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Abstract: We present a formally exact density functional theory (DFT) determination of the 

average electron energy. Our orbital-free theory, which is based on a different accounting of 

energy functional terms, partially solves one well known downside of Kohn-Sham (KS) DFT: 

that orbital energies have but tenuous connections to physical quantities. Our computed 

average electron energies are close to experimental ionization potentials in one-electron 

systems, demonstrating a surprisingly small effect of self-interaction and other exchange-

correlation errors in established DFT methods. We argue for the use of the average electron 

energy as a physics condition on otherwise fictitious KS energy levels and as a design 

criterion for density functional approximations.  

 

One-Sentence Summary: A formally exact evaluation of average electron energies yields 

insight into electron dynamics and density functional theory 
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Main Text: Introduction 

Two main factors prevent modern Kohn-Sham (KS) density functional theory (DFT) from 

producing eigenstates comparable with experimental data: the KS formulation itself and self-

interaction error. The former is by design used to describe the total electron density as a sum 

of densities of fictitiously non-interacting electrons. The latter arises as a consequence of 

describing the total energy as a functional of the electron density,(1) and corresponds to the 

unphysical interactions of electrons with themselves. The self-interaction error is related to 

more general delocalization and static correlation errors,(2) which, together with incorrect 

asymptotic behaviors of exchange-correlation (XC) potentials,(3) are important limitations of 

DFT. In this work, we present an, in principle, exact DFT determination of the average 

electron energy, �̅�. This development leads us to derive an on-the-fly correction to KS energy 

levels that permit a more physical interpretation. We also point to the use of �̅� as a design 

criteria and quality indicator for density functional approximations.  

The average electron energy �̅� is an inherent property of any system of electrons, for example 

molecules. The most general definition of �̅� includes a sum of all one-electron energies with 

two times that of multi-electron energies, 

�̅� = −
1

𝑁
(𝐸1𝑒 + 2𝐸𝑒𝑒) , (1) 

where N is the total number of electrons. The quantity �̅� reflects a set of energies that define 

the dynamics of each electron in the presence of interactions with nuclei (𝐸1𝑒) and with the 

remaining electrons (𝐸𝑒𝑒).  Because of the per-electron focus – that �̅� involves an average 

over the total number N of electrons – the impact of the electron-electron interaction, enters 

twice in the formal definition.  
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The use of �̅� in chemistry and physics is broad. Approximations to �̅� based on orbital energy 

averaging(4) have, e.g., been productively used to predict properties like Hammett constants, 

electrophilic reactive sites, and pKa.(5) The same concept also appears in the theoretical 

framework of moments of the electron distribution.(6) Our interest in �̅� is rooted in its 

association with electronegativity,(7–11) and to its relation with changes in the total energy 

as,  

∆𝐸 = −𝑁∆�̅� − ∆𝐸𝑒𝑒 + ∆𝑉𝑁𝑁 (2) 

where 𝑉𝑁𝑁 is the nuclear repulsion energy.(8, 9) Equation (2) highlights the role of average 

electron energies in governing chemical and physical processes. Some of us have quantified 

the role of ∆�̅� in chemical bond formation using approximate methods,(8, 9) and used it to 

study the effect of compression on the electronegativity of atoms.(12) In one such approach, 

�̅� is estimated from experiment, as an average of photoionization energies, 

�̅�𝐼𝑃 = ∑
𝑛𝑖𝜀𝑖,𝐼𝑃

𝑁

𝑛

𝑖

 (3) 

where 𝜀𝑖,𝐼𝑃 and 𝑛𝑖 are, respectively, the ionization potential and the occupation number 

associated to the 𝑖th molecular or atomic energy level. The ability to estimate ∆�̅�  

experimentally, along with ∆𝑉𝑁𝑁 from molecular structures and ∆𝐸 from thermochemical 

data, has merited us to label Eq. (2) as an experimental quantum chemistry energy 

partitioning.(9)  

Use of methods such as multi-reference configuration interaction (MRCI) offers an exact, if 

expensive, evaluation of the average electron energy,  

�̅� = −
1

𝑁
∫ (𝜏𝐿(𝒓) + 𝜐(𝒓)𝜌(𝒓) + 2 ∫

𝑃(𝒓, 𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓2) 𝑑𝒓, (4) 
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where 𝜏𝐿(𝒓) is the Laplacian form of the kinetic energy density, 𝜌(𝒓) is the electron density, 

𝜐(𝒓) is the nuclear potential, and 𝑃(𝒓, 𝒓′) is the diagonal of the two-electron reduced density 

matrix.(8) In practice, such calculations are often prohibitively costly.  

The most straightforward computational approximation to Eq. (1) for molecules is an average 

over occupied electronic levels, the electronic eigenvalues of a 1-determinant wavefunction, 

�̅�𝑜𝑟𝑏 = − ∑
𝑛𝑖𝜀𝑖

𝑁
,

𝑛

𝑖

 (5) 

where 𝜀𝑖 and 𝑛𝑖 instead denote the eigenvalue and the occupation number associated to the 𝑖th 

orbital.  

Equation (5) is the best possible description of �̅� within HF theory, for which Koopmans 

theorem rigorously connects each orbital eigenvalue with a vertical ionization potential.(13) 

A physical interpretation of KS orbital energies is famously lost in DFT.(14) KS orbitals are 

often accurate in reflecting the spatial structure of (and hence matrix elements for) actual 

excitations and charge transfer.(15) However, the problem with Eq. (5) is fundamental, for it 

is only the highest occupied molecular orbital (HOMO) energy that finds a possible physical 

interpretation in the Janak’s theorem,(16) as a sudden photoionization excitation energy. 

Also, it does so only in the thermodynamical limit. For molecules, there are corrections and 

the theorem relevance is, nowadays, still under debate.(17)  

Computing the Average Electron Energy, �̅�, in DFT 

Our approach for calculating an in principle exact and physically motivated �̅� boils down to a 

sum of energy terms that does not involve KS orbitals. We look first at the components of the 

exact Eq. (4) so to identify the analogous expressions in KS DFT. The first integral in Eq. (4), 

∫ 𝜏𝐿(𝒓)𝑑𝒓, corresponds to the expectation value of the total kinetic energy < 𝑇 >. In KS 

DFT, the total kinetic energy is described as a sum of two terms,  
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∫ 𝜏𝐿(𝒓)𝑑𝒓 =< 𝑇 > =  𝑇𝐾𝑆[𝜌] + 𝑇𝑐[𝜌],   (6) 

where 𝑇𝐾𝑆[𝜌] is the kinetic energy computed by considering a single Slater determinant of 

the KS orbitals and where the remainder 𝑇𝑐[𝜌] is the kinetic correlation energy. In other 

words, 𝑇𝑐[𝜌] is the difference in kinetic energy between the non-interacting (fictitious KS 

orbitals) and the real interacting electrons we aim to describe. The division of Eq. (6) reflects 

the breakthrough provided by the KS scheme,(18–20) but is also a consequence of there 

being no direct way to exactly compute the actual kinetic energy < T > in DFT. The 

correlation component of the kinetic energy is typically handled implicitly, as part of the total 

XC energy Exc.(18, 19) Undoing the division expressed as Eq. (6) is key to our proposed DFT 

calculation of average electron energies. 

The second integral in Eq. (4) describes the energy of the electrons in the field generated by 

the nuclear charges. Because DFT provides us with access to the ground-state electron-

density solution, this nuclear-electron attraction 𝐸𝑁𝑒[𝜌] energy can be evaluated exactly, 

∫ 𝜐(𝒓)𝜌(𝒓)𝑑𝒓 = 𝐸𝑁𝑒[𝜌]. (7) 

The last term of Eq. (4), given by the double integral ∬
𝑃(𝒓,𝒓2)

|𝒓−𝒓2|
𝑑𝒓𝑑𝒓2, equals the expectation 

value of the 𝐸𝑒𝑒  energy and is in DFT terminology expressed as a sum of terms, 

∬
𝑃(𝒓, 𝒓2)

|𝒓 − 𝒓2|
𝑑𝒓𝑑𝒓2 =< 𝑉𝑒𝑒 >=  𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] − 𝑇𝑐[𝜌], (8) 

where 𝐽[𝜌] denotes the Hartree or mean-field approximation to < 𝐸 >. This formulation 

follows from the definition of the XC energy, 𝐸𝑥𝑐[𝜌] =< 𝑇 + 𝑉𝑒𝑒 > −𝐽[𝜌] − 𝑇𝐾𝑆,(19, 21) 

since 𝑇𝑐[𝜌] is just the difference between the actual kinetic energy and 𝑇𝐾𝑆, the kinetic energy 

of a single Slater determinant of KS orbitals.(19) 
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By combining Eq. (4) with Eqs. (7-8), we arrive at the formally exact DFT-based 

determination of the averaged electron energy: 

�̅�𝐷𝐹𝑇 = −
1

𝑁
(𝑇[𝜌] + 𝐸𝑁𝑒[𝜌] + 2 ∙ ( 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] − 𝑇𝑐[𝜌] )). (9) 

Equation (9) is mostly given in terms provided by generic orbital-based and planewave DFT 

codes. We do, however, need a separate step for computing the 𝑇𝑐[𝜌] term, which we outline 

in the SI. Fortunately, the 𝑇𝑐[𝜌] term is often small compared to the total XC energy in 

molecules, where exchange dominates. In cases where this assumption holds in practice we 

may proceed with an approximate characterization,   

�̅�𝐷𝐹𝑇 ≈ �̅�𝐷𝐹𝑇∗ = −
1

𝑁
(𝑇𝐾𝑆[𝜌] + 𝐸𝑁𝑒[𝜌] + 2 ∙ ( 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌])), (10) 

where all terms are directly available in orbital based DFT codes. We shall use this 

approximation for the analysis below because we have documented that, for the set of 

investigated molecules, the ratio of 𝑇𝑐 and 𝐸𝑥𝑐  is at most 6 percent (Table S1). 

The �̅�𝐷𝐹𝑇 and �̅�𝐷𝐹𝑇∗ quantities are both notably different from HF and KS orbital-based 

approximations, �̅�𝑜𝑟𝑏
𝐻𝐹  and �̅�𝑜𝑟𝑏

𝐾𝑆 , commonly computed in chemistry from Eq. (5).(4–6, 11, 12, 

22) Equation (5) and the exact Eq. (4) are identical at the HF level. However, an averaging 

over KS orbital energies also reflects a density-weighted integral of the XC potential, 𝜐𝑥𝑐(𝒓) 

(18), 

�̅�𝑜𝑟𝑏
𝐾𝑆 = − ∑

𝑛𝑖𝜀𝑖

𝑁

𝑛

𝑖

= −
1

𝑁
(𝑇𝐾𝑆[𝜌] + 𝐸𝑁𝑒[𝜌] + 2𝐽[𝜌] + ∫ 𝜐𝑥𝑐(𝒓)𝜌(𝒓)𝑑𝒓). (11) 

In short, we now have: �̅�𝐷𝐹𝑇 ≈ �̅�𝐷𝐹𝑇∗ ≠ �̅�𝑜𝑟𝑏
𝐾𝑆 , three robust methods through which the 

average electron energy �̅� can be calculated using DFT. They all deliver at varying degrees of 

approximation for even the formally exact expression relies on non-exact XC energy 

functionals. 
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In what follows, we focus on the analysis of �̅�𝐷𝐹𝑇∗ and comparisons with estimates of �̅� from 

HF and KS-orbitals (�̅�𝑜𝑟𝑏
𝐻𝐹  and �̅�𝑜𝑟𝑏

𝐾𝑆  viz. Eq. (5)), MRCI calculations (�̅�𝑀𝑅𝐶𝐼 viz. Eq. (4)), and 

with experimental photoionization data (�̅�𝐼𝑃 viz. Eq. (3)). To facilitate for a thorough 

comparison between �̅�𝐷𝐹𝑇∗ and �̅�𝑜𝑟𝑏
𝐾𝑆 , we rely on two popular XC functionals, PBE (23) 

(providing �̅�𝐷𝐹𝑇∗
𝑃𝐵𝐸  and �̅�𝑜𝑟𝑏

𝑃𝐵𝐸) and B3LYP (24, 25) (providing �̅�𝐷𝐹𝑇∗
𝐵3𝐿𝑌𝑃 and �̅�𝑜𝑟𝑏

𝐵3𝐿𝑌𝑃). We will at 

times refer to our �̅�𝐷𝐹𝑇∗-values as XC corrected average electron energies.  

Results 

One-electron Systems.  

The self-interaction error of DFT is most apparent in systems of only one electron. The XC 

energy functional must here produce an effective local XC potential that exactly cancels what 

is clearly a spurious Hartree or mean-electron-field energy contribution to 𝐽[𝜌].(1) For one-

electron systems �̅� should equal the total energy of the system.  

Table 1 shows �̅� calculated in different ways for three one-electron systems: H, He+ and H2
+. 

Also shown are experimental references, �̅�𝐼𝑃, which in these cases are nothing more than the 

single ionization potential of the molecule or ion in question. Note in Table 1 the clearly 

unphysical energies of the KS-orbitals (�̅�𝑜𝑟𝑏
𝑃𝐵𝐸 and �̅�𝑜𝑟𝑏

𝐵3𝐿𝑌𝑃 are here the negative of the energies 

of occupied KS energy levels). For example, the KS-orbital of H is attributed an energy of 

7.6 and 8.8 eV with PBE and B3LYP, respectively. The actual energy of an electron in H is 

exactly the ionization potential of the atom, 13.598 eV.  
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Table 1: Average electron energies �̅� of one-electron systems in eV·e-1, estimated at varying 

levels of approximation.  

 �̅�𝑜𝑟𝑏
𝑃𝐵𝐸 �̅�𝑜𝑟𝑏

𝐵3𝐿𝑌𝑃 �̅�𝐷𝐹𝑇∗
𝑃𝐵𝐸  �̅�𝐷𝐹𝑇∗

𝐵3𝐿𝑌𝑃 �̅�𝑜𝑟𝑏
𝐻𝐹  �̅�𝑀𝑅𝐶𝐼   �̅�𝐼𝑃

a 

H 7.574 8.767 13.614 13.745 13.604 13.605 13.598 

He+ 42.038 44.510 54.098 54.356 54.418 54.419 54.418 

H2
+ 23.772 25.004 30.414 30.450 30.017 30.019 30.005 

a Computed from Eq. (3) and experimental data detailed in the supplementary text.  

The improvement provided by Eq. (10) is drastic: �̅�𝐷𝐹𝑇∗ is already with a conventional 

generalized-gradient-approximation (GGA) functional, such as PBE, in near perfect 

agreement with experiment. The value of �̅�𝐷𝐹𝑇∗
𝑃𝐵𝐸  for H is, likely somewhat fortuitously, only 

16 meV different from experiment. The hybrid XC functional B3LYP is less affected by self-

interaction error overall, but overestimates the electron energy in H by 0.14 eV.     

Two-electron Systems.  

In Table 2, we next compare two-electron systems: He, H2 and H-. With a second electron 

correlation energy is introduced, and we here expect the mean-field picture of HF to fail to 

some degree. In principle, the energy of two explicitly correlated electrons should be better 

described by DFT.  
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Table 2: Average electron energies �̅� of two-electron systems in eV·e-1, estimated at varying 

levels of approximation.  

 �̅�𝑜𝑟𝑏
𝑃𝐵𝐸 �̅�𝑜𝑟𝑏

𝐵3𝐿𝑌𝑃 �̅�𝐷𝐹𝑇∗
𝑃𝐵𝐸  �̅�𝐷𝐹𝑇∗

𝐵3𝐿𝑌𝑃 �̅�𝑜𝑟𝑏
𝐻𝐹  �̅�𝑀𝑅𝐶𝐼   �̅�𝐼𝑃 

H- -3.328 -2.432 1.294 1.563 0.398 1.571 0.800 

He 15.734 17.986 25.998 26.552 24.976 26.601 24.587 

H2 10.378 11.827 17.109 17.478 16.176 17.689 15.980 

Indeed, whereas the estimates based on averaging KS orbital energies, are far off the mark 

and predict unbound electrons, the corrected �̅�𝐷𝐹𝑇∗
𝑃𝐵𝐸 and �̅�𝐷𝐹𝑇∗

𝐵3𝐿𝑌𝑃-values are all slightly larger 

than the negative of the HF orbital energies, �̅�𝑜𝑟𝑏
𝐻𝐹 . In other words, our �̅�𝐷𝐹𝑇∗ evaluations 

correctly describe electrons that are more bound compared to the mean field description. 

Adding the 𝑇𝑐 contributions to extract �̅�𝐷𝐹𝑇 increases the values only marginally (table S1). 

The improvements provided by the near exact �̅�𝐷𝐹𝑇∗ is further highlighted when comparing 

to MRCI results. MRCI introduces, at considerable computational costs, correlation energy 

contributions which are missed in HF theory. Going forward, �̅�𝑀𝑅𝐶𝐼 (and not �̅�𝐼𝑃) represents 

our reference values for validating Eq. (10) in multielectron systems. Whereas 

photoionization experiments can provide highly accurate measurements of the electron 

energy in one-electron systems (Table 1), the comparison becomes approximate for 

multielectron systems. 

The reason why �̅�𝐼𝑃 is only approximately equal to �̅� for systems of more than one electron is 

that ionization is a process between two states. In contrast, �̅� is, per definition in Eq. (1), a 

property of one state. Relaxation of the electronic structure, e.g., spatial contraction of 

orbitals, upon ionization is the reason why we should expect measures of �̅�𝐼𝑃 to 

systematically underestimate the actual average electron energy �̅�.(26, 27) Indeed, in Table 2, 

and in all data thereafter, our �̅�𝐷𝐹𝑇∗ and �̅�𝑀𝑅𝐶𝐼 estimates to �̅� are consistently larger, i.e., 
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show more strongly bound electrons, compared to estimates from experimental 

photoionization, �̅�𝐼𝑃. Ionization of single molecules can, of course, be calculated very 

accurately, especially with MRCI. However, averaging of such accurate ionization energies, 

cf. Eq. (4) does not exactly equal �̅�.   

Larger Molecules.   

Table 3 shows comparisons of approximations to �̅� in larger molecules. The real take-away 

from Table 3 is the notable agreement in absolute values of, �̅�𝐷𝐹𝑇∗
𝑃𝐵𝐸 , �̅�𝐷𝐹𝑇∗

𝐵3𝐿𝑌𝑃 and �̅�𝑀𝑅𝐶𝐼. Our 

XC-corrected average electron energies �̅�𝐷𝐹𝑇∗ are also systematically larger than �̅�𝑜𝑟𝑏
𝐻𝐹 . We 

can attribute the difference in energy to the missing correlation energy in a HF description. 

For example, by removing the 𝐸𝑐[𝜌] contribution (tables S2-3) from our �̅�𝐷𝐹𝑇∗
𝑃𝐵𝐸  and �̅�𝐷𝐹𝑇∗

𝐵3𝐿𝑌𝑃 

estimates for CO2, the latter compute as 147.52 eV·e-1 and 147.33 eV·e-1, respectively, 

comparable to the 147.99 eV·e-1 for �̅�𝑜𝑟𝑏
𝐻𝐹 .  
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Table 3: Average electron energies �̅� of a selection of molecules in eV·e-1, estimated at 

varying levels of approximation.  

 �̅�𝑜𝑟𝑏
𝑃𝐵𝐸 �̅�𝑜𝑟𝑏

𝐵3𝐿𝑌𝑃 �̅�𝐷𝐹𝑇∗
𝑃𝐵𝐸  �̅�𝐷𝐹𝑇∗

𝐵3𝐿𝑌𝑃 �̅�𝑜𝑟𝑏
𝐻𝐹  �̅�𝑀𝑅𝐶𝐼   �̅�𝐼𝑃 

HF 144.294 148.368 165.107 165.458 163.001 165.352 157.156 

H2O 112.859 116.395 130.826 131.165 129.054 131.152 124.914 

NH3 85.841 88.942 101.305 101.666 99.909 101.658 95.572 

CH4 62.749 65.510 76.053 76.475 75.021 76.485 71.299 

CO 123.005 126.875 142.145 142.587 140.662 142.451 135.047 

N2 120.140 124.040 139.036 139.541 137.882 139.391 132.114 

CO2 129.585 133.613 149.354 149.834 147.992 149.626 141.400 

C6H6 85.49 88.78 101.47 101.91 100.46 a 94.30 

a not computationally feasible.   

Estimates to �̅� obtained from the averaging of photoionization peaks, i.e., �̅�𝐼𝑃 values are in 

part provided as a small test set for the experimental quantum chemistry approach of Eq. (2). 

Estimates of �̅�𝐼𝑃 are clearly smaller in absolute terms, compared to �̅�𝐷𝐹𝑇∗, �̅�𝑜𝑟𝑏
𝐻𝐹  and �̅�𝑀𝑅𝐶𝐼, as 

expected from electronic relaxation effects.(28) We note however, that a linear regression of 

�̅�𝑀𝑅𝐶𝐼and �̅�𝐼𝑃 in these set of molecules have a coefficient of determination (r2) of 0.9998, 

implying that relative measures, ∆�̅�, can be productively approached experimentally. 

Using �̅� to Guide Density Functional Development  

One way to use more physically motivated average electron energies, such as �̅�𝐷𝐹𝑇∗ (ideally 

�̅�𝐷𝐹𝑇), is as a metric of quality of density functional approximations. DFT methods are today 

primarily evaluated against total energies and, to a lesser degree, properties.(29, 30) The 
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average electron energy �̅� contains twice all the terms most challenging in DFT functional 

design, those describing electron repulsion and correlation effects. All density functional 

approximations result in errors in both the density and in the computed XC energy for that 

density. Computations of total energies may therefore appear accurate because of fortuitous 

cancellations of these kinds of errors. By relying on  �̅� as a quality assessment, we offset such 

cancellations. Fig. 1 shows a selection of common functionals evaluated against the MRCI 

data of tables 1-3 (see also tables S4-S5). Our test set is not exhaustive and relies on the 

omission of Tc in the definition of �̅�𝐷𝐹𝑇∗. Consequently, Fig. 1 data does not necessarily 

reflect the inherent quality of individual functionals. Instead, Fig. 1 is suggestive of an overall 

high quality of common DFT methods. Benchmarking of DFT methods using the formally 

exact �̅�𝐷𝐹𝑇 metric is outside of the scope of this work and has only been attempted for PBE.  

 

Figure 1: Mean-Average Error (MAE) of �̅�𝐷𝐹𝑇∗ from �̅�𝑀𝑅𝐶𝐼 computed with a selection of 

common density functional approximations. DH = double hybrid. The corresponding MAE 

for formally exact �̅�𝐷𝐹𝑇 is shown for PBE in red.  
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An on-the-fly Correction to KS Orbital Energies 

Another way to utilize a more physically motivated average electron energy is for quantifying 

the impact of electron-electron interactions on KS orbitals. By using �̅�𝐷𝐹𝑇∗ as a constraint on 

adjustments made to the fictitious one-particle KS energies we arrive at an interpretation of 

corrected levels that resembles the ionization-potential approximation to �̅�, Eq. (3). We have 

pointed out that the nature of �̅�𝐷𝐹𝑇 and �̅�𝐼𝑃 differ. However, by adjusting the KS orbital 

energies subject to input from our formal-DFT analysis, we can make a new (and we think 

more physical) interpretation of the KS orbitals. We can view such adjusted levels as Fermi-

golden-rule type representations as they would appear if independent-particle dynamics 

defined the average electron energy.  

In what follows, we explore one correction scheme, in which the total energy of occupied 

orbitals is constrained so to equal the corrected total electron energy N�̅�𝐷𝐹𝑇∗, 

∑ 𝑛𝑖(𝜀𝑖 + ∆𝑖)

 

𝑖

= −𝑁�̅�𝐷𝐹𝑇∗, (12) 

where 𝑛𝑖 is the occupation of orbital i, 𝜀𝑖 is the original orbital energy, and ∆𝑖 is the amount 

by which orbital i is adjusted. The way by which ∆𝑖 is determined is not necessarily unique. 

We here choose to correct each orbital by an amount that is directly proportional to its 

contribution to the total KS orbital average energy, �̅�𝑜𝑟𝑏
𝐾𝑆 , i.e.,  

∆𝑖=
𝜀𝑖

�̅�𝑜𝑟𝑏
𝐾𝑆

(�̅�𝑜𝑟𝑏
𝐾𝑆 − �̅�𝐷𝐹𝑇∗). (13) 

The corrected energy of orbital i, 𝜀𝑖
∗, then becomes:  

𝜀𝑖
∗ = 𝜀𝑖

�̅�𝐷𝐹𝑇∗

�̅�𝑜𝑟𝑏
𝐾𝑆 . (14) 
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In other words, the lower the energy of an occupied KS orbital the more it is corrected. The 

correction scheme of Eq. (14) appears to work well in general. Because we interpret the shifts 

as measures of the impact of exchange correlation on individual levels, we expect �̅�-

constrained energies to lie below the (uncorrelated) HF references. Our results generally 

confirms that this observation holds despite using the simplest possible (linear) scheme for 

assigning level shifts. But we also note a caveat: The simple linear assignment may not be 

reliable to yield an accurate XC-content measure for 1s core levels. A more detailed analysis 

is necessary, but in the interest of simplicity we focus here on discussing the more chemically 

relevant valence orbitals. In practice, we proceed using pseudopotentials and ignore the 1s 

electrons altogether. 

Fig. 2 shows an excerpt of our data where the correction scheme of Eq. (14) has been applied 

to standard DFT calculations performed on benzene (see also tables S6-S7). Additional 

examples are provided in tables S8-S9.  
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Figure 2: Native KS orbital eigenvalues (black), �̅�-constrained electron energies (red, 

adjusted following Eq. (14)) and Hartree-Fock orbital energies (blue) for benzene. 

Experimental data (green) from Ref. (31) are presented with negative signs to facilitate 

comparisons, and is subject to extensive relaxation effects during photoionization (vide 

supra). Occupied �̅�-constrained levels are largely independent on functional choice and 

describe electrons as more bound compared to Hartree-Fock. Energy gaps between occupied 

and unoccupied levels are indicated in grey. Symmetries (irreducible representations) of 

levels are indicated throughout. 

  



 16 

Despite the simplicity of our correction scheme, an improvement is appreciable for all 

valence orbital energies when compared to experimental binding energies and especially to 

HF orbital energies. By improvement we refer to the general lowering of the energies 

attributed to each 1-particle wavefunction, an effect expected from a more physical 

accounting of electron correlation.   

There are several consequences to our correction scheme: Unoccupied levels are unaffected, 

and the occupied higher levels, such as the HOMO, are only slightly corrected. That there 

should be a small correction for the HOMO orbital is in accord with Janack’s theorem. Inner 

valence electrons are lowered by an increasing amount. A notable effect of our scheme is that 

the resulting energy levels are rather insensitive to the DFT functional (c.f. table S7). 

Increased agreement between levels of theory is particularly appreciable in molecules of 

many electrons. For example, the energy of the native KS HOMO of benzene differs by 0.62 

eV when computed with PBE and B3LYP, while the �̅�-constrained HOMO level is predicted 

to be ~10.4 eV largely independent of the chosen XC approximation.  

Conclusions 

The usefulness of KS DFT derives from the construction of correlated electron densities from 

fictitious noninteracting electronic orbitals. One well known downside with this approach is 

that the resulting KS orbital energies have but tenuous connections to physical quantities. In 

this work we have derived an in principle exact expression for the average energy of physical 

electrons in DFT. Our inspiration for considering the average electron energy derives from 

chemistry, where this quantity has been linked to the useful concept of electronegativity. 

A more physical description of electrons is demonstrated in several ways: The average 

electron energies of H, He+ and H2
+ computes as only fractions of an eV away from 

experimental ionization potentials using simple GGA functionals. Our approach provides a 
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more bound description of the average electron compared to HF theory in larger molecules 

and values consistently resemble those obtained at MRCI level of theory, but at drastically 

reduced computational costs. This agreement is a testament to how well self-interaction 

errors are handled in DFT. We therefore suggest that the average electron energy �̅� can be 

used as a physically motivated (albeit non observable) indicator of quality, and as a 

constraint, in the design of DFT functionals.  

A correction scheme for KS orbital energies is presented, which allows for a drastically better 

agreement with HF orbital eigenvalues and ionization potentials. This scheme is motivated as 

a physical constraint on otherwise fictitious KS energy levels, and as way to estimate the 

impact of electron-electron interactions on individual KS orbitals.  

Our theory is straightforwardly implementable together with standard DFT functionals and 

software and comes at no additional computational cost. Implementation is here exemplified 

on molecular calculations, but applicability is being developed also for extended systems. 

Potential utility abounds: More physically motivated level energies will, for example, provide 

better predictions of chemical reactivity. Another tantalizing utility is the computation of 

more accurate band gaps. Such developments can lead to further improvements in the 

modeling of light-matter interactions, spectroscopy, electron transport and a range of material 

properties.  
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