflows and allows for rapid gains in 

understanding. Active ML-driven closed-loop optimization uses an initial dataset to make 

predictions about yet unseen conditions and these predictions can inform decisions about the 

subsequent experiments. For example, the experiments predicted to deliver the highest 

yields or the greatest improvement in model performance can be prioritized and conducted. 

The data gained from running this experiment can be used to re-train the ML model and new 

predictions are made. This iterative process continues until the desired objective (e.g., more 

accurate predictions, increased yield) is fulfilled. ML-based optimizers have the potential to 

increase the efficiency in which chemical space is navigated, removing operator bias and 

ultimately reducing the total number of experiments required, thus reducing waste 

significantly.7, 19-21 

 

Previous reports vary in their conclusions on whether the implementation of chemical 

descriptors, rather than generic one-hot encoding (OHE) representations, truly boosted the 

predictive performance of their ML models.19, 22, 23 Pd-catalyzed C(sp3)–H activation is a 

powerful reaction manifold that enables the facile introduction of functional complexity in 

small molecules, in addition to the late-stage functionalization of complex molecules like 

trimipramine (XX), a tricyclic antidepressant, as recently demonstrated by one of our 

groups.24 Hence we chose to explore the parameterization and featurization of the newly 

developed tertiary amine directed C(sp3)–H bond activation with a HTE-generated dataset, 

comparing tailored descriptors, based on in silico studies, to understand the influence of 

descriptor complexity on supervised ML prediction and closed-loop optimization. 

 

Traditional round-bottom flask chemistry is still the major strategy for reaction optimization; 

however, it is limited by the capacity of a human experimentalist and experimental set-up can 
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vary between chemists, unintentionally introducing sources of error. Hence, we chose to 

employ high-throughput experimentation (HTE) to conduct experimental arrays in parallel, 

increasing the rate of data generation and improving reproducibility. To the best of our 

knowledge, this is the first application of this chemical transformation into a HTE setting. 

 

 
Scheme 1 General conditions for catalytic C(sp3)–H bond activation of tertiary alkylamines. 

Original conditions: Pd(OAc)2 (10 mol%), (L)-tert-Leucine (25 mol%), ArB(OH)2 (1.0 equiv). 

The reaction contains three discrete reaction parameters which were varied in tandem: 

mono-N-protected amino acid (MPAA) ligand, the palladium pre-catalyst, and the aryl 

boronate (Scheme 1). All combinations of 31 ligands (plus one control), three pre-catalysts, 

and two boronates results in 186 unique conditions that were each run in quadruplicate on a 

125 nmol scale using nanoscale HTE, outliers were eliminated, and the repeats averaged to 

ensure reproducibility. For the active learning studies, this dataset would serve as the 

navigable chemical space that experiments would be simulated within. 

 

Materials and Methods 

Molecular Parameterization 

Developing machine-readable representations that can capture the correlation between 

structure and reactivity represents a major challenge within computational chemistry.30 A key 

consideration when choosing a parameterization method is that, depending on the ML model 

used, the sparsity of input features (i.e., the location and number of ones and zeros in a bit 

vector) may influence modelling performance by undermining relevant information within 

the input vector. 
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Within the obtained dataset a varied structure-reactivity relationship was demonstrated by 

the ligands, with >90% of the variation in yield is attributable to ligand choice, and their role 

as knock-out criteria for the reaction, we focussed primarily on parameterizing them whilst 

the boronates and pre-catalysts were encoded by means of OHE and Morgan 2 fingerprints 

only.  

 

MPAA ligands (Figure 1), first popularized by Yu and co-workers in 2008,25 are uniquely 

favoured ligands for Pd-catalyzed C–H activation as both the carboxylate and amide motifs 

have relatively weak coordination strengths when compared to phosphine or NHC-type 

ligands, and both are able to bind with Pd as L-type (neutral) and X-type (anionic) ligands 

enabling to dynamically adjust between coordination modes throughout the catalytic cycle.26 

Diversity within this ligand-set comes from variation of the α-substituent, and with the 

acetamide protecting group, enabling a wide range of steric and electronic profiles to be 

generated. The subtle impact these modifications may have, is somewhat unintuitive and as 

such, it is thought that ML may be able to aid in predicting reaction outcomes when these 

ligands are present. 

 

Although we concede that the conformation of the ligand when alone and when in the 

catalytic complex differs, we aimed to keep our approach computationally inexpensive and 

attempted to derive descriptors from the isolated molecules (instead of the ligand-metal 

complex). We chose three levels of chemical parameterization complexity which contained 

sequentially more chemical information at increased computing time. Initially, one-hot 

encoding (OHE) was used. This computationally simplistic method merely details the presence 

or absence of certain reagents, whilst encoding no chemical information. For the inclusion of 

structural information, Morgan fingerprints (radius of 2, see SI for discussion) were chosen to 

encode the molecular fragments that were present in a given reaction mixture.27 These bit 

vectors contain information on atom types, neighbouring connectivity relationships and bond 

types. Finally, steric and electronic descriptors were calculated for the set of ligands using 

density functional theory (DFT) from geometry optimized structures (B3LYP functional and 6-

31G(d) basis set, see SI for full details). Within this investigation different sub-sets of 

descriptors were used and combined to develop hybrid molecular representations, containing 

information of the fingerprints and DFT descriptors. 
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As discussed previously, there are two main positions of diversity within MPAA ligands: the 

α-carbon and the acetamide protecting group. Hence, to separate their influence on reaction 

outcome, both positions were parameterized separately for each ligand rather than using a 

single descriptor for the entire molecule. As the ligand’s steric profile was expected to 

influence reaction yield greatly, two steric descriptors were introduced, Sterimol and 

percentage buried volume (%VBur)28. Sterimol descriptors29 quantify steric demands along 

different principal axes, making them well-suited to describing the steric effects of 

unsymmetrical substituents. The percentage buried volume is a descriptor that is traditionally 

used for catalyst-ligand complexes and describes the percentage of the volume of a sphere 

that is occupied by a given substituent. We used the a-carbon/[N-residue] as centre of our 

sphere and the calculation was performed considering only the variable residue extending 

from this position. In addition to this, a number of electronic descriptors were calculated for 

the ligand molecules as the fine-tuned electronics can impact Lewis basicity of the two binding 

atoms (N and O) and the aptitude to engage in the key mechanistic step (concerted 

metalation deprotonation, CMD). To capture the electron density distribution, we calculated 

the HOMO/LUMO energies and conducted a NBO analysis (Natural Bond Orbital)30 and a 

CHELPG analysis (CHarges from ELectrostatic Potentials using a Grid-based method). 31 
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Figure 1. An overview of common data representation methods for organic molecules (top) 

and the diverse ligand space used for screening within this study (bottom). Ligand 8 is not 

represented in the table since this was initially the blank – for convenience the blank was 

changed as L0. 

Each calculated descriptor was used as a stand-alone input and was also combined with other 

inputs to develop hybrid features, aiming to deliver a streamlined set of input features which 

allow for a detailed description of the reaction conditions. A feature importance assessment 

based on Gini importance (or mean decrease in impurity, MDI) was conducted and indicated 

high importance for the ligand fingerprints and the DFT descriptors (see SI for more details). 

• Tunes N–H acidity and N atom donor strength
• Serves as internal base

• Anchors ligand to catalyst

• Second metal binding site 
• L- and X-type

• Tunes bite angle of ligand
• Point of stereoinduction in asymmetric reactions

R N
H

O

OH

O

R’

0100010000000000000000000000000000001
3 pre-catalysts 32 ligands 2 boronates

C2

CN
N

H
H

O

O

O

O

O
N H

L3 B2

(ii) Low Complexity: Molecular Fingerprints

(i) Simplest: One Hot Encoding

(iii) High Complexity: DFT descriptors

vs

• CHELPG analysis
• NBO analysis
• %Vol. Buried
• Sterimol descriptors

MPAA ligand substructure

A B C D

AcHN

H

CO2H

H

AcHN

Me

CO2H

Me

AcHN CO2H

Ph

AcHN CO2H

PhPh

AcHN CO2H AcHN CO2H

Ph

AcHN CO2H

OBn

No Ligand

L0 L1 L2 L3 L4 L5 L6 L7

AcHN

Me

CO2H AcHN CO2H

Me

Me

N
Ac

CO2H
AcHN CO2H

L9 L10 L11 L12

AcHN CO2H AcHN CO2H

MeMe
Me

AcHN
CO2H

AcHN
CO2H

L13 L14 L15 L16

N
H

CO2H

Ph

Et

O

N
H

CO2H

Ph

i-Bu

O

N
H

CO2H

Ph

i-Pr

O

N
H

CO2Hi-Bu

O

OBn

L17 L18 L19 L20

N
H

CO2H

Ph
O

Me

t-Bu

N
H

CO2H

Ph
O

t-Bu

N
H

t-Bu

CO2H

O

t-Bu
N
H

CO2H

Ph
O

Cy

L21 L22

L23 L24

N
H

CO2H

Ph
O

Cy
N
H

CO2H

Ph
O

2 N
H

CO2H

Ph

Bn

O N CO2H

Ph
O

O

L25 L26 L27 L28

AcHN

Ph

O

NHTs AcHN

Ph

O

O

NO2

BocHN

Ph

O

O

NO2

BocHN

Ph

O

NHAc

L29 L30 L31 L32

Applied Featurization Methods



 8 

For more detailed information about different parameterization techniques, we refer the 

reader to these papers on molecular fingerprints20, 32, 33, and on DFT-based descriptors. 7, 9, 11, 

34 

 

Machine Learning Surrogate Models 

After feature engineering, we wanted to compare different ML models and assess their 

performance given a predictive task, mapping reaction conditions to yield and make 

predictions for unseen conditions. Different data structures and featurization methods can 

deliver varying performance with different ML models, something which cannot be predicted 

a priori, meaning empirical evaluation is required. 

 

To evaluate the performance of a ML model, the dataset is partitioned into training and 

testing data. A model is trained (using the training data), before being given the inputs for 

the, previously unseen, testing data and asked to make predictions on the outputs. The 

difference between the predictions and the actual values is given with the root mean squared 

error (RMSE), a common performance metric. To partition the dataset into training and test 

sets, we applied two different strategies, a random split, and a designed split. When data for 

the training and testing partitions are chosen at random it is very likely that the training data 

contains information that is well distributed amongst the dataset and, as such, is in part 

representative of the test data. Thus, a random split may be considered as an interpolative 

prediction task. To simulate out-of-sample prediction the training/test partitions can be 

chosen with the intention of neglecting a specific part of the dataset, for example by excluding 

one ligand from the training data via a leave-one group out (LOGO) cross validation (CV). After 

the model has been trained, it is given the testing data that was poorly represented in the 

training data and attempts to make predictions. In this way a train/test partition can be 

designed so as to simulate an extrapolative prediction of unseen data. To obtain more general 

results, many different train-test partitions are used and an average RMSE of the predictions 

based on the test dataset is calculated and used as a performance metric. 
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Reaction Optimization 

Within this study we applied closed-loop optimization using simulated experiments and 

assessed the effect of different surrogate models and data representations. In terms of 

sampling strategy, we conducted both exploitative search (the condition with the highest 

predicted yield is chosen for experimental evaluation) and Bayesian optimization (BO) based 

on expected improvement (EI) acquisition function (the condition with the highest expected 

improvement for yield was chosen for evaluation – incorporating the uncertainty of the 

prediction). For more detailed information on EI, BO and sampling strategies, refer to the SI 

and published literature. 19, 35, 36 

 

Results and Discussion 

Preliminary Studies: Supervised ML Modelling Towards Yield Prediction 

Random Split – Interpolation 

Four different commonly used ML models – linear regression (baseline), random forest (RF)37, 

Gaussian processes (GP),38 and artificial neural networks (ANN),39 were compared for a 

regression task and the effect of the input features on model performance was assessed with 

the goal of determining whether we could boost model performance with hand-crafted DFT 

based descriptors. The investigation began with simple OHE where the model is not given any 

chemical information. Subsequently, more features such as fingerprints/DFT descriptors were 

added to evaluate how a richer source of chemical information influences the model 

performance. Hybrid features were also generated, consisting of combinations of steric 

descriptors, electronic descriptors, OHE and principal components of Morgan 2 fingerprints. 

To compare the performance of different ML models on the given dataset within an 

interpolative task, the existing data was split randomly into a training (80%) and test (20%) 

set and the evaluation was repeated six times to generate mean and standard deviation 

values. This was conducted for each data representation and the mean and standard 

deviation values were calculated (Figure 2a).  
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Figure 2. Supervised ML of different surrogate models for yield prediction using random split 

of training and test data (a) A comparison of the used data representations (see table) and 

models for modelling the initial dataset. Error bars represent the standard deviation (b) Parity 

plot of the RF regression using feature set 14. Abbreviations: RF stands for random forest, GP 

stands for Gaussian process, ANN stands for artificial neural network. 

More complex features (that were specifically generated using prior knowledge of the 

reaction) such as DFT and fingerprint-derived descriptors delivered only marginal increases in 

performance compared to OHE which represents the baseline. RF and GP demonstrated 

almost equal prediction performance, regardless of which features were used. OHE along 

with a linear model delivered an RMSE of 9.6% ± 0.7% (standard deviation) yield. The best 

performance was achieved with feature set 2 and 14 using RF, giving an RMSE of 7.6% ± 1.2% 

and 7.2% ± 1.3% respectively. As visible in Figure 2, feature set 14 is a combined input of steric 

and electronic ligand DFT descriptors (Sterimol, % buried volume, NBO, CHELPG), principal 

components of the Morgan 2 fingerprints, OHE and existence/absence of a proton on the 

amide nitrogen. RMSE is reported with respect to yield - between 0 and 1. Figure 2a shows 
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that different features influence the performance of ANN and the linear model significantly 

and that their overall performance is worse than RF or GP, which is likely due to the small size 

of the dataset or choice of the features. Figure 2b illustrates a parity plot of RF regression 

using feature set 14, illustrating the fitting of the training and test data. 

 

The estimated statistical uncertainty of the datapoints is 2.8%, averaged over all 186 

conditions (see SI). This serves as a lower limit to the RMSE in the predictions of any model. 

It may seem surprising that models with more informative hybrid features did not strongly 

outperform those with OHE. However, since the latter already allows for a qualitatively good 

performance, there is little room for improvement when using more descriptive features. As 

discussed, with a random partition for the training/testing data it is likely that every ligand 

will be represented in the training data and, as such, it is likely that the good performance of 

OHE results from this ‘data leakage’ since the other two parameters (boronate, pre-catalyst) 

do not influence the outcome significantly. The magnitude of this effect would likely be 

smaller if the other two parameters had a greater influence on the reaction outcome. 

 

Out-of-sample Prediction – Extrapolation 

Aiming to make predictions for reaction conditions that are not as well represented by the 

training data represents a more significant challenge. To simulate these extrapolative-type 

tasks, all data points are assigned a group number according to the ligand used and data 

partitioning was restricted so that all datapoints of the same group can be either in the test 

or the train set. Thus, the task can be considered as an extrapolation into untrained chemical 

space. For automating the process of model evaluation, LOGO CV was applied. The ligand was 

chosen as the variable parameter. Then, the dataset is split up into 31 sections (31 ligands) 

and the models are trained on all sections except for the single held-out section on which the 

models are tested.  

 

A graphical representation is shown in Figure 3a, and a more detailed summary of LoGo CV is 

presented in the SI. After the generation of test RMSE for all data sections, the mean and 

standard deviation can be calculated and used as indicators for model performance. Figure 

3b illustrates the comparison of different surrogate models and different data 

representations. Linear regression failed to conduct extrapolative predictions using features 
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containing bit vectors as input and thus was dropped. Expanding the scope of the out-of-

sample prediction, we chose to introduce two additional commonly used surrogate models: 

support vector regression (SVR)40 and adaptive boosting (AdaBoost)41 to experimentally test 

their ability to fit the chemical reaction data.  

 
Figure 3. Leave-one-group-out cross validation (CV) (a) A conceptual illustration of LoGo CV. 

Different shades of blue/brown/green represent datapoints within the same group. For each 

iteration a different colour is circled which indicates that these datapoints are used as test 

data for model evaluation and the other remaining datapoints are used as training data (b) 

LoGo CV results of different ML models with varying input features (for feature description see 

Figure 2). Error bars represent the standard deviation. 

Comparison of the different models suggests that RF delivered the best overall performance 

(using Morgan 2 fingerprints as input), achieving the lowest average RMSE of 22.7% ± 18.8% 

(standard deviation). On the other hand, GP seems to deliver the worst performance for out-

of-sample predictions across most of the input features. Feature set 2, consisting of 

exclusively Morgan 2 fingerprints, delivered the best prediction performance across all 

models. Additionally, even though the hybrid features (feature sets 11-14) include relevant 

principal components of the fingerprints and additional steric/electronic information from 

DFT calculations, they did not outperform the feature set 2. Interestingly, the performance of 

many of the feature sets was similar to the performance of OHE, which serves as a control 

(no chemical information), as can be seen in Figure 3a in which all of the error bars of feature 
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sets 1-14 overlap. Thus, it can be concluded that the additional time and expertise required 

to generate high-fidelity DFT descriptors, based on mechanistic understanding, is unjustified 

when the improvement in performance of fingerprints alone is only modest. 

 

Overall, these experiments demonstrate promising predictions with interpolative modelling 

tasks with the lowest RMSE of 7.2% yield, however extrapolative out-of-sample predictions 

still represents a significant challenge with the lowest RMSE of 25% yield (or 50% of MAE). 

The latter results confirm and emphasize the lack of predictive power of ML for reaction 

condition prediction that are not directly represented within the training data, in low data 

regimes which are of particular relevance to bench chemists. Within the LoGo CV experiment, 

even if a diverse chemical space is captured in the training data, the average prediction 

performance for the held-out test data was limited. The preliminary assessment of these 

investigation allows for benchmarking of combinations of input representations and 

surrogate models by showing the most appropriate strategy for similar sized datasets 

generated by the chemical community. We believe that the performance of extrapolative 

predictions may be better with larger datasets and, also, may vary depending on the reaction 

mechanism itself since this affects the learning of structure-reactivity relations ships by ML 

models. 

 

Closed-loop Active Machine Learning 

Active ML represents a strategy for continuous model optimization through the iterative 

improvement of the surrogate model by repeatedly retraining on new experimental data as 

it is collected.42 An objective, such as yield, can be rapidly maximized through the efficient 

exploration of chemical space, with experimental prioritization being guided by the surrogate 

model. Based on our preliminary modelling using different data representations/surrogate 

models, we aimed to assess how well these surrogate models perform within a closed-loop 

optimization framework. To allow for a fair comparison, the initial dataset was shuffled, a 

random batch was used for model initialization and the remaining data was stored as 

“Lookup-table” (Figure 4). The initial batch size was varied - if not stated otherwise the models 

were initialized with 15 datapoints (7.5% of the dataset). 
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Figure 4. Schematic of the active learning workflow and pseudocode of the optimization 

loop. To allow for generalizability all closed-loop experiments were conducted 10 times and 

the average was calculated. 

Once the models were trained on the initialization data, yield predictions were generated 

using the relevant reaction feature-sets. The datapoint (or a batch of datapoints) with the 

highest yield predictions were selected for “experimental” evaluation and the true yield was 

transferred from the lookup table (serving as a simulated experiment) to the training dataset. 

The models are then retrained, and this workflow is repeated until the global optimum 

reaction yield was identified. We chose to use feature set 14 (unless stated otherwise), for all 

experiments due to the highest information content. To allow for an easy and fair 

performance comparison, the initialization was kept the same across all surrogate models. All 

learning curves shown within this section represent averaged learning trajectories from 10 

individual experiments – for insights into standard deviation of those 10 single experiments 

please refer to SI.  

 

Comparison of Different Surrogate Models for Active Learning 

To assess the different surrogate model performances within this iterative optimization 

strategy and identify their ability to operate under an initial low data regime, we compared 5 

different models: RF, ANN, GP, SVR and AdaBoost. In Figure 5a the yield distribution of the 

dataset is shown, demonstrating that data is well distributed between 0% and 100% yield, 

despite of a peak at 0% yield. The learning curves of the single surrogate models within the 

closed-loop optimization (Figure 5b), in which the maximum yield observed in each active 

learning iteration is presented, illustrates the different performances of the models when 
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finding the optimum conditions. The experiments were conducted using sequential sampling 

such that one datapoint was sampled during each iteration using an exploitative acquisition 

function. 

 

Overall, whilst the rate of improvement in the highest observed yields in the earlier iterations 

did not significantly vary between the different ML models, the required number of iterations 

to find the best-performing conditions (=99.9% yield) highlighted the differences between the 

models. Although the ANN model started initially with the lowest yield, the model achieved 

the optimal conditions within approximately 60 iterations, the fastest of all models. Tree 

based models such as AdaBoost and RF required approximately 100 iterations and GP/SVR 

achieved the ideal conditions within 110 iterations.  

 

We hypothesized that using a combination of active surrogate models within the same 

optimization strategy may increase performance compared to single models. In detail, we 

based our investigation on the fact that the current best model (ANN) typically does not 

perform well at the beginning of the optimization, when very little data is available. Random 

forest, however, seems to perform better under a low data regime. Within the RF-ANN hybrid 

model, the rule was set that during the first 10 iterations the decision-making was conducted 

based on the predictions of the RF and then the ANN continued. Unexpectedly, the 

performance of the hybrid model did not outperform ANN. Nonetheless, it was the second-

best model and achieved the optimal conditions within 70 iterations. 
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Figure 5. Variation of surrogate models for active learning (a) Distribution of reaction yield 

over the training data set (b) Comparison of different surrogate models within the active 

learning loop using feature set 14. 

The Effect of Input Features on Active Learning 

Intuitively, adding more descriptive input features to a model, such as relevant structural and 

electronic information, should allow for better modelling and hence better prediction 

performance, as observed during the preliminary studies for interpolative predicting reaction 

yields. The effect of adding chemical information within active learning was subsequently 

studied to observe how ML models perform in initial low data regimes. Four different data 

representations were compared: OHE, Morgan 2 fingerprints, dimensionality reduced 

Morgan 2 fingerprints (the first 30 principal components generated after principal component 

analysis (PCA) of each of the three varying reagents, giving 90 principal components in total) 

and the full feature set 14 (including OHE, PCA of fingerprints and all DFT features).  

 

It was observed that OHE clearly outperformed the other representations after 10 iterations 

were achieved and reached the optimal set of conditions in the fewest number of iterations 

(Figure 6). In a similar manner, recent results by Shields et al. observed that OHE delivers 

approximately equal performance compared to hand-crafted DFT descriptors during Bayesian 

optimization of organic reaction conditions.19 Initially, we assumed that the superiority of 

OHE performance could be due to the full factorial chemical space since all possible 

parameter combinations could be evaluated. Whilst this effect would benefit all 

representations, we hypothesized that the simplicity of OHE along with a full factorial space 

could be more beneficial when compared to the effect on other input features (e.g. 
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fingerprints) that are far more complex and might represent a challenge for the model to 

detect patterns in the data. To test this assumption, we dropped a random selection of the 

datapoints of the entire dataset (25%), therefore no longer representing a full factorial 

chemical space. However, we still observed that OHE outperformed the full feature set (see 

SI). Another reason for the good performance of OHE might be that during each optimization 

experiment the model receive datapoints of the same ligand multiple times (in combination 

with a different pre-catalyst or boronate). As discussed previously, the impact of the ligand is 

significantly higher to reaction outcome, compared to the other two parameters. As a result, 

it is likely that OHE captures the variability between ligands and therefore can efficiently 

identify high yielding reaction conditions. 

 
Figure 6. The effect of different input features on active learning using RF surrogate model. 

FP: Fingerprints, PC: Principal Component. 

All previous experiments were conducted in a sequential design - during each iteration of the 

active ML algorithm, one decision was made and one single datapoint was sampled from the 

lookup table. In a real world setting this means that after each single experiment the yield is 

evaluated and then added to the ML training data. However, typically organic chemists 

conduct multiple experiments in parallel to accelerate the process of finding optimal 

conditions. Therefore, batch-sequential sampling within active learning represents a more 

realistic approach and was also investigated. The ideal batch size is a trade-off: a large batch 

size typically brings benefits to experimental workflows as HTE equipment can be applied, for 

example screening 96 conditions at a time. If the experimenter gains more useful data per 

HTE run, this will often lead to minimizing the total number of HTE runs and be less time 

intensive. However, large batch sizes at the beginning of the active learning strategy could 
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lead to the acquisition of chemically redundant data as the active learning model may make 

low informative predictions due to the initially limited number of datapoints used for training. 

Conversely, a smaller batch size allows the training data of the ML model to be updated more 

frequently and thus enables better quality predictions. As shown in detail in the SI (Figure 

S18), the batch size did not significantly vary model performance (most learning trajectories 

of different batch sizes are overlapping) and thus we propose they should be chosen in 

accordance with experimental workflows. 

 

To conclude, we believe that prospective research in this area should consider the required 

complexity of molecular parameterization, due to increased computational time and 

expense. It could be possible that the low data regime in combination with complex features 

does not allow the models to efficiently learn from the data and likely over-complicates the 

task. Moreover, we conclude that instead of over-allocating resources on feature generation, 

it may be more strategic and resourceful to increase experimental data generation 

capabilities. 

 

The Impact of Initialization of the Closed-Loop Optimization 

The success of closed-loop optimization algorithms strongly depends on the information 

included in the initialization data on which the initial model is trained. To assess the effect of 

the data used for initialization, we conducted a case study where the optimization is initialized 

using: (i) a broader set of reaction conditions from multiple ligands, and (ii) a restricted 

dataset that contains only reaction information from three ligands. Generally, ML models 

deliver better prediction for areas in the chemical space that are close to or within the training 

data. In Figure 7a, two different extreme situations were compared – initializing the active 

learning either with local data (the dataset contains datapoints of only three ligands) or with 

random data (on average the dataset contains information of 7 ligands). By restricting the 

dataset we intentionally introduce biases (by showing the model only a very restricted part 

of the chemical space) in order to assess the impact on the closed-loop optimization. It is 

apparent that even though the local initialization possesses restricted knowledge, within ten 

iterations the model performance is approximately equal to an initialization dataset which is 

more diverse. These findings may be very beneficial for experimental chemists it proves that 
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restricted initialization data can rapidly catch up with diverse initialization data when 

predicting experimental yields. 

 

Another important factor for initializing active learning is the size of the initial training data. 

The choice of the size of the initial dataset represents a trade-off between showing the model 

enough information so that initial predictions are useful and keeping the dataset sufficiently 

small to limit the amount of experimental time and resources used. We chose four different 

sizes of initialization with five, 10, 15 and 20 random datapoints. As shown in Figure 7b, the 

results indicate that larger sized initial datasets allow the model to predict conditions that 

give >99% yield in fewer iterations. Using 20 random datapoints for initializations allowed 

finding the global optimum on average within 40 iterations while using only five initial 

datapoints required up to 100 iterations. In total 186 datapoints are available. Whilst the 

choice of the adequate size of the initialization dataset might vary on the parameter space of 

the dataset as well as the size and complexity of the prediction space, we assume that a 

minimum of 15-20 datapoints should be chosen – here this choice allowed for identification 

of optimal conditions in approximately 45 iterations. Overall, we suspect that the smaller 

sized initialization datasets are detrimental as biases may get introduced from the beginning, 

particularly since a greedy search (no exploration) was used. This leads to negative impacts 

when the active ML is conducting mostly extrapolative predictions (see the low performance 

of extrapolation described previously). In the case of the small (e.g., five datapoints) 

initialization datasets, this effect was severe for the learning curves. However, being 

restricted to a local initialization dataset (data from three ligands) led to very steep initial 

learning curves and a performance similar to the initialization with a more diverse dataset, 

thus demonstrating the power of successful navigation through the chemical space by active 

ML driven closed-loop optimization. 

 

Based on the previous findings on the size of the initial dataset and the different chemical 

representations, a direct comparison was conducted to assess the performance between 

complexity of parametrization and size of the initial dataset. Initialization datasets of 10, 15 

and 20 datapoints were chosen along with OHE, Morgan 2 fingerprints and hybrid full feature 

representation (feature set 14, see Figure 2 for more details). When using different sizes of 

initialization dataset the remaining data limits the number of possible active learning 
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iterations. To allow for easy comparison of different sized initialization datasets, the data was 

normalized and, as such, at every location in the x-axis the different models have access to 

the same number of datapoints and so the effect of initialization dataset is represented. 

 

By comparing extremes such as having no chemical information, but a larger initialization set 

(Figure 7c, OHE 20) to using a smaller fully parametrized initialization dataset (Full features 

10), the effects of parametrization complexity and initialization data size could be more 

clearly identified. Within the case study, the results clearly indicated that having a dataset 

parameterized to higher complexity only delivers acceptable learning curves when the size of 

the initial dataset is sufficiently large. When using 10 datapoints for initialization, the OHE 

dataset clearly outperformed the fully parameterized dataset, however, when using 20 

datapoints for initialization we found less of a difference in performance. When comparing 

size of the initial dataset against complexity of parameterization, we found that OHE 20 

reached the maximum yield within 40 experiments whereas initialization with only 10 

datapoints with full features required more than 110 experiments - almost more than three 

times more experiments where required. Based on these insights, we believe that it is 

relevant to consider the trade-off between feature complexity and size of the dataset (i.e., 

number of experiments) when conducting reaction optimization with HTE and active ML. A 

more detailed case study can be found in the SI. 

 
Figure 7. Comparison of different learning trajectories by variation of initialization and 

chemical representation (a) Random initialization vs local initialization using RF and feature 

set 14. (b) Different sizes of the initialization dataset (c) Variation of complexity of 

parameterization and size of the initial dataset. 
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The Effect of Incorporating an Uncertainty Metric for Active Learning: Exploitative Search vs. 

Expected Improvement 

So far, all presented active learning strategies operated under a pure exploitation regime. 

While it is not feasible to directly identify the prediction uncertainty for all surrogate models, 

which is required for exploration, GP models were chosen due to their intrinsic ability to 

deliver variance for each prediction. To allow for a controlled trade-off between exploitation 

and exploration, different acquisition functions can be applied for sampling of subsequent 

datapoints. Within this comparison, the expected improvement (EI) acquisition function was 

chosen.38 Figure 8a illustrates a comparison between exploitation and EI, starting with the 

same initialization. As shown, the differences between EI and exploitation become more 

obvious after the initial rise of the learning trajectory, with pure exploitation discovering the 

global optimum after more iterations. Figure 8b-c provides insights into how the active 

learning algorithms explore the chemical space, where the graphs illustrate the true yield of 

every sampled condition, i.e., the experimental yield of a selected input parameter selection. 

In an ideal case, the graph should indicate the highest values in the beginning and the lowest 

values at the end, thus indicating that the algorithm picks the condition which will deliver a 

high yield during the first iterations. Of course, this is unrealistic as the model requires a 

certain number of iterations to screen the chemical space and understand in which region the 

maximum is located. The plot for exploitation (Figure 8b) demonstrates that the initial search 

started in a region of the chemical space which delivered high yields and the model seem to 

exploit this area. However, since no exploration was used for sampling, the global maximum 

(slightly higher than the datapoints which were sampled in the beginning) could only be found 

after more than 100 iterations. The two peaks indicate that the model only found these two 

high yielding regions after the area around the initial data was exploited. By contrast, Figure 

8c illustrates that EI samples a priori over a broader space (many high and low values are 

sampled and the curve is noisier) due to the explorative character and then more steadily 

reaches low yielding areas of the chemical space. In a direct comparison, this method often 

allows for finding the optimal conditions in fewer experiments than just exploitative search. 
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Figure 8. Comparison of different acquisition functions for active learning(a) Exploitative 

search vs expected improvement using GP and feature set 14 (b) Query trajectory of the 

exploitative search over the yield (GP) (c) Query trajectory of the expected improvement over 

the yield (GP). 

Conclusions 

Using an HTE-generated dataset of conditions for the Pd-catalysed C(sp3)–H bond activation 

of tertiary alkylamines, we investigated the role of parameterization for simulated active ML 

closed-loop optimization. By using different complexity levels of data representation, we 

identified the optimum modelling regimes for fitting moderately sized chemical datasets. 

When using a random split of the data for training/testing partitions, we found that simple 

OHE delivered already high-quality predictions for reaction yield, however, by adding more 

complex chemical descriptors we achieved slightly lower prediction error. For out-of-sample 

predictions we learned that neither fingerprints nor complex DFT-derived descriptors 

delivered significantly better performance compared to OHE, even though the descriptors 

were chosen based on mechanistic insights. 
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Then, based on these preliminary findings, we conducted simulated closed-loop optimization 

experiments wherein the impact of feature complexity on active learning performance was 

assessed. Unexpectedly, OHE outperformed complex parameterizations that incorporated 

chemical information even in low data regimes which are used to initialize active learning 

models. To understand the impact of initialization of the closed-loop optimization, different 

sized initialization datasets and differently sampled data (random, out-of-sample) were used, 

showing that initialization with minimal data led to ineffective optimization whilst 

initialization with out-of-sample data still allows the active ML model to rapidly find ideal 

conditions. Most importantly, when comparing initialization of the closed-loop optimization 

with data that included the full feature set (fingerprints, DFT descriptors) to a double-sized 

dataset that was encoded with OHE (no chemical information), the latter identified the 

highest yield conditions in fewer experiments. Moreover, we found that increasing 

complexity of the parameterization requires a larger initialization dataset to deliver 

comparable performance.  

 

The results of this study clearly indicate that current methods for parameterization are not 

descriptive enough to capture the factors that govern reaction success even when based on 

specific and relevant mechanistic insights. It must be noted that the success of different 

feature sets and models depends on the complexity of chemistry, the dimensionality of the 

design space and the number of variables. Given a different chemical design space with a 

larger number of ligands it might be possible that DFT-based descriptors start to outperform 

OHE because the number of OHE features increase whereas the number of descriptors stays 

constant. We believe that this work should serve as a challenge for the chemical community 

to discuss the trade-off between the development of more tailored parameterization 

methods or more exhaustive screening as two key factors for efficient reaction optimization. 
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