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A topological reference system is a theory that allows the visualization of the effects of a 
ring structure on the energy stabilization of π-electron conjugated systems. In this study, the 
original paper was reconfigured to introduce the definition of the topological reference system 
and practical calculation method.      
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1. Introduction 
 

When discussing the aromaticity of a ring π-electron conjugated compound, the resonance 
energy, Eπ

res., is defined as per Equation 1.    
 
𝐸𝐸𝜋𝜋𝑟𝑟𝑟𝑟𝑟𝑟. ≡ 𝐸𝐸𝜋𝜋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝜋𝜋

𝑟𝑟𝑟𝑟𝑟𝑟.  (1) 
 
However, here, Eπ

real represents the total actual π-electron energy of a ring π-electron 
conjugated system, and Eπ

ref. represents the total π-electron energy of a hypothetical reference 
system of that ring π-electron conjugated system. The selection of the reference system is 
arbitrary, and various Eπ

res. values have been suggested to solve a variety of problems [1].     
Among these various Eπ

res. values, the topological resonance energy (heretofore referred to 
as TRE) defines the hypothetical π-electron conjugated system as a reference system with all 
of the effects of ring structure removed from the ring π-electron conjugated system. Because it 
has a wide application range and clarity in physical imaging, it has been applied to various 
problems and produced satisfactory results [2]. However, Eπ

res. with TRE is only effective for 
a thermodynamic aromaticity of the ring π-electron conjugated system in question and cannot 
be applied to other problems in kinetic aromaticity related to the chemical reactivity 
influenced by the electron distribution of the system. In addition, many of the Eπ

res. values in 
the reference system are hypothetical and cannot examine the relationship between the 
structural and physical properties based on the electron distribution.       

The kinetic and thermodynamic aromaticity can be discussed by comparing the quantum 
chemistry indices that are involved in the reactivity of the reference and the real ring 
π-electron conjugated systems, such as π-electron density and polarizability. Expanding the 
TRE theory will be an interesting topic. In addition, if the TRE reference system can be 
visualized, it becomes possible to expand the graphical discussion used widely in the TRE 
research area to the reference system, thereby deepening understanding of the true nature of 
aromaticity. However, thus far, these attempts have only been performed in graphical research 
with partial aromaticity by Gutman [3]. 

Therefore, in this report, TRE is reformulated using the propagator method based on the 
Hückel approximation in the next chapter, and through this process, the topological reference 
system (hereinafter referred to as TRS), a hypothetical concept that allows visualization, is 
proposed. Then, the quantum chemistry indices of the TRS are defined by the propagator from 
the analogical inferences with the real π-electron conjugated system. In addition, a general 
expression for the TRS quantum chemistry index for a simple ring π-electron conjugated 
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system is obtained in Chapter 3. To more appropriately use TRS in the π-electron conjugated 
system for a complicated structure, the TRS quantum chemistry index is calculated from the 
results of the TRS molecular orbital calculation by Hückel with visualization as a concrete 
structure, and the method is introduced in Chapter 4.  
 
 
2. Topological reference system 
2.1. Propagator method 

First, the propagator method based on the Hückel approximation used in the TRE 
re-formulation, is summarized in accordance with Aono et al. [4]. The propagator, G(z), is 
defined as Equation 2 below. 
 
(𝑧𝑧 − 𝑯𝑯)𝑮𝑮(𝑧𝑧) = 𝟏𝟏  (2) 
 
In Equation 2, z is an energy parameter and H is a Hamiltonian, which describes the system. 
Here, if the complete orthonormal system of H, or a pair of {｜n>} that satisfies below is 
known, 
 
𝑯𝑯|𝑛𝑛⟩ = 𝜖𝜖𝑛𝑛|𝑛𝑛⟩   (3) 
 

⟨𝑛𝑛|𝑚𝑚⟩ = 𝛿𝛿𝑛𝑛𝑛𝑛   (4) 
 

∑ |𝑛𝑛⟩⟨𝑛𝑛|𝑛𝑛 = 𝟏𝟏   (5) 
 
G(z) can be expressed as Equation 6 below by subtracting Equation 5 from Equation 2.  
 
𝑮𝑮(𝑧𝑧) = ∑ |𝑛𝑛⟩⟨𝑛𝑛|

𝑧𝑧−𝜖𝜖𝑛𝑛𝑛𝑛    (6) 
 

Now, assuming that the π-electron in the π-electron conjugated system in discussion can be 
described well by the Hückel Hamiltonian shown by Equation 7, 
 
𝑯𝑯 = ∑ |𝑠𝑠⟩𝛼𝛼𝑟𝑟⟨𝑠𝑠|𝑟𝑟 + ∑ |𝑠𝑠⟩𝛽𝛽𝑟𝑟𝑠𝑠⟨𝑡𝑡|′

𝑟𝑟𝑠𝑠 , (7) 
 
and considering a situation where the system consists of atoms that are all the same, the 
Coulomb integral, αs, and the resonance integral, βst, in Equation 7 can be expressed as below.  
 
𝛼𝛼𝑟𝑟 = 𝛼𝛼 = 0   (8) 
 

𝛽𝛽𝑟𝑟𝑠𝑠 = 𝛽𝛽 = 1   (9) 
 
The Hückel Hamiltonian in Equation 7 is now simplified as Equation 10 below.  
 
𝑯𝑯 = ∑ |𝑠𝑠⟩⟨𝑡𝑡|′

𝑟𝑟𝑠𝑠    (10) 
 
However, the prime symbols at the summation symbols in Equations 7 and 10 indicate that 
the sum is between adjacently-bonded atoms. In addition, in the discussion below, the basis 
function in each atom of the π-electron conjugated system is hypothesized as a complete 
orthonormal system that satisfies Equations 3 to 5. 
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Fig.1 Schematic diagrams of molecules. 
a: Diatomic molecule, b: nonperturbative diatomic molecule, c: triatomic ring molecule, 
d: nonperturbative triatomic ring molecule. 
 

Consider a diatomic molecule (Figure 1a) well-described by Hückel Hamiltonian theory in 
Equation 10. According to Equation 6, the diagonal element in the atomic orbital display for 
the 0th order propagator for the atom 1 in this diatomic molecule, G2

0(1), namely the 
propagator of a nonperturbative system with no interaction between atoms 1 and 2, v, (Figure 
1b) is expressed simply as Equation 11 below.       
 
𝐺𝐺20(1) = 1

𝑧𝑧
      (11) 

 
According to the self-consistent perturbation theory by Anderson [5], the diagonal element in 
atom 1 of the correct diatomic molecule that has incorporated v to the infinite dimension, 
G2(1), can be given by Equation 12 below. 
 
𝐺𝐺2(1) = 𝐺𝐺20(1) + 𝐺𝐺20(1)𝑣𝑣12𝐺𝐺20(2)𝑣𝑣21𝐺𝐺2(1)  (12) 
 
Combining Equations 11 and 12 gives Equation 13 
 
𝐺𝐺2(1) = [ 𝐺𝐺20(1)−1 − 𝑣𝑣12𝐺𝐺20(2)𝑣𝑣21 ]−1  = 𝑧𝑧

𝑧𝑧2−1
     (13) 

 
The pole in Equation 13 represents the Hückel molecular orbital energy. However, here, v12 
and v21 are both 1 to maintain consistency with the substitution of Equation 9. In addition, 
G2

0(1) = G2
0(2) as noted.  

Integrating the obtained propagator by the path integral formulation C that may contain the 
pole corresponding to the occupied orbital inside, all π energy, Eπ, π-electron density, qr, bond 
order, pst, and an atom’s self-polarizability, πrr, are obtained as below. 
 
𝐸𝐸𝜋𝜋 = ∑ 1

2𝜋𝜋𝜋𝜋𝑟𝑟 ∫ 𝑑𝑑𝑧𝑧 𝑧𝑧𝐺𝐺(𝑠𝑠)𝑐𝑐    (14) 
 

𝑞𝑞𝑟𝑟 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑑𝑑𝑧𝑧 𝐺𝐺(𝑟𝑟)𝑐𝑐    (15) 

 

𝑝𝑝𝑟𝑟𝑠𝑠 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑑𝑑𝑧𝑧 𝐺𝐺(𝑠𝑠, 𝑡𝑡)𝑐𝑐    (16) 



 
 

4 
 

𝜋𝜋𝑟𝑟,𝑟𝑟 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑑𝑑𝑧𝑧 𝐺𝐺(𝑟𝑟)𝐺𝐺(𝑟𝑟)𝑐𝑐   (17) 

 
However, the integral symbols in Equations 14 to 17 can also indicate the spin total. In 
addition, one needs to pay attention that, as the definition from Equation 16 using the 
propagator shows, pst which was thought to be an index showing the bond strength, is only the 
probability amplitude between the atoms st. As described later, the bond strength between the 
atoms st must be defined as a quantity related to the bond energy. To minimize the impact to 
the traditional discussion, instead of pst, an index showing the bond strength is defined in the 
next equation. However, here, ats indicates an element between ts in the adjacent matrix [6]. 
 
𝑞𝑞𝑟𝑟𝑠𝑠 = 1

2𝜋𝜋𝜋𝜋 ∫ 𝑑𝑑𝑧𝑧 𝐺𝐺(𝑠𝑠, 𝑡𝑡)𝑎𝑎𝑠𝑠𝑟𝑟𝑐𝑐   (16a) 
 
In a real π-electron conjugated system, it is apparent that the values of Equations 16 and 16a 
match.  
 
2.2. Topological reference system 

To simplify the discussion, please consider a three-membered ring in Figure 1c. 
Considering Figure 1d as a nonperturbative system and according to the self-consistent 
perturbation theory by Anderson, the diagonal element for atom 1 of the propagator for this 
three-membered ring, R3(1), can be given as Equation 18, which is similar to Equation 12.  
 
𝑅𝑅3(1)−1 = 𝑅𝑅30(1)−1 − 𝑣𝑣12𝑅𝑅30(2)𝑣𝑣21 − 𝑣𝑣13𝑅𝑅30(3)𝑣𝑣31 − 𝑣𝑣12𝑅𝑅30(2,3)𝑣𝑣31 − 𝑣𝑣13𝑅𝑅30(3,2)𝑣𝑣21  (18) 
 
However, R3

0(2,3) and R3
0(3,2) in Equation 18 indicate nondiagonal elements between atoms 

2 and 3 of the propagator in Figure 1d. In addition, each of the propagators of the 
nonperturbative system that appear on the right of Equation 18 are given as below [4].  
 
𝑅𝑅30(1) = 1

𝑧𝑧
   (19) 

 

𝑅𝑅30(2) = 𝑅𝑅30(3) =  𝑧𝑧
𝑧𝑧2−1

  (20) 
 

𝑅𝑅30(2,3) = 𝑅𝑅30(3,2) =  1
𝑧𝑧2−1

 (21) 
 
Substituting Equations 19 to 21 to Equation 18 gives Equation 22 below.  
 
𝑅𝑅3(1) = (𝑧𝑧+1)(𝑧𝑧−1)

(𝑧𝑧+1)2(𝑧𝑧−2)
  (22) 

 
However, here, v is 1 again.  

Looking at Equation 18, one needs to consider the physical meaning of each item that 
configures the propagator of the three-membered ring once again. Figure 2 shows each item 
on the right of Equation 18 schematically. From this figure, it is clear that the fourth and fifth 
items on the right of Equation 18 reflect the ring structure of the three-membered ring. TRE 
assumes that the reference system is the system with all the interaction propagation effects 
that have reflected the removed ring structure [2], and when the propagator with the fourth 
and fifth items on the right of Equation 18 is removed, R3

ref.(1), is obtained experimentally, 
and Equation 23 below is obtained. 
 
𝑅𝑅3
𝑟𝑟𝑟𝑟𝑟𝑟.(1) = (𝑧𝑧+1)(𝑧𝑧−1)

𝑧𝑧(𝑧𝑧+√3)(𝑧𝑧−√3)
  (23) 
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It is important to note that the pole of this propagator correctly matches the answer of the TRE 
reference polynomial expression for the three-membered ring [7] as well as the fact that 
Equation 23 matches the propagator of the central location of the chain π-electron conjugated 
system composed of five atoms. From this, when calculating the diagonal element of the 
propagator for the ring π-electron conjugated system, not only can the propagator showing the 
TRE reference system be obtained by removing all the items that reflect the ring structure 
from the equation corresponding to Equation 18, but a practical calculation method, such as 
TRS electron density shown in Chapter 4, can also be devised. 
 

 
 
Fig.2 Schematic diagrams of the interactions between 1 and 2-3 subsystems. 
Broken lines indicate perturbations. 
 

Once the propagator is obtained, the quantum chemistry index of the system in 
consideration can be calculated simply using the relational expression of Equations 14 to 17. 
In other words, if one can assume the TRS as the hypothetical system with all of the effects of 
the ring interaction propagation removed from the real system and obtain one pair of 
propagators that describes the TRS, the effects of the ring structure on various physiochemical 
qualities of the system can be considered using the propagators describing the real system and 
TRS. 

Now, let us obtain the nondiagonal element of the propagator between atoms 1 and 2 in 
TRS, R3

ref.(1,2); Equation 23 shall be integrated later. Considering Figure 1d as a 
nonperturbative system here as well, Equation 25 is obtained from the Dyson formula [8] 
(Equation 24). 
 
𝑮𝑮 = 𝑮𝑮0 + 𝐺𝐺0𝒗𝒗𝑮𝑮      (24) 
 

𝑅𝑅3(1,2) = 𝑅𝑅30(1)𝑣𝑣12𝑅𝑅3(2) + 𝑅𝑅30(1)𝑣𝑣13𝑅𝑅3(3,2)  (25) 
 
Furthermore, Equations 26 and 27 are obtained from Equation 24.  
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𝑅𝑅3(2) = 𝑅𝑅30(2) + 𝑅𝑅30(2)𝑣𝑣21𝑅𝑅3(1,2) + 𝑅𝑅30(2,3)𝑣𝑣31𝑅𝑅3(1,2)  (26) 
 

𝑅𝑅3(3,2) = 𝑅𝑅30(3,2) + 𝑅𝑅30(3)𝑣𝑣31𝑅𝑅3(1,2) + 𝑅𝑅30(3,2)𝑣𝑣21𝑅𝑅3(1,2) (27) 
 
Substituting Equations 26 and 27 into Equation 25 gives R3(1,2) as Equation 28 below  
 
𝑅𝑅3(1,2) = 𝑅𝑅3(1)[𝑣𝑣12𝑅𝑅30(2) + 𝑣𝑣13𝑅𝑅30(3,2)]    (28) 
 
Therefore, substituting R3(1）on the right of Equation 28 with Rref.

3(1) that has the effects of 
ring structure removed gives Equation 29 giving the nondiagonal element of the propagator of 
TRS for the three-membered ring. 
 
𝑅𝑅3
𝑟𝑟𝑟𝑟𝑟𝑟.(1,2) = 𝑅𝑅3

𝑟𝑟𝑟𝑟𝑟𝑟.(1)[𝑣𝑣12𝑅𝑅30(2) + 𝑣𝑣13𝑅𝑅30(3,2)]   (29) 
 
Substituting Equations 19 to 21 into Equation 29 gives Equation 30.  
 
𝑅𝑅3
𝑟𝑟𝑟𝑟𝑟𝑟.(1,2) = 𝑧𝑧+1

𝑧𝑧(𝑧𝑧+1)(𝑧𝑧−1)
      (30) 

 
However, here, v is 1 again. 

Table 1 shows the calculated results in quantity, such as all π-electron energy, for the TRS 
of the three-membered ring obtained above. 
 
Table 1 Quantum chemistry indices for the three-membered ring and the TRS 
 (α=0，β=1) 
 Cation Anion 
Eπreal 4 2 
Eπref. 2√3 2√3 
TRE 0.54 -1.46 
q1 2/3 4/3 
q1ref. 2/3 4/3 
p12 2/3 1/3 
p12ref. (√3 + 1)/3 (√3 − 1)/3 
q12 2/3 1/3 
q12ref. 1/√3 1/√3 
π1;1 8/27 ∞ 
π1;1ref. 2√3/9 2√3/9 
 
As a result, the values of TRE, q12, and π1;1 show that the ring interaction gives 
thermodynamic stability, stronger bonding between adjacent atoms, and stability for addition 
reactions to the cations in the three-membered ring. However, one should note here that the 
self-polarizability is an index that shows the instability of a π-electron conjugated system [9]. 
Furthermore, the calculated results for the anions in the three-membered ring have shown that 
the ring interaction has an opposite effect to the system from cations. In addition, as Table 1 
shows, one should note that there is a relationship shown as below [10] between the indices 
that show all the π-electron energy, electron density, and bond strength in both real systems 
and TRS.  
 
𝐸𝐸𝜋𝜋 = ∑ 𝑞𝑞𝑟𝑟𝑟𝑟 𝛼𝛼 + ∑ 𝑞𝑞𝑟𝑟𝑠𝑠′

𝑟𝑟,𝑠𝑠 𝛽𝛽        (31) 
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The relationships of R3(1) = R3(2) = R3(3) and R3
ref.(1) = R3

ref.(2) = R3
ref.(3) were used when 

calculating Eπ
real and Eπ

ref. Furthermore, qst
ref. was defined as the following equation.  

 
𝑞𝑞𝑟𝑟𝑠𝑠
𝑟𝑟𝑟𝑟𝑟𝑟. = 1

2𝜋𝜋𝜋𝜋 ∫ 𝑑𝑑𝑧𝑧 [𝐺𝐺(𝑠𝑠, 𝑡𝑡)𝑎𝑎𝑠𝑠𝑟𝑟]𝑟𝑟𝑟𝑟𝑟𝑟.
𝑐𝑐        (32) 

 
Here, [･･･]ref. means that the ring effects are all removed from […]. In qst

ref. for the 
three-membered ring, the second item within the brackets in the right of Equation 29 is 
removed by this operation. 
 

 
Fig.3 Schematic diagrams of a polycyclic molecule and its nonperturbative system. 
Broken lines indicate perturbations. 
 

Now, expand the above discussion and consider how to obtain the diagonal element of the 
propagator describing the TRS of a general polycyclic π-electron conjugated system. But as 
has been mentioned earlier, the nondiagonal element is easily obtainable from the diagonal 
element, and so its discussion is omitted here.  

Now, the polycyclic π-electron conjugated system of interest has a configuration of only 
three adjacent atoms bonded, and so it is enough to consider the system shown in Figure 3.1. 
Taking Figure 3.2 as the nonperturbative system of Figure 3.1 and applying Equation 24 gives 
Equations 33 to 34c below.  
 
𝐺𝐺(𝑎𝑎) = 𝐺𝐺0(𝑎𝑎) + 𝐺𝐺0(𝑎𝑎)𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺(𝑏𝑏,𝑎𝑎) + 𝐺𝐺0(𝑎𝑎)𝑣𝑣𝑟𝑟𝑐𝑐𝐺𝐺(𝑐𝑐,𝑎𝑎) + 𝐺𝐺0(𝑎𝑎)𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺(𝑑𝑑,𝑎𝑎)  (33) 
 

𝐺𝐺(𝑏𝑏,𝑎𝑎) = 𝐺𝐺0(𝑏𝑏)𝑣𝑣𝑎𝑎𝑟𝑟𝐺𝐺(𝑎𝑎) + 𝐺𝐺0(𝑏𝑏, 𝑐𝑐)𝑣𝑣𝑐𝑐𝑟𝑟𝐺𝐺(𝑎𝑎) + 𝐺𝐺0(𝑏𝑏,𝑑𝑑)𝑣𝑣𝑎𝑎𝑟𝑟𝐺𝐺(𝑎𝑎)   (34a) 
 

𝐺𝐺(𝑐𝑐,𝑎𝑎) = 𝐺𝐺0(𝑐𝑐)𝑣𝑣𝑐𝑐𝑟𝑟𝐺𝐺(𝑎𝑎) + 𝐺𝐺0(𝑐𝑐, 𝑏𝑏)𝑣𝑣𝑎𝑎𝑟𝑟𝐺𝐺(𝑎𝑎) + 𝐺𝐺0(𝑐𝑐,𝑑𝑑)𝑣𝑣𝑎𝑎𝑟𝑟𝐺𝐺(𝑎𝑎)   (34b) 
 

𝐺𝐺(𝑑𝑑,𝑎𝑎) = 𝐺𝐺0(𝑑𝑑)𝑣𝑣𝑎𝑎𝑟𝑟𝐺𝐺(𝑎𝑎) + 𝐺𝐺0(𝑑𝑑, 𝑏𝑏)𝑣𝑣𝑎𝑎𝑟𝑟𝐺𝐺(𝑎𝑎) + 𝐺𝐺0(𝑑𝑑, 𝑐𝑐)𝑣𝑣𝑐𝑐𝑟𝑟𝐺𝐺(𝑎𝑎)   (34c) 
 
From these equations, it is clear that the diagonal element for the atom a of the propagator of 
the system in Figure 3.1 can be given by the following equation. 
 
𝐺𝐺(𝑎𝑎)−1 = 𝐺𝐺0(𝑎𝑎)−1 − 𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺0(𝑏𝑏)𝑣𝑣𝑎𝑎𝑟𝑟 − 𝑣𝑣𝑟𝑟𝑐𝑐𝐺𝐺0(𝑐𝑐)𝑣𝑣𝑐𝑐𝑟𝑟 − 𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺0(𝑑𝑑)𝑣𝑣𝑎𝑎𝑟𝑟 
 

                   −𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺0(𝑏𝑏, 𝑐𝑐)𝑣𝑣𝑐𝑐𝑟𝑟 − 𝑣𝑣𝑟𝑟𝑐𝑐𝐺𝐺0(𝑐𝑐, 𝑏𝑏)𝑣𝑣𝑎𝑎𝑟𝑟 − 𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺0(𝑏𝑏,𝑑𝑑)𝑣𝑣𝑎𝑎𝑟𝑟 
 

                   −𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺0(𝑑𝑑, 𝑏𝑏)𝑣𝑣𝑎𝑎𝑟𝑟 − 𝑣𝑣𝑟𝑟𝑐𝑐𝐺𝐺0(𝑐𝑐,𝑑𝑑)𝑣𝑣𝑎𝑎𝑟𝑟 − 𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺0(𝑑𝑑, 𝑐𝑐)𝑣𝑣𝑐𝑐𝑟𝑟    (35) 
 
 
It is clear that the effects of the interaction propagation of the ring with the atom a of this 
system are shown by the six items, the fifth to the tenth items in the right of Equation 35, by a 
similar operation as Figure 2. These items need to be removed first, and then the same 
operation is repeated for atoms b, c, and d that are bonded to the atom a to remove all the 
interaction propagation effects periodically. Then, the propagator that describes the TRS of a 
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general polycyclic system is given by Equation 36 below. 
 
𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟.(𝑎𝑎)−1 = 𝐺𝐺0(𝑎𝑎)−1 − 𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺0,𝑟𝑟𝑟𝑟𝑟𝑟.(𝑏𝑏)𝑣𝑣𝑎𝑎𝑟𝑟 − 𝑣𝑣𝑟𝑟𝑐𝑐𝐺𝐺0,𝑟𝑟𝑟𝑟𝑟𝑟.(𝑐𝑐)𝑣𝑣𝑐𝑐𝑟𝑟 − 𝑣𝑣𝑟𝑟𝑎𝑎𝐺𝐺0,𝑟𝑟𝑟𝑟𝑟𝑟.(𝑑𝑑)𝑣𝑣𝑎𝑎𝑟𝑟 (36) 
 
However, here, superscript 0 indicates the nonperturbative system of Figure 3.2, and G0,ref.(s) 
indicates a diagonal element of the TRS propagator in atom s of the nonperturbative system. 
 
 
3. Application to simple systems 
3.1. Hückel annulenes 

Consider a Hückel annulene that has n-number of the same atoms with the basis function 
in-phase and adjacent (Figure 4a). Figure 4a shows a configuration in which a carbon atom is 
arranged in a π-electron conjugated system using 2p-orbitals, without any elemental limitation, 
except that all basis functions are adjacent and in-phase. Furthermore, the symmetry shows 
that all atoms in this cyclic π-electron conjugated system are equivalent. However, the atoms 
have been numbered clockwise from the arbitrary atom for convenience. 

To investigate the effects of a ring structure on various physical and chemical properties in 
this π-electron conjugated system, it is hypothesized that the system is well-described by the 
Hamiltonian of Equation 10. Under this approximation, the diagonal elements of propagators 
for the Hückel annulene, Rn

H(1), and TRS, Rn
H,ref.(1), are obtained as Equations 37 and 38 

using the same methods as for Equations 18, 22, and 23.  
 
𝑅𝑅𝑛𝑛𝐻𝐻(1) = [ 𝐺𝐺𝑛𝑛0(1)−1 − 𝑣𝑣12𝐺𝐺𝑛𝑛0(2)𝑣𝑣21 − 𝑣𝑣1𝑛𝑛𝐺𝐺𝑛𝑛0(𝑛𝑛)𝑣𝑣𝑛𝑛1 
                                       −𝑣𝑣12𝐺𝐺𝑛𝑛0(2,𝑛𝑛)𝑣𝑣𝑛𝑛1 − 𝑣𝑣1𝑛𝑛𝐺𝐺𝑛𝑛0(𝑛𝑛, 2)𝑣𝑣21]−1    (37) 
 

𝑅𝑅𝑛𝑛
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟.(1) = [ 𝐺𝐺𝑛𝑛0(1)−1 − 𝑣𝑣12𝐺𝐺𝑛𝑛0(2)𝑣𝑣21 − 𝑣𝑣1𝑛𝑛𝐺𝐺𝑛𝑛0(𝑛𝑛)𝑣𝑣𝑛𝑛1]−1    (38) 

 

 
Figure 4 Diagrams of annulenes with the same type of atoms and bonding lengths. 
a: Hückel annulene, b: nonperturbation system of Hückel annulene, c: Möbius annulene, 
and d: nonperturbation system of Möbius annulene. 
 
Figure 4 shows that Gn

0(1) is a single atom propagator, and Gn
0(2) and Gn

0(n) are the diagonal 
elements for the atoms at the end of the linear π-electron conjugated system that is made up of 
(n-1) number of the same atoms. In addition, Gn

0(2,n) and Gn
0(n,2) are the nondiagonal 

elements between the atoms at both ends of the linear π-electron conjugated system that is 
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made up of (n-1) number of the same atom. There are known general equations for these 
propagators using a trigonometric function, which can be used to obtain a general equation for 
the quantum chemistry indices defined by Equations 14–17. 
 
𝐺𝐺𝑛𝑛0(1) = 𝐺𝐺1(1) = sin𝜃𝜃

sin2𝜃𝜃
       (39) 

 

𝐺𝐺𝑛𝑛0(2) = 𝐺𝐺𝑛𝑛0(𝑛𝑛) = 𝐺𝐺𝑛𝑛−1𝐿𝐿 (1) = sin(𝑛𝑛−1)𝜃𝜃
sin𝑛𝑛𝜃𝜃

     (40) 
 

𝐺𝐺𝑛𝑛0(2,𝑛𝑛) = 𝐺𝐺𝑛𝑛0(𝑛𝑛, 2) = 𝐺𝐺𝑛𝑛−1𝐿𝐿 (1,𝑛𝑛 − 1) = sin𝜃𝜃
sin𝑛𝑛𝜃𝜃

    (41) 
 
Notably, the superscript, L, implies a chain molecule. In addition, a situation without bond 
alternation was considered to simplify the discussion; however, this limitation can be easily 
removed [11].  

Substituting Equations 39–41 into Equations 37 and 38 and simplifying it gives Equations 
42 and 43.  
 

𝑅𝑅𝑛𝑛𝐻𝐻(1) = −
cos𝑛𝑛𝑛𝑛2

2 sin𝜃𝜃 sin𝑛𝑛𝑛𝑛2
       (42) 

 

𝑅𝑅𝑛𝑛
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟.(1) = sin𝑛𝑛𝜃𝜃

2 sin𝜃𝜃 cos𝑛𝑛𝜃𝜃
       (43) 

 
Note that the range of θ is as follows. 
 
−𝜋𝜋 ≤ 𝜃𝜃 < 𝜋𝜋        (44) 
 
In addition, v = 1 was set as before. Similarly, the nondiagonal terms can be obtained as 
follows.  
 

𝑅𝑅𝑛𝑛𝐻𝐻(1,2) = −
cos(𝑛𝑛2−1)𝜃𝜃

2 sin𝜃𝜃 sin𝑛𝑛𝑛𝑛2
       (45) 

 

𝑅𝑅𝑛𝑛
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟.(1) = sin(𝑛𝑛−1)𝜃𝜃

2 sin𝜃𝜃 cos𝑛𝑛𝜃𝜃
       (46) 

 
Substituting Equations 42–46 into Equations 17 and 32 and integrating them gives the 

quantum chemistry indices of the Hückel annulene as follows.  
 
𝐸𝐸𝑛𝑛𝐻𝐻 = 4 sin 2𝑛𝑛𝜋𝜋

𝑛𝑛
cot 𝜋𝜋

𝑛𝑛
,𝑀𝑀 = 4𝑚𝑚      (47a) 

 

         = 4 sin (2𝑛𝑛+1)𝜋𝜋
𝑛𝑛

 cosec 𝜋𝜋
𝑛𝑛

,𝑀𝑀 = 4𝑚𝑚 + 2    (47b) 
 

𝐸𝐸𝑛𝑛
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟. = 2 sin 𝑛𝑛𝜋𝜋

𝑛𝑛
 cosec 𝜋𝜋

2𝑛𝑛
,𝑀𝑀 = 2𝑚𝑚     (48) 

 

𝑞𝑞1𝐻𝐻 = 𝑞𝑞1
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟. = 2𝑛𝑛

𝑛𝑛
,𝑀𝑀 = 2𝑚𝑚      (49) 

 

𝑝𝑝12𝐻𝐻 = 𝑞𝑞12𝐻𝐻 = 2
𝑛𝑛

sin 2𝑛𝑛𝜋𝜋
𝑛𝑛

cot 𝜋𝜋
𝑛𝑛

,𝑀𝑀 = 4𝑚𝑚    (50a) 
 

                      = 2
𝑛𝑛

sin (2𝑛𝑛+1)𝜋𝜋
𝑛𝑛

cosec 𝜋𝜋
𝑛𝑛

,𝑀𝑀 = 4𝑚𝑚 + 2   (50b) 
 

𝑝𝑝12
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟. = 1

𝑛𝑛
sin𝑛𝑛𝜋𝜋

𝑛𝑛
{cosec 𝜋𝜋

2𝑛𝑛
+ (−1)𝑛𝑛−1 sec 𝜋𝜋

2𝑛𝑛
},𝑀𝑀 = 2𝑚𝑚   (51) 
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𝑞𝑞12
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟. = 1

𝑛𝑛
sin𝑛𝑛𝜋𝜋

𝑛𝑛
cosec 𝜋𝜋

2𝑛𝑛
,𝑀𝑀 = 2𝑚𝑚     (52) 

 

𝜋𝜋1;1
𝐻𝐻 = 1

3
�1 − 1

𝑛𝑛2
� + 4

𝑛𝑛2
∑ cot 2𝜋𝜋𝜋𝜋

𝑛𝑛
𝑛𝑛
𝜋𝜋=1 cosec 2𝜋𝜋𝜋𝜋

𝑛𝑛
,𝑀𝑀 = 4𝑚𝑚 + 2   (53) 

 

𝜋𝜋1;1
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟. = 1

𝑛𝑛2
∑ cot (2𝜋𝜋+1)𝜋𝜋

2𝑛𝑛
𝑛𝑛−1
𝜋𝜋=0 cosec (2𝜋𝜋+1)𝜋𝜋

2𝑛𝑛
,𝑀𝑀 = 2𝑚𝑚   (54) 

 

𝑇𝑇𝑅𝑅𝐸𝐸𝐻𝐻 ≡ 𝐸𝐸𝑛𝑛𝐻𝐻 − 𝐸𝐸𝑛𝑛
𝐻𝐻,𝑟𝑟𝑟𝑟𝑟𝑟. 

 

               = −8𝑠𝑠𝑠𝑠𝑛𝑛 2𝑛𝑛𝜋𝜋
𝑛𝑛
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑛𝑛 𝜋𝜋

𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛 3𝜋𝜋

4𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛 𝜋𝜋

4𝑛𝑛
,𝑀𝑀 = 4𝑚𝑚  (55) 

 

               = 8𝑠𝑠𝑠𝑠𝑛𝑛 (2𝑛𝑛+1)𝜋𝜋
𝑛𝑛

𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 𝜋𝜋
𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛2 𝜋𝜋

4𝑛𝑛
,𝑀𝑀 = 4𝑚𝑚 + 2  (56) 

 
Although the details are described in the original report [12], these results enable us to 

investigate the effects of the ring structure on the thermodynamic stability and chemical 
reactivity within the same theoretical framework. Notably, TREH represents the TRE of a 
Hückel annulene. 
 
3.2. Möbius annulene 

Next, consider a Möbius annulene in which the basis function of an n-number of the same 
atom numbered as in Figure 4c is tilted by ω = π / n relative to an atom with a lower number 
and coupled via σ-bond. Similarly, it was hypothesized that the Hamiltonian, described in 
Equation 10, adequately represents this system. However, as previously discussed, the basis 
function is tilted by  
π /n for coupling in a Möbius annulene, and note that the sign for the resonance integral 
between atoms 1 and n is the inverse of the one between other atoms (Equation 57).  
 
𝑣𝑣1𝑛𝑛′ = 𝑣𝑣𝑛𝑛1′ = −1       (57) 
 
Taking the nonperturbative system of the Möbius annulene as the one illustrated in Figure 4d 
and considering the relationship between Equations 37, 38, and 57, the diagonal elements of 
the propagator for the Möbius annulene and the TRS atom 1 can be obtained as follows.  
 
𝑅𝑅𝑛𝑛𝑀𝑀(1) = [ 𝐺𝐺𝑛𝑛0(1)−1 − 𝑣𝑣12′ 𝐺𝐺𝑛𝑛0(2)𝑣𝑣21′ − 𝑣𝑣1𝑛𝑛′ 𝐺𝐺𝑛𝑛0(𝑛𝑛)𝑣𝑣𝑛𝑛1′  
                                      −𝑣𝑣12′ 𝐺𝐺𝑛𝑛0(2,𝑛𝑛)𝑣𝑣𝑛𝑛1′ − 𝑣𝑣1𝑛𝑛′ 𝐺𝐺𝑛𝑛0(𝑛𝑛, 2)𝑣𝑣21′ ]−1  (58) 
 

𝑅𝑅𝑛𝑛
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟.(1) = [ 𝐺𝐺𝑛𝑛0(1)−1 − 𝑣𝑣12′ 𝐺𝐺𝑛𝑛0(2)𝑣𝑣21′ − 𝑣𝑣1𝑛𝑛′ 𝐺𝐺𝑛𝑛0(𝑛𝑛)𝑣𝑣𝑛𝑛1′ ]−1  (59) 

 
Here, apart from the size of the resonance integral, the propagators of the nonperturbative 
system described in Equations 58 and 59 are identical to those shown in Equations 39–41, 
enabling the following results. 
 

𝑅𝑅𝑛𝑛𝑀𝑀(1) =
𝑟𝑟𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛2

2𝑟𝑟𝜋𝜋𝑛𝑛𝜃𝜃𝑐𝑐𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛2
      (60) 

 

𝑅𝑅𝑛𝑛
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟.(1) = 𝑟𝑟𝜋𝜋𝑛𝑛𝑛𝑛𝜃𝜃

2𝑟𝑟𝜋𝜋𝑛𝑛𝜃𝜃𝑐𝑐𝑠𝑠𝑟𝑟𝑛𝑛𝜃𝜃
       (61) 

 
In addition, the nondiagonal elements of Rn

M and Rn
M,ref are obtained as follows. 

 

𝑅𝑅𝑛𝑛𝑀𝑀(1,2) = 𝑅𝑅𝑛𝑛𝑀𝑀(1)[𝑣𝑣12′ 𝐺𝐺𝑛𝑛0(2) + 𝑣𝑣1𝑛𝑛′ 𝐺𝐺𝑛𝑛0(2,𝑛𝑛)] =
sin (𝑛𝑛2−1)𝜃𝜃

2𝑟𝑟𝜋𝜋𝑛𝑛𝜃𝜃𝑐𝑐𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛2
  (62) 
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𝑅𝑅𝑛𝑛
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟.(1,2) = 𝑅𝑅𝑛𝑛

𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟.(1)𝑣𝑣12′ 𝐺𝐺𝑛𝑛0(2) = 𝑟𝑟𝜋𝜋𝑛𝑛𝑛𝑛𝜃𝜃
2𝑟𝑟𝜋𝜋𝑛𝑛𝜃𝜃𝑐𝑐𝑠𝑠𝑟𝑟𝑛𝑛𝜃𝜃

    (63) 
 
Notably, the range of θ is again the range of Equation 44. In addition, when obtaining 
Equations 62 and 63, v’12 = 1 and v’1n = −1 were substituted to maintain consistency with 
Equation 10.  

Calculating the quantum chemistry indices for the Möbius annulene using the propagators 
yields the following results.  
 
𝐸𝐸𝑛𝑛𝑀𝑀 = 4 sin 2𝑛𝑛𝜋𝜋

𝑛𝑛
cosec 𝜋𝜋

𝑛𝑛
,𝑀𝑀 = 4𝑚𝑚      (64a) 

 

         = 4 sin (2𝑛𝑛+1)𝜋𝜋
𝑛𝑛

 cot 𝜋𝜋
𝑛𝑛

,𝑀𝑀 = 4𝑚𝑚 + 2      (64b) 
 

𝐸𝐸𝑛𝑛
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟. = 2 sin𝑛𝑛𝜋𝜋

𝑛𝑛
 cosec 𝜋𝜋

2𝑛𝑛
,𝑀𝑀 = 2𝑚𝑚      (65) 

 

𝑞𝑞1𝑀𝑀 = 𝑞𝑞1
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟. = 2𝑛𝑛

𝑛𝑛
,𝑀𝑀 = 2𝑚𝑚       (66) 

 

𝑝𝑝12𝑀𝑀 = 𝑞𝑞12𝑀𝑀 = 2
𝑛𝑛

sin 2𝑛𝑛𝜋𝜋
𝑛𝑛

cosec 𝜋𝜋
𝑛𝑛

,𝑀𝑀 = 4𝑚𝑚     (67a) 
 

                      = 2
𝑛𝑛

sin (2𝑛𝑛+1)𝜋𝜋
𝑛𝑛

cot 𝜋𝜋
𝑛𝑛

,𝑀𝑀 = 4𝑚𝑚 + 2     (67b) 
 

𝑝𝑝12𝑀𝑀 = −𝑝𝑝1𝑛𝑛𝑀𝑀 = 𝑞𝑞12𝑀𝑀 = −𝑞𝑞1𝑛𝑛𝑀𝑀       (68) 
 

𝑝𝑝12
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟. = −𝑝𝑝1𝑛𝑛

𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟. = 1
𝑛𝑛

sin𝑛𝑛𝜋𝜋
𝑛𝑛

{cosec 𝜋𝜋
2𝑛𝑛

+ (−1)𝑛𝑛 sec 𝜋𝜋
2𝑛𝑛

},𝑀𝑀 = 2𝑚𝑚   (69) 
 

𝑞𝑞12
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟. = −𝑞𝑞1𝑛𝑛

𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟. = 1
𝑛𝑛

sin𝑛𝑛𝜋𝜋
𝑛𝑛

cosec 𝜋𝜋
2𝑛𝑛

,𝑀𝑀 = 2𝑚𝑚     (70) 
 

𝜋𝜋1;1
𝑀𝑀 = 4

𝑛𝑛2
∑ cot 𝜋𝜋

𝑛𝑛
(2𝑗𝑗 + 1)𝑛𝑛−1

𝜋𝜋=0 cosec 𝜋𝜋
𝑛𝑛

(2𝑗𝑗 + 1),𝑀𝑀 = 4𝑚𝑚    (71) 
 

𝜋𝜋1;1
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟. = 1

𝑛𝑛2
∑ cot 𝜋𝜋

2𝑛𝑛
(2𝑗𝑗 + 1)𝑛𝑛−1

𝜋𝜋=0 cosec 𝜋𝜋
2𝑛𝑛

(2𝑗𝑗 + 1),𝑀𝑀 = 2𝑚𝑚   (72) 
 

𝑇𝑇𝑅𝑅𝐸𝐸𝑀𝑀 ≡ 𝐸𝐸𝑛𝑛𝑀𝑀 − 𝐸𝐸𝑛𝑛
𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟. 

 

               = 8𝑠𝑠𝑠𝑠𝑛𝑛 2𝑛𝑛𝜋𝜋
𝑛𝑛
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑛𝑛 𝜋𝜋

𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛2 𝜋𝜋

𝑛𝑛
,𝑀𝑀 = 4𝑚𝑚    (73) 

 

               = −8𝑠𝑠𝑠𝑠𝑛𝑛 (2𝑛𝑛+1)𝜋𝜋
𝑛𝑛

𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 𝜋𝜋
𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛 3𝜋𝜋

4𝑛𝑛
,𝑀𝑀 = 4𝑚𝑚 + 2   (74) 

 
 
4. Practical calculation method 
 

As previously stated, for simple systems such as Hückel and Möbius annulenes, the true 
system and its TRS are described via a simple propagator, allowing for generic calculation. 
However, when the structure of the π-electron conjugated system in consideration is complex, 
not only does obtaining the quantum chemistry indices by integrating the propagator become 
challenging but obtaining the propagator itself also becomes complicated. Therefore, this 
section describes a more simplified method for determining the quantum chemistry indices of 
the TRS of a general π-electron conjugated system. This method was devised based on the 
assembly method for a propagator under the Hückel approximation introduced in Section 2. 
No corrections to the Hückel molecular orbital method [13] program (hereinafter, HMO 
method) were added, and the quantum chemistry indices of the TRS of the π-electron 
conjugated system can be obtained simply by changing the angle of view. 

First, let us revise the method for obtaining the diagonal elements from an atomic orbital 



 
 

12 
 

function expression (hereinafter, AO expression) for the propagator under the Hückel 
approximation describing the TRS, using the three-membered ring that was examined in detail 
in Section 2. According to Aono et al. [4], the diagonal elements, R3(l), in AO expression for 
the propagator in atom 1 in the three-membered ring (Figure 1c) are obtained using Equation 
18 by considering Figure 1d as a nonperturbative system. In addition, Equation 75 gives the 
TRS propagator, R3

ref.(1), by removing the components that reflect the ring structure from the 
right-hand side of Equation 18.  
 
𝑅𝑅3
𝑟𝑟𝑟𝑟𝑟𝑟.(1)−1 = 𝑅𝑅30(1)−1 − 𝑣𝑣12𝑅𝑅30(2)𝑣𝑣21 − 𝑣𝑣13𝑅𝑅30(3)𝑣𝑣31   (75) 

 
Disregard that Equation 75 is a hypothetical TRS propagator and examine the right-hand 

side explicitly. Thereafter, it should be noticed that the right-hand side of Equation 75 yielded 
the diagonal elements of a propagator under the Hückel approximation in atom 3 at the center 
of a chain molecule composed of five similar atoms with no bonding alternation (Figure 5a), 
and with a nonperturbative system shown in Figure 5b. 
 

  
 
Figure 5 Five atomic linear π-electron conjugated systems and its nonperturbative 
systems. 
 
Alternatively, the following relationship is established. 
 
𝐿𝐿5(3) = 𝑧𝑧4−2𝑧𝑧2+1

𝑧𝑧5−4𝑧𝑧3+3𝑧𝑧
= (𝑧𝑧2−1)2

(𝑧𝑧3−3𝑧𝑧)(𝑧𝑧2−1)
      (76a) 

 

                                      = 𝑧𝑧2−1
𝑧𝑧3−3𝑧𝑧

= 𝑅𝑅3
𝑟𝑟𝑟𝑟𝑟𝑟.(1)     (76b) 

 
In addition, the following relationship is clearly established for Equation 29.  
 
𝑅𝑅3
𝑟𝑟𝑟𝑟𝑟𝑟.(1,2) = 𝑅𝑅3

𝑟𝑟𝑟𝑟𝑟𝑟.(1)[𝑣𝑣12𝑅𝑅30(2) + 𝑣𝑣13𝑅𝑅30(3,2)] 
 
 

                       = 𝐿𝐿5(3)[𝑣𝑣34𝐿𝐿50(4) + 𝑣𝑣32𝐿𝐿50(2,1)] 
 
 

                       = 𝐿𝐿5(3,4) + 𝐿𝐿5(3,1)      (77) 
 
Note that Ln(s,t) in Equations 76 and 77 indicate the s,t-elements of the propagator of the 
linear π-electron conjugated system composed of n-number of atoms. 
 
From the aforementioned equations, we examined the modifications from Equation 76a to 
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Equation 76b. Noticeably, this modification and the arbitrary elements, G(a,b), of the 
propagator under the Hückel approximation are expressed as Equation 78 using the LCAO 
coefficients, Cs,i, and orbital energy, εi , of the HMO.  
 
𝐺𝐺(𝑎𝑎, 𝑏𝑏) = ∑ 𝑐𝑐𝑎𝑎𝑎𝑎

∗ 𝑐𝑐𝑏𝑏𝑎𝑎
𝑧𝑧−𝜖𝜖𝑎𝑎𝜋𝜋         (78) 

 
Information regarding the TRS of the three-membered ring can be extracted using the 
calculation results of the HMO of the five atomic linear π-electron conjugated systems and the 
following method.  

Step A. In the HMO of the five atomic linear π-electron conjugated systems, ignore the 
orbital whose LCAO coefficient of atom 3 in the TRS of the three-membered ring is 0.  

Step B. As the orbital energy of the orbital that remained by Step A gives the orbital energy 
of the TRS of the three-membered ring, use this value to calculate the total energy of the TRS, 
Eref., and TRE.  

Step C. Using the LCAO coefficient of atom 3 in the five atomic chain molecule in the 
orbital that remained by Step A, calculate the electron density, qref., self-polarizability, πref.

1;1, 
and frontier electron density, f1(E),ref.f1(N),ref., for the atom 1 of the TRS of the three-membered 
ring.  

Step D. Using the LCAO coefficients of the atoms 1, 3, and 4 of the five atomic linear 
π-electron conjugated systems that remained by Step A, calculate the bond order, p12

ref, 
between the atoms 1 and 2 of the TRS of the three-membered ring and an index showing the 
bond strength, q12

ref.  
These four steps were used to calculate the quantum chemistry indices of the TRS of the 

three-membered ring using the HMO method results for the five atomic linear π-electron 
conjugated systems. The HMO method was used to calculate the five numbered atomic linear 
π-electron conjugated systems (Figure 5a, Table 2). Step A was followed in this case, and the 
orbitals with zero LCAO coefficient for atom 3 indicated by the broken line were ignored. 
The orbital energies for the remaining HMO orbitals were 1.7321, 0.0000, and −1.7321, in 
decreasing order of energy using the resonance integral as the unit. Step B shows that the 
HMO energy of the TRS of the three-membered ring obtained using Equation 76b is 
reproduced within the range of significant digits. Further, Step C was performed to calculate 
the quantum chemistry indices for when only the orbital of the TRS of the cation of the 
three-membered ring (the orbital with the orbital energy of 1.7321) is doubly occupied, and 
when two orbitals of the TRS of the anion of the three-membered ring (the orbitals with the 
orbital energies of 1.7321 and 0.0000) are doubly occupied. The quantum chemistry indices 
for the presence of two and six electrons in the five atomic linear π-electron conjugated 
systems were calculated (Table 1) within the range of significant digits. Note that p12

ref. is 
obtained by p34 + p31 or p32 + p35 of the five atomic chain molecules. 
 
Table 2 HMO calculation results for five atomic linear π-electron conjugated systems  
 Orbital energies 

Position 1.7321 1.0000 0.0000 -1.0000 -1.7321 
LCAO coefficients 

1 0.2887 0.5000 -0.5774 -0.5000 0.2887 
2 0.5000 0.5000 0.0000 0.5000 -0.5000 
3 0.5774 0.0000 0.5774 0.0000 0.5774 
4 0.5000 -0.5000 0.0000 -0.5000 -0.5000 
5 0.2887 -0.5000 -0.5774 0.5000 0.2887 
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The above steps are easily generalized, and the steps for obtaining a branched π-electron 
conjugated system that corresponds to the TRS of a more complicated cyclic π-electron 
conjugated system are as follows. 

Step 1. From the bonding of the atoms of the true system for obtaining the TRS, consider 
the nonperturbative system in which the ring structure’s bonding is removed.  

Step 2. Sequentially restore the bonding that was cut in Step 1 to obtain a subsystem with 
similar number of bonds as the bonding that was removed. 

Step 3. Superimpose the subsystems obtained from Step 2 onto the atom considered in  
Step 1. 

Step 3a. If the ring structure remains in the structure obtained in Step 3, look for a branch 
structure connecting the atom examined in Step 1 and ring structure. Repeat Steps 1–3 for the 
atom connecting this branch and ring structures, and replace the ring structures with the 
branch structures. 

Step 4. Determine the HMO of the resulting structure and the quantum chemistry indices of 
the TRS by following the aforementioned Steps A–D.  
As an example of these generalized steps, Figure 6 shows the steps in obtaining the branched 
π-electron conjugated system corresponding to the TRS of α-phase in naphthalene. Refer to 
the original report [14] for a discussion on the practicality of this method. 
 

 
 
Figure 6 Branched π-electron conjugated system corresponding to the TRS of α-phase 
in naphthalene. 
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5. Conclusions 
 

The concept of aromaticity has been employed in understanding the properties and the 
reaction mechanisms of molecules. This concept is defined by the ring structure’s energy 
stabilization of the system. A hypothetical reference system is frequently used as the basis to 
decide the stabilization and used in the concepts of delocalization and resonance. However, 
these reference systems are different from the ones used in defining the aromaticity, and can 
be visualized, making it possible to discuss the effects of the ring structure on the electron 
density, which should result in a more meaningful comprehension of the aromaticity-based 
reaction mechanisms.  

The method for the topological reference system we developed enabled us to visualize the 
reference system of the topological resonance energy with an excellent property as the index 
defining the energetic aromaticity. It also enables the study of the effects of the ring structure 
on the chemical reactivity of a cyclic π-electron conjugated system and the effects of ring 
structure in the transition state on the selectivity of chemical reactions. The theory reported 
here was constructed using the Hückel approximation; however, by increasing the degree of 
the Hamiltonian approximation, it is possible to obtain results comparable to those obtained 
by computation chemistry with a higher degree of approximation [15,16]. 
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