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Abstract

Sufficient and controllable oxygen supply is essential for in vitro 3D cell and tissue culture at high cell
densities, which calls for volumetric in situ oxygen analysis methods to quantitatively assess the
oxygen distribution. This paper presents a general approach for accurate and precise non-contact 3D
mapping of oxygen tension in high cell-density cultures via embedded commercially available oxygen
microsensor beads read out by confocal phosphorescence lifetime microscopy (PLIM). Optimal
acquisition conditions and data analysis procedures are established and implemented in a publicly
available software package. The versatility of the established method is first demonstrated in model-
assisted fluidic design of microperfused 3D printed hydrogel culture chips with the aim of full culture
oxygenation, and subsequently for monitoring and maintenance of physiologically relevant spatial
and temporal oxygen gradients in the 3D printed chips controlled by static or dynamic flow
conditions during 3D culture.

Introduction

True in vitro 3D culture is limited by the ability to supply the right amount of oxygen to cells for
extended time periods 2 and to spatially control oxygen concentrations in the culture volume to
reproduce in vivo conditions.? Engineered microperfusion systems may overcome such limitations,
as demonstrated in our previous work on 3D printing microperfusable cell culture environments,*
given the availability of solutions to accurately monitor oxygen levels in a time-dependent manner in
3D.

Non-invasive oxygen mapping using optical readout of oxygen-dependent fluorescence and
phosphorescence of added dissolved sensor species > have been widely exploited for in vivo ®” and in
vitro ®° analysis at cellular to tissue length scales. The process generally involves quenching of an
excited molecular state by oxygen, resulting in the generation of cytotoxic singlet oxygen species.’
This may limit the allowable concentration of dissolved oxygen sensor species for continuous cell
culture studies. Embedding sensor species and singlet oxygen scavenging species '° in microbeads
(sensor beads) made from a water-impermeable matrix such as poly(dimethylsiloxane) (PDMS) 11713
or polystyrene (PS) ¥*%° largely eliminates issues of cytotoxicity. This permits the use of higher sensor
species concentrations to increase the signal-to-noise ratio for faster data acquisition as well as
reducing toxicity during long-term culture.

Sub-micron sized sensor beads for intracellular oxygen mapping in cell cultures were reported more
than two decades ago.!® At length scales of tissues, sensor beads have most commonly been
employed for measuring in-plane oxygen variations, i.e., either at an interface or with observations
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being projected onto a plane.'>!*1>17 A recent report used custom-synthetized sensor beads to map
the oxygen distribution in static cell cultures with some vertical detail.’® However, the authors did
not target high cell density cultures and had less focus on determining the oxygen concentration 3D
with high accuracy. To the best of our knowledge, dispersed microbeads have not previously been
used as a tool for tracking spatiotemporal changes in 3D cultures depending on microperfusion
geometry and conditions. In the present work, we explore the use of commercially available sensor
beads evenly dispersed in cell-embedding hydrogels to accurately monitor and engineer oxygen
concentrations generated by microfluidic channel arrays manufactured in oxygen-permeable
materials by stereolithographic 3D printing. The aim is to track spatiotemporal variations with
minute scale time resolution in a setup compatible with week-long longitudinal 3D cell culture
studies.

The oxygen-dependent quenching of excited sensor species can be detected by (i) a reduction in the
number of photons emitted by the sensor species, by (ii) a phase change between a periodically
varying excitation and emission intensity, or by (iii)) measurement of the oxygen-dependent
shortening of the intensity decay profile after a pulsed excitation of the sensor species. Our focus is
on achieving the most accurate and precise conversion from quenching of excited sensor species to
dissolved oxygen concentration in 3D measurements. The third detection scheme has the highest
robustness to the strong intensity variations inherent to deep optical probing into high cell density
cultures. Thus, the chosen analysis system relies on spatially resolved measurements of time-
dependent phosphorescence decay profiles using Time-Correlated Single Photon Counting (TCSPC).%®
This is experimentally implemented using confocal phosphorescence lifetime microscopy (PLIM).%°

Additionally, we report a quantitative comparison of key mathematical modeling methods of the
phosphorescence decay to reach the best accuracy and precision for a wide range of
phosphorescence intensity levels as observed during 3D confocal visualization of the sensor beads.
We have integrated the optimal fitting and conversion method in a MATLAB-based (MathWorks)
automated analysis and visualization software package. The package is publicly available on request
as a turn-key 3D oxygen mapping solution for laboratories with access to a custom-built or
commercially available PLIM hardware platform such as the one used in this work. We show that the
method is equally applicable to static and dynamic flow systems, and that 3D cell cultures even far
from physiological relevant cell densities may experience strongly hypoxic or fully anoxic conditions
in the absence of densely spaced microperfusion networks.

Results and Discussion

We first established a reproducible general workflow for quantitative mapping of oxygen
concentrations in 3D cell culture environments. The process (Fig. 1) uses commercially available
oxygen sensor beads (& 50 um, CPOx-Red, Colibri Photonics) 2! that are mixed with cells, in the
presence or absence of an embedding hydrogel matrix (Fig. 1a), prior to seeding into a culture
volume (Fig. 1b). The local oxygen concentration is probed using a commercial confocal
phosphorescence life-time microscope (PLIM, Becker & Hickl DCS-120 mounted on a Zeiss Z1
inverted microscope) programmed to record phosphorescence decay profiles across the entire
culture volume (Fig. 1c). This permits accurate mapping of oxygen concentrations in 3D with sub-
minute scale time resolution (4D mapping), given that reliable analysis procedures can be
established for decay profiles with limited total signal intensity and signal-to-noise ratios.
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Fig. 1 (a) The general analysis procedure starts by mixing cells and oxygen sensor beads (#50 um) and
optionally an embedding hydrogel. (b) The cell mixture is dispensed into the targeted culture format, here
illustrating conventional 2D static culture, 3D static culture, and 3D dynamic culture within a chip supporting
microperfusion. (c) Confocal phosphorescence lifetime microscopy (see main text) mapping of the oxygen-
dependent phosphorescence decay profiles of the embedded sensor beads can be converted to calibrated
oxygen tension maps in 2D, 3D, or 4D.

Oxygen mapping in static 3D cell cultures

We initially studied hydrogel-embedded cell cultures under static medium conditions to establish
the analysis process in a simpler 3D environment that still recapitulates the challenges of widely
varying sensor bead signal intensities resulting from differences in probing depths. Fig. 2 shows the
model system employed, where cells at high seeding density and sensor beads are suspended in a
nearly hemispherical droplet of photo-crosslinkable gelatin methacryloyl (GelMA) hydrogel %
deposited at a well bottom of a 96-well plate. The GelMA solution is subsequently photo-crosslinked
into an embedding hydrogel that maintains the cells’ and sensor beads’ 3D locations at the time of
light exposure. The cell-containing droplet is either covered directly with medium (Fig. 2a) or first
covered with a layer of cell-free GeIMA hydrogel before addition of medium (Fig. 2b). The addition
of a layer of cell-free hydrogel inhibits convective medium flow at the perimeter of the cell-laden
hydrogel droplet, expectedly leading to strongly reduced oxygen replenishment within the droplet
volume. A similar configuration was recently investigated by Wilson et al. using approximately 10
times lower cell densities.*® Confocal PLIM analysis of the two system configurations after 4 days of
culture is overlaid on confocal fluorescence microscopy of live-cell staining (calcein AM) obtained in
parallel (Fig. 2c and d). Each embedded and analyzed sensor bead is represented by a filled circle
color-coded with the determined oxygen concentration in lateral (X/Y) and radial cross-sectional
(R/Z) projections of the combined confocal PLIM/fluorescence stacks. The vertical position of each
plotted sensor bead is estimated from the optically “stretched” confocal stacks. The hemispherical
hydrogel model was also employed for assessing the accuracy by which the vertical position can be
predicted, see Electronic Supplementary Information (ESI) Section 1 and Fig. S1.
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Fig. 2 3D oxygen mapping of hydrogel-embedded high-density cell cultures under static culture conditions in
wells of a 96-well plate, either (a) as a droplet in medium (cells and sensor beads shown in green and red,
respectively) or (b) as a cell-laden droplet surrounded by a cell-free hydrogel covered with medium. (c and d)
Confocal PLIM imaging of the embedded oxygen sensor beads and subsequent conversion to the
corresponding local oxygen concentration is shown as color coded concentrations overlaid with green
fluorescence from Calcein AM staining of metabolically active cells in lateral (XY) and radial (RZ) projections.
Hep G2 cells at 20 x 10° cells/mL embedded in a hydrogel of 7.5%w/v GelMA in medium without or with a
second added hydrogel volume of 7.5% GelMA in medium.

The cell-laden droplet surrounded by culture medium shows gradually decreasing oxygen
concentrations from its perimeter to its center due to oxygen being consumed by the embedded
metabolically active Hep G2 hepatocytes (Fig. 2c). Still, the oxygen concentration in the droplet
center remains at a level of 6-8%, which is sufficient to support their normal metabolism. In contrast,
an equivalent droplet surrounded by a cell-free hydrogel exhibits nearly anoxic conditions in its
entire volume except for the outermost 100 um (Fig. 2d). The observed difference between the two
configurations illustrates the importance of accurately describing the type of nominally static culture
conditions employed. Interestingly, the intended green fluorescent staining of live cells by calcium
AM does not correlate well with the oxygen concentration profiles across the beads. We assume this
is caused by very fast uptake of the added calcium AM just below the hydrogel droplet surface due
to the very high cell density employed in this study. This observation supports the need for accurate
volumetric oxygen mapping to truly describe the metabolic environment at cell densities
approaching those of organ tissues.

Establishing an accurate and precise oxygen mapping algorithm

Fig. 2c and d show that consistent 3D oxygen concentration measurements can be performed for
depths of = 1 mm into high cell density cultures using our developed analysis process. This process
consists of (a) parallel volumetric acquisition of sample fluorescence and phosphorescence, (b)
automated identification and pooling of acquired phosphorescence decay profiles from equivalent
sensing locations within each bead to increase the signal-to-noise ratio; (c) correction for common
systematic errors due to limitations of the acquisition hardware; and (d) robust fitting of the pooled
decay profile of each bead to extract the corresponding oxygen concentration.

The first three process steps are detailed in Fig. 3. Individual voxels in a confocal stack are
sequentially analyzed to produce a volumetric map of sample fluorescence and sensor bead



phosphorescence decay profiles (Fig. 3a). The time-dependent photon flux integrated over the area
(voxels) of a representative sensor bead in a single acquisition plane is shown in Fig. 3b. Each voxel is
first illuminated by the pulsed excitation laser for a sub-100 ps period (“Laser on”, Fig. 3b) to
generate a steady state population of excited sensor molecules. During this excitation phase,
fluorescence data (ns-scale decay times) are acquired between each excitation light pulse (80 MHz
repeat rate), which enables parallel visualization of fluorescently labeled cells and sensor beads. In
the subsequent “Laser off” period, only emission from triplet states of the sensor molecules
contribute to the decay curve. Individual voxels of the phosphorescence confocal stack (Fig. 3c)
typically emit 10 — 150 photons per analysis cycle (Fig. 3d). This is insufficient for high-quality fitting
of the decay curve profile. The developed software package sorts through the confocal stack to
identify the centroid and extent of each bead (Fig. 3e) and sums the photons from voxels of each
bead into a combined decay curve with high signal-to-noise ratio (Fig. 3f, red curve). The sorting
procedure and the experimental support for equivalence of decay curves of all voxels in a bead are
detailed in ESI sections 2.1 and 2.2. As the final step, the combined decay curve is corrected for any
systematic hardware-dependent deviations (Fig. 3f, blue curve), including the single-photon counter
deadtime leading to an underestimation of the photon count at high photon fluxes (so-called sensor
saturation).
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Fig. 3 (a) Combined confocal stacks of fluorescence and phosphorescence shows the distribution of sensor
beads (orange; both fluorescence and phosphorescence) within a live-stained (green; fluorescence) 3D cell



culture. (b) Phosphorescence decay profile maps are recorded through excitation (“Laser on”) at each voxel
location followed by single photon counting of the intensity decay during an excitation free period (“Laser
off”). The graph shows the aggregate photon count over the spatial extent of a single bead in one image plane.
(c) Confocal maps of the time-integrated phosphorescence photon counts of (d) the small number of photons
in each pixel’s decay curve are used for (e) identifying the volumetric extent of all beads to allow for (f)
summation of decay curves over each entire bead to improve the signal-to-noise ratio before final correction
for instrument-dependent contributions (detector saturation).

Oxygen-dependent fluorescence and phosphorescence decay curves have been investigated
extensively.?® The proposed models of decay profiles from phosphorescent species immobilized in a
diffusion-limiting matrix, such as polystyrene in the current work, can be divided in two main classes.
The first class formally describes individual species to be either fully accessible or fully inaccessible to
the dissolved oxygen.?* The expected decay profile will be a biexponential, with one long constant
decay time for inaccessible species and a shorter variable decay time for accessible species. Full
accessibility or inaccessibility to all sensor species are special cases of this first class, where a single
exponential with variable decay time can fully describe the decay profile. The second class of model
assumes that all species will be accessible to the dissolved oxygen to varying degrees, resulting in a
continuum of decay times. This can mathematically be modeled by a stretched exponential with a
stretching factor 8, where B = 1 is the special case of a single exponential decay curve.

Phosphorescence decay profiles have most commonly been fitted using a non-linear least squares
(NLLS) approach.? NLLS assumes a normal distribution of the photon counts within each of the
analyzed discrete time bins, which is a good approximation at a high number of binned photon
counts. However, the low photon counts expected for the required short acquisition times per bead
are predicted to follow a Poisson distribution instead of a normal distribution. The change in
distribution can be accounted for by generalizing the fitting procedure to Maximum Likelihood
Estimation (MLE),?°"28 having NLLS as a limiting case for large binned photon numbers. We
performed an extensive comparison of the two fitting approaches, described in detail in the ESI
section 2.3. Our main conclusion is that MLE indeed produces a statistically better curve fit in the
low-intensity tail part of the decay curves, but that the difference in fitted decay times between
NLLS and MLE generally is small. MLE never performs worse than NLLS and does not incur significant
computational overhead, so we continued with MLE as our fitting approach.

We next compared the two classes of decay profile models, with the inclusion of a single exponential
decay as a special case of both model classes. The underlying experimental data was acquired on
sensor beads embedded in a GelMA hydrogel placed within a gas-tight chamber. The chamber
ambient oxygen concentration was controlled by combinations of air and nitrogen supplied by mass
flow controllers. The special case of completely oxygen-free conditions was confirmed by the
dissolution of sodium sulfite to scavenge any dissolved oxygen remaining in solution below the
nominally oxygen-free ambient. We employed the Akaike information criterion (AIC) 2° as measure
of the obtained quality of fit penalized by the required number of fitting parameters (see Materials
and Methods and ESI section 2.4). Fig. 4a and b compare the fitting results for the minimum and
maximum concentrations of 0% and 20.9% oxygen. At 0% oxygen, all three models fit the data with
visually indistinguishable quality. This is also expected given that the single exponential emerges as a
special case of the biexponential for fully inaccessible sensor species and of the stretched
exponential for B = 1. At the other extreme, 21% oxygen, the fitted single exponential
overestimates the photon counts at short and long decay times while underestimating the intensity
at intermediate decay times. This is clearly visible in the inset showing the photon count on a
logarithmic scale. The stretched exponential (fitted stretching factors displayed in Fig. 4c) and the
biexponential provided fits of comparable visual quality and residuals. Yet, the weighted AIC scores



for all three models, with higher being better, showed that the biexponential is uniformly the best
choice across all tested oxygen concentrations (Fig. 4d). The fitted oxygen-decay time calibration
curves and corresponding Stern-Volmer plots,* plots for all three models are shown in Fig. 4e and f.
The calibration based on a biexponential is used going forward.
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Fig. 4 (a and b) Saturation-corrected decay traces for 0% (a) and 21% (b) oxygen tension, with insets showing
the photon counts on a logarithmic scale. Solid lines show fits using models of, respectively, a single
exponential decay (purple), a stretched exponential decay (teal), and a biexponential decay (green). (c)
Optimal stretching factors (mean +/- s.d.) for the stretched exponential over beads as a function of oxygen

tension. (d) Weighted AIC scores (see main text, higher is better) for the three models applied to 45-173 beads.
This quantifies the quality of fits penalized by the number of parameters in each model. (e and f) Calibration
curve and Stern-Volmer plot for converting decay lifetime into oxygen concentration based on lifetimes
obtained by the three different models (mean +/- s.e.m., 3-7 independent experiments, 45-173 sensor beads).

As discussed, the signal-to-noise ratio affects the quality of the fit and thereby the uncertainty on
the estimated decay time. The automated analysis procedure discards beads with too few detected



photons to give a precise oxygen concentration estimate. We experimentally found that decay
curves from <600 photons resulted in strongly increasing standard deviations of the oxygen
concentration estimate (ESI section 2.6 and Fig. S6). A conservative threshold of >1000 photons per
sensor bead for inclusion in 3D maps was generally employed.

We used standard 2D high cell density cultures in microtiter plates as a simple reference system to
investigate the homogeneity of the measured oxygen concentrations in a real in vitro environment.
Fig. 5 compares the oxygen concentration right above confluent cell monolayers in a 96 well plate
with overlaying medium thickness of 1.5 mm (50 pL), 3.0 mm (100 L), and 6.0 mm (200 pL),
respectively. The color-coded sensor beads reveal a strong decrease in oxygen tension with medium
depth, from 18-19% at the smallest to 7-8% at the largest medium depth. This is a reminder that full
oxygenation of dense 2D cell layers cannot be assumed. However, it may also be exploited as an
experimental design parameter to achieve physoxic 2D culture conditions without active oxygen
control in incubators with standard gas compositions (95% air, 5% CO,). The observed variation in
oxygen tension across the three sample surfaces is less than 1.5% (standard deviation of 1.5% for 50
pL, 1.3% for 100 uL, 0.8% for 200 pL), which supports a high precision of the developed analysis
procedure.

Fig. 5 Dense planar cultures, here in a 96-well microtiter plate, also experience significant oxygen depletion
when increasing the amount of medium volume, from (a) 50 pL (1.5 mm medium depth) through (b) 100 pL
(3.0 mm) to (c) 200 pL (6.0 mm), as revealed by sensor beads (color coded) sedimented on top of the cell layer.
Hep G2 cells on day 4 after seeding at 30 x 102 cells/well; live staining using calcium AM (green). Scalebar 500
pm.

Microfluidic design supported by 3D oxygen mapping

We hypothesized that our full 3D oxygen mapping method can be employed for functional
assessment and optimization of microfluidic designs supporting oxygenation in perfused 3D cell
culture systems. The first culture chip design incorporates a single fluidic channel traversing the
bottom of a culture confinement (Fig. 6 and ESI Section 3). Monolithic chips including supply
channels and access ports for fluidic connectors were 3D printed in an oxygen diffusion-open
hydrogel material, poly(ethylene glycol) diacrylate M, 700 Da (PEGDA 700), using the high-resolution
stereolithography printing system and protocols reported in our recent work.*3! The cell culture
confinement was seeded with a suspension of Hep G2 cells (5 X 10° cells/mL) and oxygen sensor
beads in an aqueous solution of GelMA subsequently photo-crosslinked into a hydrogel. The
perfusion channel was connected to an external peristaltic pump through the access ports, and the
connected chip was fully immersed in cell culture medium in a 6-well microtiter plate. Culture
proceeded in a custom-built microscope-compatible mini-incubator (37 °C, 5% CO,) using an average
medium perfusion velocity of 3.2 mm/s through the channel. The oxygen concentration distribution
was analyzed on culture day 3 (approximately 56 h after seeding). Fig. 6b and c show representative
lateral and cross-sectional projections of all the analyzed sensor beads overlaid on the projected



(green) fluorescence of live cells stained by perfusion of dissolved calcium AM for 90 min prior to
visualization. Nearly anoxic conditions are found at distances greater than 500 um from the outer
channel wall, which roughly correlates with the observed spatial decay of the live-stain fluorescence
from the perfusion channel. Medium perfusion (advective flow), oxygen diffusion, and cellular
oxygen consumption were modeled at steady state using finite element modeling (COMSOL, details
in ESI Section 3) for a range of oxygen consumption rates. Fig. 6d shows the resulting calculated
volumetric oxygen distribution as a cross-sectional view half-way down the fluidic channel, showing
good agreement with the experimental results outside the fluidic channel in Fig. 6¢ for a modeled
oxygen consumption rate (OCR) of 1.1 X 10~1° mol cell* s™. This is in good agreement with
previously reported values OCR values for Hep G2 of 0.8 X 10716 — 1.1 x 107 mol cell* s.3233
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Fig. 6 (a) Oxygenation in 3D tissue model with a single perfused fluidic channel (inner dimensions 140 x 140
um?2) in culture chips manufactured by 3D printing of a hydrogel open to oxygen diffusion. The culture
enclosure is seeded with 5 X 10° Hep G2 cells/mL and sensor beads in a GelMA hydrogel. The channel is
perfused at an average velocity of 3.2 mm/s prior to oxygen mapping. (b) Projected bottom view (XY) of sensor
beads at all elevations overlaid on a projected confocal fluorescence micrograph of live stained cells (green).
The dotted and dashed lines illustrate the inside and outside, respectively, of the channel walls, and the arrow
shows the flow direction. (c) Corresponding cross-sectional views (YZ) with all beads and cell fluorescence
projected onto the vertical plane. (d) Cross-section view of a 3D numerical simulation of the predicted oxygen
distribution considering both cellular oxygen consumption and oxygen supply by medium perfusion. (e)
Oxygenation in a 3D tissue model with an array of 8 perfused microfluidic channels (inner dimensions 140 x
140 pm?). Equal manufacture and culture conditions except for seeding 1 x 10 Hep G2 cells/mL and a
channel perfusion velocity of 3.2 mm/s. (f) Projected bottom view of sensor beads at all elevations overlaid on
a projected confocal fluorescence micrograph of live-stained cells. (g) Corresponding cross-sectional views
with all beads and cell fluorescence projected onto the vertical plane. (h) Cross-section of a 3D numerical
simulation of the predicted oxygen distribution.

The single channel design is clearly inadequate for supplying oxygen to a 3D cell culture volume at
the cell densities used in Fig. 6a-d. We next made use of the numerical simulation results to predict a
suitable combination of channel array spacings and seeding cell density to reach physoxic (6% O3) or
higher oxygenation levels in the lowermost 2 mm of cell culture volume. The resulting COMSOL
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model having 8 channels with a center-to-center pitch of 830 um was transferred into a 3D printable
chip design, shown in Fig. 6e. Printed chips were seeded with 1 x 10° cells/mL in GeIMA hydrogel,
as used in the predictive COMSOL model, and the chips connected to an external peristaltic pump
were cultured in the mini-incubator at a channel perfusion rate of 3.2 mm/s. Fig. 6f and g show
representative lateral and cross-section projections of the measured oxygen distribution overlaid on
projected green fluorescence from live staining. The lateral projection suggests significant spatial
and apparently inconsistent variation in oxygen tension across the observed volume. However, the
cross-sectional projection clearly shows that the variation is only in the vertical direction,
monotonically decaying as expected, which would not have been possible to discern using simpler
2D oxygen mapping methods. Comparison of the lateral projection of oxygen readings from sensor
beads in Fig. 6g and the results of the numerical simulation in Fig. 6h used for designing the
microchannel array shows excellent agreement between simulation and experiment, with oxygen
concentrations consistently above 6% in the lowermost 2 mm of the culture volume. Of note, equal
cellular oxygen consumption rates in 3D cultures at different cell densities is not a given,3* but
appears to match the observations in Fig. 6. The optically accessible chip system with cells and
sensor beads embedded in 3D may be employed to study such predicted cell density dependent
consumption rates in full 3D detail.

Tunable oxygen gradients enabled by 3D oxygen mapping

Oxygen concentration gradients are present in all solid tissues, with liver sinusoids being a
particularly well-studied example. Axial oxygen gradients along capillaries result from the balance
between supply through advective transport of oxygenated liquid and consumption by tissue cells in
the capillary surroundings. Varying the advective flow rate in 3D printed microperfusion models can
dynamically modulate the slope of the steady state concentration gradient. However, the required
perfusion rate to maintain a targeted gradient slope may change during culture due to cell
proliferation, differentiation, or maturation. Additionally, oxygen tensions will both decrease axially
along and radially out from the supply channel in a way that is difficult to predict numerically over
time, since both metabolic activity and cell proliferation rates depend on the local oxygen
concentration. These problems can be circumvented by the introduction of sensor beads during cell
seeding followed by periodic monitoring of the 3D oxygen distribution and subsequent adjustment
of the medium perfusion rate to match the targeted 3D gradient(s). Fig. 7 presents results from
varying the perfusion rate in the 8-channel microfluidic chip design of Fig. 6e with equal cell seeding
and culture perfusion conditions. Static flow conditions cause a nearly anoxic cell environment (Fig.
7b), while very high perfusion rates generate a physoxic to normoxic environment in the entire
observed volume, i.e., the lowermost 2.5 mm of the embedded cell culture, without significant axial
variation (Fig. 7e). Intermediate flow rates result in steady state axial and radial gradients outside
the flow channels that can be fine-tuned to nearly match the low oxygen base level of brain and
thymic tissue (4% to 2% O, Fig. 7c) 3> or the higher base level of liver sinusoids (6.6% to 2.6% in
tissue, Fig. 7d),? as physiologically relevant examples. The oxygen concentration distribution was also
numerically modelled, and the results are compared to the experimental observation in ESI Fig. S9.
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Fig. 7 Defined axial oxygen concentration gradients can be engineered and monitored by varying the channel
perfusion rate in (a) a microfluidic 8-channel perfusion system supporting 3D cell culture (identical seeding
and culture conditions as in Fig. 6e-g), ranging from (b) anoxic conditions at static conditions over (c and d)
gradients mimicking physiological conditions to (e) axially independent oxygenation approaching ambient
oxygen levels at very high perfusion rates. The perfusion rates and velocities are for each of the 8 channels.

Oxygen mapping in 4D

In vitro models of ischemia and ischemia-reperfusion are important to understand cellular processes
involved in acute pathological conditions such as myocardial infarction and stroke.3”8 Tissue oxygen
depletion occurs on sub-minute time scales after complete obstruction of blood flow, calling for a 3D
analysis scheme with similar time resolution (4D mapping) in tissue models. The developed 3D
oxygen mapping process can match the temporal requirement for sample volumes larger than 1
mm?3. Fig. 8 shows selected snapshots of a time series of 3D oxygen mappings (volume map of 1.6
mm?3), starting with a 3D culture continuously perfused in an 8-channel chip for 14 days with high
viability (Fig. 8b, lateral and cross-sectional projections) when perfusion is abruptly stopped. The
time-dependent decrease in oxygen tension throughout the culture volume is obvious in subsequent
maps collected at a minimum time interval of 47 s (Fig. 8c-g). Statistical analysis of all measured
sensor beads (17-22 automatically detected depending on the local oxygen tension) show initial
physoxic culture conditions (mean value of 9% 0,) that decrease to form a nearly anoxic
environment (mean value of <2% 0,) within 350 s after terminating perfusion (Fig. 8h). The time
scale is similar to that observed for oxygen depletion in human tissue, although it should be noted
that the cell density used in this demonstrator model is much lower than real tissue, the channel
spacing is much larger than inter-capillary distances, and the oxygen carrying capacity of culture
medium is much lower than blood due to the absence of hemoglobin.
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Fig. 8 Oxygen concentration kinetics can be followed on sub-minute time scales, (a) as demonstrated in a
microfluidic 8-channel perfusion system with identical seeding and culture conditions as in Fig. 6e-g. (b) The 3D
cell culture proceeds with continuous flow for 14 days (cross-sectional and lateral projections of all sensor
beads overlaid on green staining for live cells), before stopping the flow and (c-g) monitoring the post-flow
oxygen tension development in the surrounding culture volume. (h) Statistical analysis of the time-dependent
oxygen tensions obtained through sensor bead readouts show the development of anoxic conditions in <10
min post-flow. Red bars show the mean, boxes the 25-75 percentile, and whiskers the full data range at each
time point. Scale bar 500 pum.

Conclusions

In summary, we have established a robust experimental and analytical procedure to monitor oxygen
concentration distributions in 3D cell cultures at high cell densities and to depths above 1 mm. The
procedure can be applied in week-long cultures without indications of cytotoxicity, and can track
volumetric changes occurring on sub-minute time scale. The method can additionally be used as a
microfluidic design tool to assess, model, and predict the actual oxygen concentration distribution
for a specific choice of cultured cells, cell densities, and cell embedding media, as demonstrated for
the single or multi-channel array design. Lastly, the ability to perform non-invasive oxygen mapping
with true 3D resolution allows for the generation and dynamic maintenance of oxygen concentration
gradients in 3D tissue models throughout the culture period.

Materials and Methods

Oxygen sensor beads

Oxygen sensor beads CPOx-50-PtP (CPOx Red, oxygen-sensing platinum-porphin complex and singlet
oxygen scavengers embedded in polystyrene) were purchased from Colibri Photonics (Colibri
Photonics GmbH, Potsdam, Germany). The sensor beads were pre-coated and sterilized before use
in tissue cultures. Briefly, 10 mg of the sensor beads were immersed in 2 ml of 1% BSA (A4161,
Sigma Aldrich) in DPBS (D8537, Sigma Aldrich) solution, vortexed and incubated for 1h. Then, sensor
beads were sterilized by immersion in 70% ethanol and incubated for 1h, vortexed 3-4 times during
incubation. After BSA pre-coating and sterilization with ethanol the sensor beads were washed 3-4
times with DPBS to remove residual ethanol by centrifugation, removal of supernatant and re-
immersion in 2 mL DPBS. Finally, the sensor beads were dispersed in DPBS at a concentration of 5
mg/mL.

Design and 3D printing of the organ model chips
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3D hydrogel chips were designed using CAD software (Inventor Professional 2019, Autodesk, USA).
The 3D stereolithographic hydrogel printing method, cytotoxicity assessment and perfusion setup
have been described in our previous work.* The pre-polymer solution was adapted and consisted of
200 mg/mL poly(ethylene glycol) diacrylate (PEGDA; M, 700 g/mol; Sigma-Aldrich), 11.25 mg/mL
quinoline yellow (Sigma-Aldrich), 5 mg/mL lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP,
Sigma-Aldrich) in water and optimized exposure settings of 4.5 s per printed layer with a step height
of 20 um.

Maintenance of cell line

Hep G2 human hepatocyte carcinoma cells (ECACC Cat. No. 85011430) were cultured in complete
medium consisting of EMEM (EBSS) supplemented with 2 mM glutamine (L-glutamine solution, CAS
No. 56-85-9, BioXtra; G7513, Sigma-Aldrich), 1% non-essential amino acids (MEM Non-essential
amino acid solution, BioReagent; M7145 Sigma-Aldrich), 10% v/v FBS (S1810, Biowest, France) and
1% v/v penicillin-streptomycin (Sigma-Aldrich). Cells were cultured in T75 and T175 culture flasks at
5% CO; and 37 °C and medium was exchanged every 3-4 days. Cell were passaged at 80% confluency
and used between passage 5 and 20 for all presented experiments.

2D adhesion culture in 96-well plate

Hep G2 were seeded at 30 x 103 cells/well in 200 pL of complete medium in Nunclon-Delta treated
96-well plate (167008, Thermo Fisher Scientific). Viability (live) assays were performed using 1 ug/mL
calcein-AM (65-0853, Invitrogen) in FBS-free medium for 1 h. Following live staining, 50 L, 100 pL
and 200 pL of complete medium were added to the wells of each treatment group, and an additional
2 uL of 5 mg/mL CPOx Red oxygen sensor beads were added per well for oxygen mapping.

3D hemispheres in 96-well plate

The cell suspension contained 20 X 10° Hep G2/ml in 7.5% GelMA (GelMA Lyophilizate, Cellink), 0.5
mg/mL CPOx Red oxygen sensor beads, 1 mg/mL LAP in complete medium. A droplet of 11 puL was
pipetted onto the bottom of each well in a 96-well plate and cured from the bottom side with a
custom-built UV (365 nm, 21 mW/cm?) light source for 1 min, initiated no later than 30 s after
droplet deposition to avoid sedimentation of cells and sensor beads. After UV curing, 150 uL of
complete medium was added to the first set of samples. To the second set of samples, a solution of
40 pL of 7.5% GelMA, 0.5 mg/mL CPOx oxygen sensor probes, 1 mg/mL LAP in complete medium
was added and cured for 1 min using the custom-built UV light source. After curing, 110 pL of
complete medium was added.

3D perfusion chips

Hep G2 were seeded at a concentration of 1.0 x 10° cells/mL and 0.2 X 10° in 7.5% GelMA, 0.5
mg/mL CPOx Red oxygen sensor beads, 1 mg/mL LAP in complete medium into voids of 3D printed,
perfusable cell culture scaffolds. A volume of 100 uL was seeded per well of 3D printed hydrogel
chips and cured with the custom-built UV light source for 1 min from bottom and top, initiated no
later than 30 s after seeding to avoid sedimentation of cells and oxygen sensor beads. The cell
culture chips were cultured fully immersed in 9 mL of complete medium in a 6-well plate, and
medium was exchanged every 3 days. For co-localization of live cells and oxygen sensor beads, cells
were stained by perfusion of 2 ug/mL calcein-AM in complete medium for 3 h. For chip perfusion,
tubing with inner diameter 0.51 mm (GRA PPR0051008, Gradko) in combination with pump stopper
tubing (SCO305A, Cole-Parmer) and peristaltic pump (LabV1, Shenchen) was used.

Phosphorescence lifetime microscopy measurements
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Image stacks of confocal fluorescence and phosphorescence lifetime measurements were acquired
with a DCS-120 Confocal FLIM System (Becker & Hickl, Germany) connected to an Axio Observer Z1
(Zeiss, Germany) with a Fluar 5x/0.25NA (Carl Zeiss) objective. Two parallel photon detectors were
used to decrease the incident photon flux per detector and thus the effect of detector dead-time.
Tile images were recorded using a H117 motorized stage (Prior, England). Image processing scripts
were written in and performed with MATLAB (Mathworks, USA). Microscope stage incubators were
manufactured in-house and allowed for stable culture conditions during microscopy, namely a
temperature of 36 + 1 °C and ambient gas mixture of 95% air/5% CO,, premixed using mass flow
controllers (type 1179A, MKS).

Data processing

The image files containing fluorescence and phosphorescence lifetime images were directly
imported to MATLAB with a custom-written script. Voxels with less than 5 photons in the
phosphorescent part of their decay trace (182 time bins; 220 us) were excluded from further
analysis. Voxels with connecting faces were grouped to regroup the signal from beads. To separate
beads in close proximity, voxels with intensities below 20% of the maximum intensity voxel in each
bead were deleted and the bead grouping algorithm was re-applied. Then, decay traces from each
bead were summed. Summed decay traces were corrected for detector saturation and the highest
intensity plane and horizontal center point of grouped objects was determined for bead positioning
in 3D oxygen maps.

Data Analysis

Decay traces were fitted using maximum likelihood estimation with single, biexponential and
stretched exponential functions with background. The information from calibration curves was used
to correlate lifetimes with oxygen tensions for each bead. 3D oxygen maps were plotted with color
coded oxygen tensions. Oxygen maps are visualized stand-alone or with co-localized live-stained 3D
intensity and optionally separately processed fluorescence lifetime images.

All scripts for the presented oxygen mapping technique were written in MATLAB (Mathworks, USA).
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1 Vertical accuracy of the bead position analysis

The lateral position of each sensor bead can be determined with high accuracy, while the accuracy of
its vertical position is limited by the numerical aperture of the objective and by the optical
properties of the bead material. The apparent vertical extent can be assessed from analysis of a
confocal stack of sensor beads embedded in a hydrogel at different heights. The presence of
embedded cells might influence the optical quality, so the analysis was performed on a
hemispherical droplet as also analyzed in the main text (Fig. 2). Fig. S1a shows overlaid fluorescence
and phosphorescence, while Fig. S1b only shows the phosphorescence. The dashed line indicates the
location for performing a vertical cross-section through a random bead shown in the insert below
(labeled XZ). Fig. S1c is a zoom on the cross-sectional view of that bead, suggesting an apparent
vertical extent of 200-300 pum and with a pronounced intensive maximum spanning approximately
100 um.

Acquisition of each confocal stack uses a physical height difference of 20.0 um. This corresponding
optical path length difference between imaging planes is taken to be 26.6 um, approximating the
refractive index of the hydrogel surroundings by that of pure water (n = 1.33). The apparent
vertical extent of 6 random beads is investigated quantitatively, with the selection criterion being
that they have their maximum observed phosphorescence intensity at an image plane separated by
5 imaging planes from another bead. Fig. S1d presents the results of the analysis. The horizontal axis
shows the depth (image plane) where each of the beads has the largest summed photon count, i.e.,
the bead center. The vertical axis shows the sampling depth range (image planes) for all 6 beads.
Each horizontal bar in the violin plot represents the relative summed photon count in that image
plane. The quantitative analysis suggests an extent of the intensity maximum of no more than 2
image planes, i.e., approximately 45 um in vertical extent, and it is obvious that fitting of the
summed counts from all vertical position allows for highly accurate prediction of the vertical
intensity maximum.

Accurate placement of color-coded oxygen sensor depictions in 3D volumes was evaluated by
overlaying XY and XZ phosphorescence maximum intensity projection images with oxygen sensor
maps, shown in Fig. Sle+f. Both XY and Z oxygen sensor depictions are observed to be co-located
with corresponding phosphorescent signal from the original oxygen sensor beads in the sample
volume.
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Fig. S1 Analysis of the apparent vertical extent of sensor beads. (a) Overlaid maximum projections of
fluorescence and phosphorescence from a hemispherical GelMA hydrogel with embedded sensors beads
(green and red) and live-stained cells (green). (b) A single image plane (XY) of the underlying confocal stack
showing only phosphorescence from the sensor beads. The dashed line indicates where the cross-sectional
plane at the bottom (XZ) is extracted. (c) Five times magnification of the outlined part of the XZ cross-section,
showing the vertical and lateral extent of a single sensor bead as observed in the confocal stack. (d) Vertical
intensity distribution (summed photon counts) of 6 beads having their highest photon counts at different
depths (horizontal axis). The width of each level of the violin plot of each bead shows its relative summed
photon counts for varying imaging depths (shown on the vertical axis), with the summed photon count at the
plane of its highest photon count specified. (e, f) Maximum intensity projections of 3D phosphorescence
intensity image with 256x256x50 voxels (50 z-planes recorded with 20 um stepping) along with oxygen sensor
placement. Location on XY plane indicated with red dots below color-coded oxygen sensor depictions.



2 Development of the data processing methodology

2.1 Data processing flow

Signal processing steps: From 4D arrays of photon counts to 3D oxygen maps

Disregard noise
\

v

Group phosphorescent signal from each oxygen sensor probe
|

v

Correct for detector saturation

|

Fit phosphorescent decay curves

|

Correlate to oxygen concentration
Plot 3D Oxygen Maps with co-localized live stained cells

Fig. S2 Signal processing steps to go from 4D arrays of photon counts to 3D visualizations of oxygen sensor
probes.

Fig. S2 shows the main signal processing steps needed to go from 4D arrays containing
phosphorescent photon counts to 3D visualizations of oxygen sensor probes. First, the 4D arrays of
phosphorescent photon counts were summed in their time dimension and all voxels of the resulting
3D matrix with less than 5 photons were disregarded as background noise. This was above the
background signal threshold from the microscope without samples and typically decreased the
fraction of remaining voxels to <1%. Next, 3D photon intensity maps were transformed into a 3D
binary image (1 for >0 photons, 0 otherwise) and objects that consisted of more than 15 voxels with
connected faces were identified. Given the size of the oxygen sensor beads (@50 um), objects with
less than 15 voxels were considered out of focus beads or background. Some beads in close
proximity were grouped into a single object when applying the low noise threshold of 5 photons
only. To separate incorrectly grouped beads, voxels in each grouped object with less than 20% of the
maximum intensity voxel contained in that same object were deleted. Afterwards, the grouping
algorithm was re-applied, again creating objects with >15 voxels with connected faces that usually
consisted of single beads then. Since single voxels in each object (or each oxygen sensor bead)
contained low numbers of photons in their decay traces (typically 10-150 photons), decay traces
from all voxels in each bead were grouped to retrieve one decay trace per bead. Beads with less
than 1000 photons total were deleted to ensure sufficient photon number for data fitting with low
errors. The corresponding analysis is presented below.

Since each detection unit of the single photon counting system had a specified dead-time of 100 ns
after each registered photon event, the beginning of decay curves where intensities were still higher
typically suffered from photon loss which skewed the consecutive fit and lead to a decrease in fitted
lifetime with increasing intensity. Thus, the decay traces were corrected for detector saturation. The
lowest change in oxygen tensions when recording samples with 10-fold increases in intensity were
observed when using a dead time of t4 = 55 ns. The system contained 2 parallel detection units with
a polarization splitter in the optical.

Then, decay traces for each bead were fitted and the retrieved lifetime parameter was translated
into an oxygen tension through previously recorded calibration curves. The oxygen sensor beads



were then plotted in 3D at the center of the XY position of the 3D object and the Z-plane with the
highest photon intensity. Live cell maps acquired in parallel were overlayed.

2.2 Time-dependent data from multiple voxels within a sensor bead can be summed

The acquired data consists of photon counts distributed in discrete time “bins” (256 in the setup
used) after excitation of each voxel. As discussed in the main text, the number of photons arriving
from a single voxel after a single excitation cycle is insufficient for high-quality curve fitting. Thus, the
binned photon counts of multiple voxels within each bead should be summed by bin to provide
better total counting statistics. This is only possible if all voxels of each bead do indeed have
equivalent intensity decay profiles. We examined the degree of equivalence extensively within the
spatial extent of each bead for multiple beads and for multiple dissolved oxygen concentrations.
Formally, this is an assessment of whether the time-dependent photon count distribution from all
bead voxels is drawn from the same Poisson distribution. Fig. S3 shows representative examples of
the observed intensity profiles (blue bars) from 4 distinct voxels within one bead at dissolved oxygen
concentrations of 21% (a) or 0% (b), each intensity distribution resulting from the summation of 20
repeated acquisitions at each voxel. The summed intensity distribution from each voxel was
subsequently fitted by the decay profile found to be optimal (bi-exponential intensity decay with a
predetermined background, see ESI section 2.4). The parameters of the fitted profile to each voxel’s
intensity decay curve are found to be statistically indistinguishable from the profile acquired at the
other three voxel locations, at either oxygen concentration investigated. This supports the
assumption of the time-dependent intensity distribution of different voxels within a bead being
drawn from the same Poisson distribution, and that bin-wise summation of the photon count
distributions of separate voxels is analytically valid.
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Fig. S3 The four graphs for each oxygen concentration show the recorded data (blue bars) with standard
deviation error bars of the mean, and with the mean (red line) across all pixels belonging to that bead. The 4
randomly chosen pixels that are shown for each oxygen concentration illustrate that the data from each
individual pixel seems to originate from the same distribution. The plots shown in this Fig. represents what was
a general observation on multiple datasets. The data set was recorded by summing 20 image frames at the
same imaging height.



2.3 Non-linear least squares fitting cannot capture the intensity distribution at low
photon counts

Intensity decay profiles have most commonly been fitted using non-linear least squares fitting (NLLS)
protocols that assume a normal distribution of data values. This is a good approximation for high
photon counts, using extended acquisition times, where the underlying Poisson distribution
becomes indistinguishable from the normal distribution. However, the approximation fails at the low
photon counts resulting from the targeted fast mapping of a 3D volume. Fig. S4 compares three
commonly used NLLS fitting functions for intensity decay, (i) a single exponential (red curve), (ii) a
stretched exponential (green curve), and (iii) a biexponential with a predetermined background
(purple curve), applied to data recorded on a sensor bead at 21% oxygen. The photon counts are
presented on a logarithmic scale to highlight the low-intensity observations at longer decay times.
The single exponential poorly fits the observations throughout the decay time. Both the stretched
exponential and the biexponential fitted by NLLS follow the observations at high photon counts but
fail to correctly describe the tail of the decay profile. In contrast, Maximum Likelihood Estimation
(MLE) works for any type of statistical distribution including the Poisson distribution and with NLLS
being the limiting case of MLE of a Poisson distribution for large numbers of observations. This is
illustrated in Fig. S4, where MLE fitting of a bi-exponential with a predetermined background (see ESI
section 2.4) captures the photon count distribution both in the beginning (high photon counts) and
the end (low photon counts approaching the background level) of the recorded decay trace. Thus,
MLE is the preferred method of fitting the observations and extracting effective lifetimes in the
developed analysis protocol.
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Fig. S4. Comparison of the most used NLLS-based fitting functions in single-photon counting applications and
the best performing MLE function. The data originates from a sensor bead at 21% oxygen. The data has been
re-binned from 182 to 61 bins for visualization. Each bar represents the mean of the original bins, and the
error bars show the standard deviation of the mean. Comparing the NLLS and MLE bi-exponential fits show the
impact of the distribution assumption being normal and Poisson, respectively.



2.4 Selection of fitting function by application of the AIC criterion and a derived
scoring system

The Akaike information criterion (AIC) assesses the quality of a fit penalized by the number of free

parameters in the fit. Calculated AIC values are smaller for a better fit and/or a smaller number of

parameters, which is preferred. We calculated AIC values for each type of fitting function applied to

acquired data for each bead at different oxygen concentrations to find the preferred function. The

three tested functions are:
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Fig. S5. Selection of fitting function by application AIC criterion and translation into AIC scoring system. (a)
Summed AIC values of all beads in measurements at 0% to 20.9% oxygen for single, bi- and stretched
exponential function and (b) corresponding weighted AIC score.

Fig. S5 shows the summed AIC values for calibration measurements from 0 % to 21 % O for single
exponential, bi-exponential and stretched exponential functions (Fig. S5a) and the corresponding
weighted AIC score (Fig. S5b). As is apparent, the single exponential function had the highest
summed AIC value (poorest fit), the stretched exponential the second highest and the bi-exponential
function the lowest AIC value (best fit) across all oxygen tensions. The summed AIC value for each
fitting function and oxygen tension is retrieved by summing the AIC values of all beads in a
measurement. Strong outliers in AIC values from single beads in the bead population of a
measurement and fitting function would not be apparent here and could distort the result. Thus, a
weighted AIC score was calculated. The scoring system worked as follows: For each single oxygen
sensor bead, a single, bi- and stretched exponential fit was applied and the AIC scores were
compared. The function with the lowest resulting AIC each individual bead was scored with 3 points,
the function with second lowest AIC value got scored with 2 points, and the one with the highest AIC
value got 1 point. This way, the fitting function with low AIC values for most oxygen sensor beads
could be identified. Fig. S5b confirms that the biexponential function not only has the lowest
summed AIC values but also has the highest weighted AIC score across all oxygen tensions, followed
by the stretched exponential and with significant gap the single exponential.



2.6 Influence of lower intensity cut-off on oxygen measurement accuracy
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Fig. S6. The influence of cut-off values for minimum number of photons per oxygen sensor bead on
standard deviations in calibration measurements. (a) Standard deviation in oxygen sensor bead population
at different photon intensity cut-off values (minimum photon number per oxygen sensor bead). (b-e)
Phosphorescence decay curves of oxygen sensor bead with lowest intensity in analysis with cut-off values of
300, 600, 1000 and 3000 photons. Calibration measurement at 10.5% O, used for comparative analysis.

Two major factors influencing oxygen measurement accuracy are (i) the number of photons per
bead that influence the quality of fits to phosphorescence decay curves and (ii) the oxygen tension
range of the measurement, since the relation between phosphorescence lifetime and oxygen
tension is non-linear. High photon numbers lead to smoother decay curves and thus more accurate
fits but are negatively correlated with imaging depth and speed. In addition, given the non-linear
relation of phosphorescence lifetimes and oxygen tension, in measurements at low oxygen tensions,
the error in oxygen tension due to fitting errors in lifetimes is smaller compared to measurements at
high oxygen tensions.

Fig. S6 shows the influence of cut-off values for minimum number of photons per oxygen sensor
beads on the standard deviation in calibration measurements. This is relevant when determining the
required accuracy for an experiment at hand. It is apparent in Fig. S6 that standard deviations in
oxygen measurements strongly decrease when increasing the photon cut-off for oxygen sensor
beads from 300 to 600 photons, while flattening off towards photon cut-off values of 1000 and 3000
photons per bead. Fig. S6b-e show decay traces from beads with the lowest intensities in a
measurement with cut-off values of 300, 600, 1000 and 3000, respectively, illustrating the
underlying phosphorescence decay profiles used to extract phosphorescence lifetime. For typical
measurements, a cut-off value of 1000 photons per bead was used in this work. However, depending
on the oxygen tension range of interest and required accuracy, this can be increased or decreased.



3 From 3D CAD models to oxygen distribution profiles

The microfluidic chips were designed in Inventor 2018 (Autodesk). The chip designs included flow
distribution volumes at the entry to and exit from the microfluidic channel(s) of the 1-channel or 8-
channel systems, as well as cylindrical holes (inner diameter 0.70 mm) at the chip inlet and outlet to
enable stable fluidic connection to an external fluidic pump by insertion of slightly larger (outer
diameter 0.80 mm) blunted hypodermic needles (Fig. S7a Cross-Section).

Oxygen transport within the cell culture volume was numerically modeled using COMSOL 5.5
(COMSOL AB). Cross-sections of the two modeled geometries, matching the design channel
dimensions of the physical chip, are shown in Fig. S7b, and the cross-sections were axially extruded
to the length of the designed channels within the confines of the cell culture volume. Oxygen is
transported into the model by convective flow (specified average flow rate) with an entry boundary
condition of the equilibrium concentration for oxygen in water at 37 °C (ambient of 95% air/5% CO,,
ionic strength of 170 mM).! The oxygen diffusion rate in all modeled volumes (medium, channel
wall, culture volume) is approximated with the value of oxygen diffusion in pure water at 37 °C.
Oxygen consumption in the cell culture volume is modeled by a Michaelis-Menten model using a
Michaelis constant K, = 4 uM ? and varying V;,.x to match the observed oxygen distribution.
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Fig. S7. Simulation of medium perfusion, oxygen diffusion and cellular oxygen consumption in
microperfused cell culture scaffolds. In (a) 3D CAD models of 1-channel and 8-channel synthetic vasculature
chips in areal; top and cross-sectional views are depicted. In (b) simplified 2D COMSOL models of cross-
section through 3D CAD models (red dashed line) shown. In (c), simulation of oxygen distribution in 1-
channel and 8-channel models with perfusion, oxygen diffusion and cellular oxygen consumption are
shown. Scale bar (a, top view) 2.5 mm.
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4 Comparison of flow velocity-dependent oxygen gradients in
simulations and measurements

Projected axial cross-sectional view 0 uL/min
500 pm

1.6 uL/min 0.17 mm/s

2.5 ul/min 0.27 mm/s
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Fig. S8. Comparison of measured and numerically modeled axial oxygen concentration profiles for different
perfusion rates in the 8-channel chip design at average channel flow velocities of (a and b) 0 mm/s, (c and d)
0.17 mm/s, (e and f) 0.27 mm/s, and (g and h) 3.2 mm/s. The experimental and numerically simulated seeding
density is 2 X 10° cells/mL at all flow conditions.
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