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ABSTRACT: Intricate behavior of one-electron potentials from the Euler equation for electron 

density and corresponding gradient force fields in crystals was studied. Bosonic and fermionic 

quantum potentials were utilized in bonding analysis as descriptors of the localization of electrons 

and electron pairs. Channels of locally enhanced kinetic potential and the corresponding saddle 

Lagrange points were found between chemically bonded atoms linked by the bond paths. 

Superposition of electrostatic 𝜑𝑒𝑠(𝒓) and kinetic 𝜑𝑘(𝒓) potentials and electron density 𝜌(𝒓) 

allowed partitioning any molecules and crystals into atomic 𝜌- and potential-based 𝜑-basins; the 
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𝜑𝑘-basins explicitly account for electron exchange effect, which is missed for 𝜑𝑒𝑠-ones. 

Phenomena of interatomic charge transfer and related electron exchange were explained in terms 

of space gaps between 𝜌- and 𝜑-zero-flux surfaces. The gap between 𝜑𝑒𝑠- and 𝜌-basins represents 

the charge transfer, while the gap between 𝜑𝑘- and 𝜌-basins is proposed to be a real-space 

manifestation of sharing the transferred electrons. The position of 𝜑𝑘-boundary between 𝜑𝑒𝑠- and 

𝜌-ones within an electron occupier atom determines the extent of electron sharing. The stronger 

an H‧‧‧O hydrogen bond is, the deeper hydrogen atom’s 𝜑𝑘-basin penetrates oxygen atom’s 𝜌-

basin. For covalent bonds, a 𝜑𝑘-boundary closely approaches a 𝜑𝑒𝑠-one indicating almost 

complete sharing the transferred electrons, while for ionic bonds, the same region corresponds to 

electron pairing within the 𝜌-basin of an electron occupier atom. 

INTRODUCTION 

The topological atom as an open quantum system is the central notion of the quantum theory of 

atoms in molecules and crystals (QTAIMC).1–5 It is defined as an electron-density region of space 

Ω around a nucleus enclosed with a surface 𝑆(Ω, 𝒓𝑠), at every point of which the local flux of 

gradient of electron density is equal to zero (a zero-flux condition): ∇𝜌(𝒓) ⋅ 𝐧(𝒓) = 0, ∀𝒓 ∈

𝑆(Ω, 𝒓𝑠); 𝐧(𝒓) is the unit normal vector directed outward. The physical content of quantum atoms 

has been explained by Richard Bader with coauthors and this concept is widely used today.6–9 As 

a result, a molecule or a crystal is seen as a set of non-overlapping space-filling atomic-like 

fragments defined by the vector ∇𝜌(𝒓)-field, which are termed 𝜌-basins. In this field, critical points 

(CPs), i.e., points where ∇𝜌(𝒓) = 0, are present. A saddle CP (3, –1), also called a bond critical 

point (BCP), and a respective bond path, formed by two gradient lines emitted from this BCP and 

terminated on two neighboring atoms, are considered in QTAIMC as indicators that these atoms 
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are (topologically) bonded to each other.10 Each bond path is mirrored by a virial path, a line of 

minimal electronic potential energy density 𝑣(𝒓) connecting these atoms.11 Both of these paths 

recover the expected chemical connectivity. Tsirelson12 and Martín Pendás et al.13 indicated that 

the bond paths are accompanied by the presence of privileged exchange energy density channels. 

Later we noted that bond paths are also accompanied by correlation energy density bridges14,15 and 

a local decrease of electronic temperature.15–17 At the same time, it was stated that a lack of a bond 

path between any two approximate atoms does not necessarily mean that corresponding 

interatomic interaction is absent.18–21 Also, there are a number of phenomena, as the interatomic 

charge transfer, electron sharing, and exchange effects, which are not clearly represented in real 

space in terms of QTAIMC 𝜌-atoms. 

To get more insight into the mechanisms of chemical bond formation beyond the orthodox 

topological analysis of electron density (ED) 𝜌(𝒓), we focus in this work on the analysis of 

electronic potentials 𝜑𝑖(𝒓) and corresponding local forces 𝑭𝑖(𝒓)15,22,23 within the framework of 

quantum crystallography.24–31 The orbital-free branch of quantum crystallography makes it 

possible to operate with ED and its derivatives, obtained either from theoretical calculations or 

experimental diffraction data for a many-electron multinuclear system in the stationary ground 

state. Each component of the inner potential field can be expressed starting from the one-electron 

Euler equation for ED:22,23 

𝜇[𝜌(𝒓)] =
𝛿𝐸𝑘[𝜌(𝒓)]

𝛿𝜌(𝒓)
+ 𝜑𝑒𝑚(𝒓). 

Here 𝜇(𝒓) is the chemical potential, i.e., the path-independent work that needs to be done for 

moving any electron belonging to a system from infinity to a reference point against the kinetic 

force field and the static Coulomb force field corrected for exchange.22,32–34 Functional 𝐸𝑘[𝜌] 

describes the noninteracting kinetic energy of electrons. In one-determinant approximation, the 
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latter can be presented as the sum of Pauli 𝐸𝑃[𝜌] and von Weizsäcker 𝐸𝑊[𝜌] kinetic energy 

functionals.35–37 Naturally, the kinetic potential 𝜑𝑘(𝒓) can also be written as the sum of Pauli 

𝜑𝑃(𝒓) and von Weizsäcker 𝜑𝑊(𝒓) potentials: 𝜑𝑘(𝒓) = 𝜑𝑃(𝒓) + 𝜑𝑊(𝒓).38 The von Weizsäcker 

potential 𝜑𝑊(𝒓) is the spin-independent potential, which arises from the structure confinement 

restrictions and the quantum electron fluctuations due to Heisenberg’s uncertainty principle. It can 

be directly computed from 𝜌(𝒓): 𝜑𝑊(𝒓) = (1 8⁄ ) ∙ |∇𝜌(𝒓)|2 𝜌2(𝒓)⁄ − (1 4) ∙⁄ ∇2𝜌(𝒓) 𝜌(𝒓)⁄  and 

reflects the allowed atomic electron-shell structure.39–42 Based on Hunter’s works,39,43 the positive 

and negative values of 𝜑𝑊(𝒓) indicate the areas where classic electron motion is allowed or 

prohibited, respectively. The Pauli potential 𝜑𝑃(𝒓) describes the increase in the total kinetic energy 

density of electrons as compared to spinless particles, i.e., represents a correction to 𝜑𝑊(𝒓) 

originating from the antisymmetry requirement for the many-electron wavefunction.37,44–47 Note 

that 𝜑𝑃(𝒓) is not defined in the regions populated by less than 2 electrons, for example, close to 

the positions of hydrogen atoms.15,23 

The static one-electron potential acting on an electron in a molecule (PAEM) 𝜑𝑒𝑚(𝒓) is 

the negative average local potential energy of any one internal electron at a reference position in 

the field of nuclei and remaining electrons of a system:48–51 

𝜑𝑒𝑚(𝒓) = −𝜑𝑒𝑠(𝒓) + 𝜑𝑥(𝒓). 

Here, −𝜑𝑒𝑠(𝒓) is the electronic electrostatic potential, which characterizes the Coulomb 

interaction between a negatively charged electron at a point 𝒓 with nuclei and the rest of electrons, 

and 𝜑𝑥(𝒓) is the static exchange potential. 

Combining the expressions for 𝜑𝑘(𝒓) and 𝜑𝑒𝑚(𝒓), Tsirelson and Stash have recently 

presented the one-electron Euler equation in the following form:22 

𝜇(𝒓) = 𝜑𝑘(𝒓) + 𝜑𝑒𝑚(𝒓) = 𝜑𝑃(𝒓) + 𝜑𝑊(𝒓) − 𝜑𝑒𝑠(𝒓) + 𝜑𝑥(𝒓). 
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All components of kinetic and static forces may be linked to their corresponding potentials as 

follows: 𝑭𝑖(𝒓) = −∇𝜑𝑖(𝒓) and ℱ(𝒓) = −∇𝜑𝑒𝑚(𝒓). Notably, since 𝜑𝑒𝑠(𝒓) normally considers a 

unit test positive charge external to a system, the electrostatic force for electrons belonging to a 

system is 𝑭𝑒𝑠(𝒓) = ∇𝜑𝑒𝑠(𝒓). The chemical potential for a stable system is constant 𝜇(𝒓) = 𝜇, 

therefore the net local force acting on any electron in a system is zero everywhere: 𝑭𝜇(𝒓) =

−∇𝜇(𝒓) = 0. From this, the following expression can be obtained: 𝑭𝜇(𝒓) = 𝑭𝑘(𝒓) + ℱ(𝒓) = 0. 

The heterotropic force of kinetic nature 𝑭𝑘(𝒓) = 𝑭𝑃(𝒓) + 𝑭𝑊(𝒓) pushes electrons away from the 

atomic nuclei, while the homotropic static force acting on an electron in a molecule (FAEM) 

ℱ(𝒓) = 𝑭𝑒𝑠(𝒓) + 𝑭𝑥(𝒓) draws electrons toward atomic nuclei. The balance of these forces is 

responsible for the existence of stable heterogeneous electron continuum. It should be noted that 

Martín Pendás with co-workers have shown that FAEM ℱ(𝒓) is similar to the non-gradient one-

electron Ehrenfest force field 𝔉(𝒓).52,53 

Among all the above-mentioned potentials, the electrostatic and kinetic ones, 𝜑𝑒𝑠(𝒓) and 

𝜑𝑘(𝒓), show their respective atomic-like potential-based 𝜑-basins determined by the zero-flux 

condition by analogy with atomic 𝜌-basins: 

𝑭𝑒𝑠(𝒓) ⋅ 𝐧(𝒓) = ∇𝜑𝑒𝑠(𝒓) ⋅ 𝐧(𝒓) = 0,   ∀𝒓 ∈ 𝑈(Ω, 𝒓𝑈), 

𝑭𝑘(𝒓) ⋅ 𝐧(𝒓) = −∇𝜑𝑘(𝒓) ⋅ 𝐧(𝒓) = 0,   ∀𝒓 ∈ 𝑃(Ω, 𝒓𝑃). 

Here, 𝑭𝑒𝑠(𝒓) and 𝑭𝑘(𝒓) are the corresponding local electrostatic and kinetic forces acting on an 

electron, while 𝑈(Ω) and 𝑃(Ω) are the zero-flux surfaces or boundaries limiting 𝜑𝑒𝑠- and 𝜑𝑘-

basins; 𝐧(𝒓) is the normal unit vector directed outward. Within these basins, according to their 

physical nature, the electronic forces 𝑭𝑒𝑠(𝒓) and 𝑭𝑘(𝒓) act toward and away from the position of 

atomic nuclei, respectively. In turn, these two forces are generated by the electrostatic partial 

charge density 𝑞𝑒𝑠(𝒓) and the sum of Pauli 𝑞𝑃(𝒓) and von Weizsäcker 𝑞𝑊(𝒓) partial charge 
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densities, respectively.23 The scalar fields 𝜑𝑒𝑠(𝒓) and 𝜑𝑘(𝒓) in molecules and crystals features 

four types of CPs where ∇𝜑𝑒𝑠(𝒓) = 0 or ∇𝜑𝑘(𝒓) = 0.22,54 As for ED, these points are associated 

with maxima (3, –3), line and ring saddle points (3, –1) and (3, +1), and minima (3, +3). For the 

𝜑𝑒𝑠(𝒓) and 𝜑𝑘(𝒓) potentials, the same critical points are in fact Lagrange points, where the 

corresponding force 𝑭𝑒𝑠(𝒓) or 𝑭𝑘(𝒓) is equal to zero.22,55 In the ∇𝜑𝑒𝑠- and ∇𝜑𝑘-fields, there are 

𝜑𝑒𝑠- or 𝜑𝑘-paths, each of which consists of a pair of gradient lines originating at a CP (3, –1) and 

terminating at two neighboring CPs (3, –3).15 3D attractors of the electronic force fields, i.e., CPs 

(3, –3), coincide with positions of atomic nuclei, which allows one to attribute considered 𝜑-basins 

to specific atoms within a molecule or a crystal. At that, 𝜑𝑒𝑠-basins enclose all electric field lines 

starting at corresponding nuclei and define electrically neutral pseudoatoms.56 According to 

Green’s theorem, the total integrated charges over 𝜑𝑒𝑠-basins are equal to zero and 𝜑𝑒𝑠-boundary 

can be viewed as an electrostatic shield preventing the accessibility of any external charge inside 

a 𝜑𝑒𝑠-basin and any internal charge outside it. The topology of 𝜑𝑒𝑠(𝒓)54,57,58 in combination with 

𝜌-basins is widely employed for describing electrostatic contribution for various interactions in 

associates and crystals.14,15,66,17,59–65 Further, the gap between 𝜑𝑒𝑠- and 𝜌-basins is attributed to 

phenomena of interatomic charge (electron) transfer and can be used to estimate it.15 However, 

although 𝜑𝑘-basins (pseudoatoms) and corresponding kinetic force field have a robust physical 

definition, it is not clear for now how it can be exploited to retrieve chemical information.15,17,22,67 

Recently, the local electronic potentials and corresponding gradient forces have been 

successfully employed for the chemically accessible yet physically robust description of chemical 

bonding.15 The examination of electronic potentials can serve to enhance or even substitute the use 

of existing chemical descriptors: for example, the analysis of 𝜑𝑒𝑚(𝒓) can be considered as a viable 

or even preferable alternative to 𝜑𝑒𝑠(𝒓).15,66 Nevertheless, it is worth noting the widespread use of 
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𝜑𝑒𝑠(𝒓) for the explanation and prediction of chemical behavior.68–76 The Pauli potential 𝜑𝑃(𝒓) 

displays similar features to electron localization function (ELF), although its more complex nature 

and detailed distribution demands proper interpretation.15,46 Lastly, the von Weizsäcker potential 

𝜑𝑊(𝒓) or related one-electron potential is an alternative to the Laplacian of ED 

∇2𝜌(𝒓),15,42,62,63,77,78 which is just the empirical measure of electron concentration or depletion via 

ED topology.79 Modest attempts have been made to link the behavior of the potentials with 

essential chemical concepts, such as interatomic interaction, charge transfer, electron lone pair, 

and donor-acceptor (Lewis) mechanism of noncovalent bonds.15 

In this work, we generalize the described methodology to different kinds of chemical bonds 

present in a diverse set of selected crystals, including polar and nonpolar covalent bonds, ionic 

ones, classical and nonclassical hydrogen bonds, as well as several weak to moderate 

intermolecular interactions. By combining the approach of superposing 𝜌- and 𝜑-basins with the 

study of the behavior of electronic potentials and corresponding forces, we arrived at a 

phenomenological partitioning scheme of many-nuclear many-electron systems, which enables us 

to further understand the complex atomic structure of electron occupier revealed by different basin 

boundaries and phenomena of charge transfer and subsequent exchange, electron sharing, and 

chemical bonding. We aimed to obtain a unified picture, which enhances the understanding of 

fuzzy chemical concepts utilizing the robust, physically grounded functions, which in turn can be 

obtained solely from the (experimental) ED distribution. 

RESULTS 

Properties of atomic and potential-based basins 
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We start by discussing the differences in shape, volume, and charge of atomic 𝜌- and potential-

based 𝜑-basins for the chosen model crystalline compounds: oxalic acid dihydrate, isocyanuric 

acid derivative (ica; see Scheme S1), sodium chloride, and high-temperature superconductor 

magnesium diboride. Conventional ED analysis for these compounds was carried out earlier.17,80,81 

Figures 1 and S1 depict the three types of 𝜌- and 𝜑-basins for the studied compounds and Table 

S1 summarizes their characteristics. The first significant difference between the basin types is their 

relative space volume. We observe the following strong trend: in the series of basin types from 𝜌- 

through  𝜑𝑘- to 𝜑𝑒𝑠-ones, the volumes of more electronegative atoms become smaller, while the 

ones of electropositive atoms increase. For instance, for the atoms O1 and H1 in the oxalic acid 

molecule, these volumes are equal to 15.85, 12.00, and 6.79 Å3 for the oxygen atom and 1.20, 

4.30, and 8.66 Å3 for the hydrogen atom. This trend is clearly visible in Figure 1a-c. The ionic 

compounds, such as NaCl, give even more contrasting examples (Figure 1d-i). For the Na atom in 

the salt, the volume of its 𝜑𝑒𝑠-basin (27.12 Å3) is almost three times larger than its 𝜌-basin (9.41 

Å3), with the 𝜑𝑘-basin volume having an intermediate value of 17.28 Å3. At the same time, the 

volumes of 𝜌-, 𝜑𝑘-, and 𝜑𝑒𝑠-basins of the Cl atom are diminishing as 34.59, 26.73, and 16.90 Å3, 

respectively. Note meaningful distinction between molecular and atomic/ionic crystals: for the 

former, the change in volume between different basin types occurs mostly in the intermolecular 

region, while in NaCl and MgB2 no outer regions can be practically distinguished (except for B···B 

contacts between graphene-like boron layers). Hence, the volumes of atomic and potential basins 

for covalent and ionic network solids change rather evenly in all directions. Figure 1g-i shows that 

the QTAIMC atoms of Mg are isolated from each other being placed above and below the six-

membered rings of the boron layers. Interestingly, the described regularity leads to the fact that 
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𝜑𝑘- and 𝜑𝑒𝑠-pseudoatoms of Mg in MgB2 are already in contact and even docked (mainly in a 

plane parallel to the boron plane), respectively. 

 

Figure 1. Atomic 𝜌-basins (first row) and potential-based 𝜑𝑘- and 𝜑𝑒𝑠-basins (second and third 

rows) for the molecular crystal of (COOH)2 × 2H2O (a-c) and the ionic and covalent network solids 

of NaCl (d-f) and MgB2 (g-i). 

A similar regular trend is observed for integrated charges over 𝜌- and 𝜑-basins 𝑄𝑖 (Table 

S1). In the series of 𝜌-, 𝜑𝑘-, and 𝜑𝑒𝑠-basins, (pseudo)atomic charges decrease in their absolute 

value so that 𝜑𝑘-basins are always less charged than 𝜌-basin. For example, in the oxalic acid 

molecule, the electronegative oxygen atom O1 shows the following charges: 𝑄𝜌 = –1.05 e, 𝑄𝑘 = –

0.28 e, and 𝑄𝑒𝑠 = 0 e, while for the electropositive carbon atom C1 they are equal to +1.43, +0.31, 
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and 0 e, respectively. Similar results, i.e., smaller charges compared to 𝜌-basins, were obtained 

after the integration of 𝜌(𝒓) over the Ehrenfest force field pseudoatoms.52 

The shapes of 𝜌- and 𝜑-basins depend on the type of crystal structure. For the molecular 

crystals of oxalic acid dihydrate and ica, the molecular shapes constructed out of 𝜌- and 𝜑𝑘-basins 

are very similar and are characterized by the rather sharp edges and planar faces from the sides of 

formed intermolecular interactions. This is not the case for 𝜑𝑒𝑠-basins, which in general have more 

smooth, rounded surfaces, which is especially evident from the shapes of the oxygen atoms in the 

oxalic acid molecule in Figure 1c. An even more contrasting example is 𝜑𝑒𝑠-basins of the sulfonyl 

atoms O1 and O3 and carbonyl atoms O2, O4, and O6 in the ica molecule shown in Figure S1, 

which have an almost ideal hemisphere shape, while still retaining the planar faces directed 

perpendicularly to the S=O and C=O bond lines. At the same time, hydrogens’ 𝜑𝑒𝑠-basins show 

concave regions imprinted due to the contact with the mentioned oxygens’ 𝜑𝑒𝑠-basins within a 

dense crystal packing of the molecules. The opposite can be observed for the ionic/atomic crystals 

of NaCl and MgB2, for which 𝜑𝑘- and 𝜑𝑒𝑠-basins appeared to be more similar. In particular, the 

𝜑-basins of the Cl atom have a simple cubic shape, while its 𝜌-basin features additional 

pronounced faces corresponding to the Cl‧‧‧Cl interaction. Conversely, the Na atom retains its 

cubic shape in all three studied functions with slightly more rounded edges in the case of 𝜑𝑒𝑠-

basins. The atomic 𝜌-basin of the Mg atom has a shape of a spinning top with no discernable faces, 

while its potential 𝜑𝑘- and 𝜑𝑒𝑠-basins have sharp edges and flat faces corresponding to the Mg···B 

bonds. 

Shared interactions and electron pairs 
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Figure 2 features one-dimensional profiles of a complete set of the one-electron potentials included 

in the Euler equation for ED along the selected bond paths in the ica molecule. For the sake of 

comparison, analogous plots for the polar covalent bonds C8–O9 and C2–N1 are given in Figure 

S2. We start by discussing the static potential acting on an electron in a molecule 𝜑𝑒𝑚(𝒓) =

−𝜑𝑒𝑠(𝒓) + 𝜑𝑥(𝒓) and electronic electrostatic potential −𝜑𝑒𝑠(𝒓). First, one can notice that the 

graphs of −𝜑𝑒𝑠(𝒓) and 𝜑𝑒𝑚(𝒓) are of almost parabolic shape revealing barriers that separate two 

interacting atoms; the PAEM barrier appears to be noticeably lower due to accounting for the 

electron exchange. The higher 𝜑𝑒𝑠- and 𝜑𝑒𝑚-barriers, the harder it is for electrons to move from 

one atom to the other. For the nonpolar C–C and C–S covalent bonds (Figure 2a,b), the maxima 

of −𝜑𝑒𝑠(𝒓) and 𝜑𝑒𝑚(𝒓) on the graphs, which correspond to the positions of Lagrange CP (3, –1) 

in 𝜑𝑒𝑠(𝒓) and Lagrange CP (3, +1) in 𝜑𝑒𝑚(𝒓), are located very close to the corresponding BCP. 

Recall that CPs (3, +1) in 𝜑𝑒𝑚(𝒓) coincide with Lagrange CPs (3, –1) in 𝜑𝑘(𝒓).22 On the other 

hand, for the polar covalent bonds C–N, C=O, and S=O (Figures 2c,d and S2), a noticeable shift 

of −𝜑𝑒𝑠(𝒓) and 𝜑𝑒𝑚(𝒓) maxima away from the BCP to the nucleus of the more electronegative 

atoms is observed. Moreover, a very slight shift of −𝜑𝑒𝑠(𝒓) and 𝜑𝑒𝑚(𝒓) maxima relative to each 

other with the maximum of 𝜑𝑒𝑚(𝒓) being a little closer to the BCP can be also seen. So, the 

asymmetry of 𝜑𝑒𝑠- and 𝜑𝑒𝑚-barriers can be distinguished for the highly polar S=O bond. This shift 

is governed by the shape of 𝜑𝑥(𝒓) distribution. For the nonpolar bonds, the exchange potential 

𝜑𝑥(𝒓) features an almost flat plateau in the middle of the interatomic region. It yields a nearly 

constant correction to −𝜑𝑒𝑠(𝒓), and the maxima of −𝜑𝑒𝑠(𝒓) and 𝜑𝑒𝑚(𝒓) are therefore aligned. 

Conversely, for the polar bonds, especially S=O, 𝜑𝑥(𝒓) is distributed more unevenly, with the 

linear segment of the graph tilted down toward the electronegative atom. Hence, the CP (3, –1) in 

𝜑𝑒𝑠(𝒓) are located nearby the CP (3, +1) in 𝜑𝑒𝑚(𝒓) and further away from the BCP, thus leading 
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to the strict sequence of the saddle critical points along a heteroatomic internuclear line. Looking 

ahead, this sequence is preserved and even more obvious for polar noncovalent bonds. 

 

Figure 2. Behavior of Pauli 𝜑𝑃(𝒓) (green), von Weizsäcker 𝜑𝑊(𝒓) (magenta), exchange 𝜑𝑥(𝒓) 

(red), and inverted electrostatic −𝜑𝑒𝑠(𝒓) (blue) potentials and static potential acting on an electron 

in a molecule 𝜑𝑒𝑚(𝒓) (orange) along the bond paths of the nonpolar and polar covalent bonds in 

ica. Zero value on the abscissa axes denotes the location of corresponding BCPs. 

Since the kinetic potential 𝜑𝑘(𝒓) is equal to −𝜑𝑒𝑚(𝒓) + 𝜇, it is topologically inverted 

relative to 𝜑𝑒𝑚(𝒓). So, let us now move to the discussion of its constituents, namely the von 

Weizsäcker 𝜑𝑊(𝒓) and Pauli 𝜑𝑃(𝒓) potentials. The former variates its sign along the bond paths 

thus reflecting the electronic shell structure. Reinterpreting the results presented for the one-

electron potential by Hunter,39 it can be argued that, in the regions of positive and negative 𝜑𝑊(𝒓), 
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the electron motion is classically allowed and forbidden, respectively. From the expression for 

𝜑𝑊(𝒓), it follows that the regions of 𝜑𝑊(𝒓) > 0 correspond to valence shell charge concentrations 

(VSCCs), where generally ∇2𝜌(𝒓) < 0. Conversely, if 𝜑𝑊(𝒓) < 0, the positive Laplacian 

contribution dominates and electron depletion occurs. For our examples (Figures 2 and S2), the 

outer valence region, indicated by the positive values of 𝜑𝑊(𝒓), is separated by one (for the C, N, 

and O atoms) or two (for the S atom) deep negative peaks from the inner electron shells. Within 

this outer valence region, the two individual VSCCs merge at the midpoint of covalent bonds, 

where a local positive 𝜑𝑊(𝒓) minimum is observed. Thus, the von Weizsäcker force 𝑭𝑊(𝒓) in 

this narrow region acts toward this local minimum rather close to the BCP. The one-dimensional 

distribution of always positive 𝜑𝑃(𝒓) along the bond paths also reveals the atomic electronic shells, 

which is evident by the alternating series of local potential minima and maxima. Within the inner 

electronic shells, local maxima of 𝜑𝑃(𝒓) are positioned closely to the minima of 𝜑𝑊(𝒓) and 

represent the regions where the same-spin electron repulsion is high. The important characteristic 

of 𝜑𝑃(𝒓) is that it features a wide, nearly flat segment of minimal potential in the center of covalent 

bonds at least on the scale in question, which manifests localization of shared electron pair(s) in 

the middle part of interatomic regions. Compared with the previously discussed functions, the 

distribution of 𝜑𝑃(𝒓) noticeable variates depending on the types of atoms forming a covalent bond. 

For example, in the case of the homoatomic C–C bond (Figure 2a), the region of the lowest Pauli 

potential is nearly flat and parallel to the abscissa axis, while for the C–S bond (Figure 2b) the 

minimum of 𝜑𝑃(𝒓) is slightly shifted toward the sulfur atom. Generally, for the more polar C–N, 

C=O, and S=O covalent bonds (Figures 2c,d and S2), the minimum within the wide potential well 

is located near the corresponding BCP and consequently is shifted to the electropositive atom. At 

the same time, it is observed a slight rise of 𝜑𝑃(𝒓) inside the well toward the region of VSCC with 
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a large value of 𝜑𝑊(𝒓), i.e., to the electronegative atom. The corresponding Pauli force 𝑭𝑃(𝒓) acts 

on the electrons in the direction of potential minimum, pushing them toward the center of a 

covalent bond and promoting the sharing of electrons between two atoms. Strictly speaking, for 

the polar covalent bonds 𝜑𝑃(𝒓) exhibits a very small hill of increased potential in the midpoint of 

the mentioned segment (see Figure S2), which is significantly smaller than the corresponding 

minimum of 𝜑𝑊(𝒓). 

For all studied covalent bonds, 𝜑𝑒𝑠- and 𝜑𝑒𝑚-barriers are relatively low, while both 𝜑𝑊(𝒓) 

and 𝜑𝑃(𝒓) show pronounced positive minima at the center of interatomic regions. Previously, we 

noted that according to the widely accepted classifications of the interactions types,82,83 based on 

the sign of ∇2𝜌(𝒓) at the BCP, the S=O bond in ica can be formally attributed to the intermediate 

interaction (not the shared one),17 similar to strong hydrogen bonds. In our opinion, this goes 

against general chemical intuition. Meanwhile, the behavior of 𝜑𝑊(𝒓) and 𝜑𝑃(𝒓) confirms that, 

in fact, the S=O bond is not basically different from any other covalent ones. Figure S3 presents 

the distributions of various functions along the S=O line. In particular, we note below that the 

distinguishing feature of noncovalent interactions is the presence of both pronounced Pauli barrier, 

i.e., a local positive maximum of 𝜑𝑃(𝒓) instead of continuous plateau of minimal potential 

observed for covalent bonds, and wide and deep well of negative 𝜑𝑊(𝒓) in the middle of 

interactions. We conclude that joined analysis of electronic potentials, especially combination of 

the two mentioned above, not only can be successfully used for the description of electronic shell 

structure but also should be utilized for classification of the interaction types. 

Figure 3 shows the vector fields 𝑭𝑊(𝒓), 𝑭𝑃(𝒓), and 𝑭𝑘(𝒓) constructed in the three-

dimensional layer containing the oxalic acid and water molecules in the crystal. It should be noted 

that the magnitudes of static FAEM ℱ(𝒓) and kinetic force 𝑭𝑘(𝒓) are equal, but the forces act 
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oppositely. The observed picture supports the previously made findings regarding the directions 

of the considered forces. All these forces have the highest values near the atomic nuclei and 

decrease with the distance from it. However, while the kinetic force 𝑭𝑘(𝒓) at any point within the 

system is always directed away from the closest atomic nucleus, both von Weizsäcker 𝑭𝑊(𝒓) and 

Pauli 𝑭𝑃(𝒓) forces have their direction governed by the local ED features, e.g., VSCCs and ED 

depletions or shared and lone electron pairs. Figure 3b clearly shows the vector vortices 

characterized by the near-zero magnitudes (indicated by blue arrows) in the Pauli force field on 

both sides of the oxygen atom O2 in the nonbonding region within its 𝜌-basin, which correspond 

to the formation of two lone electron pairs in the plane of the oxalic acid molecule under the action 

of 𝑭𝑃(𝒓). As a further example, let us consider the ordinary C–C covalent bond. Within its 

interatomic region, 𝑭𝑊(𝒓) has two clear points of origin at approximately ⅓ and ⅔ of the bond’s 

length, which are aligned with the local maxima of 𝜑𝑊(𝒓) found for the similar C–C bond in ica 

(Figure 2a). From these two points 𝑭𝑊(𝒓) acts toward the BCP in the direction of local 𝜑𝑊(𝒓) 

minimum and toward the atomic nuclei further from the bond midpoint. The apparent magnitude 

of 𝑭𝑊(𝒓) on the considered bonds is noticeably different from zero, averaging at ca. 2 a.u. 

Conversely, 𝑭𝑃(𝒓) shows a near-zero magnitude for the most part of the C–C line and quickly 

rises to its maximum value not far from the carbon nuclei. 𝑭𝑃(𝒓) is directed from the carbon atoms 

and vicinity around the bond to the BCP. This once again is fully consistent with the flat linear 

section followed by a steep increase on both sides on the 𝜑𝑃(𝒓) graph (Figure 2a). For the polar 

bonds, the behavior of 𝑭𝑊(𝒓) and 𝑭𝑃(𝒓) is similar, although more intricate. As opposed to the 

previous two, the magnitude of 𝑭𝑘(𝒓) uniformly increases from its minimum (ca. 1 a.u. for the C–

C bond) at the center toward the nuclear positions, which is consistent with the parabolic shape of 

𝜑𝑘(𝒓) and 𝜑𝑒𝑚(𝒓) graphs for chemical bonds. We can conclude that the formation of the actual 
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electronic structure of the crystal occurs with the decisive role of the kinetic factor, which has a 

quantum nature. 

 

Figure 3. Static vector fields 𝑭𝑊(𝒓) (a), 𝑭𝑃(𝒓) (b), and 𝑭𝑘(𝒓) (c) calculated for the oxalic acid 

dihydrate crystal in the layer with a thickness of 1 Å. Arrows are colored according to the force 

magnitude and indicate the direction of the forces at the center of each arrow. For a slightly 

different orientation of the 𝑭𝑘(𝒓) distribution see Figure S4. 
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The distinguishing feature of the 𝑭𝑘-field is its ability to provide an apparent (statistically 

equilibrium) molecular shape. The latter is manifested by the significantly large regions of near-

zero force located in the intermolecular area. These regions form a continuous enclosed surface of 

near-zero 𝑭𝑘(𝒓), which naturally closely resembles the molecular shape constructed out of 𝜑𝑘-

basins. It should be noted that this approximate 𝑭𝑘-surface is observed between molecular entities 

but not between covalently bonded atoms within a molecule. The same reasoning and conclusions 

are also valid for the static ℱ-field, which in turn resembles Ehrenfest force field 𝔉(𝒓).52,53 

Following the notation from the recent article,23 here we also utilize the decomposition of 

potentials from the Euler equation for ED, when the terms are grouped to distinguish electrostatic, 

quantum bosonic, and quantum fermionic contributions: 𝜇(𝒓) = −𝜑𝑒𝑠(𝒓) + 𝜑𝑏(𝒓) + 𝜑𝑓(𝒓). The 

quantum bosonic potential 𝜑𝑏(𝒓) is exactly the von Weizsäcker potential 𝜑𝑊(𝒓). The quantum 

fermionic potential 𝜑𝑓(𝒓) is equal to the sum of Pauli 𝜑𝑃(𝒓) and static exchange 𝜑𝑥(𝒓) potentials 

and provides both repulsive and attractive local fermionic contributions to the electronic energy. 

The sign of 𝜑𝑓(𝒓) indicates which effect dominates at that region of space: the spatial static 

electron exchange if the negative contribution of 𝜑𝑥(𝒓) is greater or kinetic contribution due to 

Pauli effect if everywhere positive 𝜑𝑃(𝒓) dominates. Figure 4 presents the distribution of 𝜑𝑏(𝒓) 

and 𝜑𝑓(𝒓) potentials in the planes of the ester (a, b) and ether (c, d) functional groups of the ica 

molecule. Similar to 𝜑𝑊(𝒓) and 𝜑𝑃(𝒓), both potentials 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓) are able to reveal the 

atomic electronic shells. The radii from the nuclei to the inner boundary of the outer electronic 

shell, i.e., core electron region, can be distinguished, with the oxygen atoms having smaller K-L 

radii compared to the carbon atoms. For the ordinary C7–C8 covalent bond (Figure 4c, d), 𝜑𝑓(𝒓) 

features a broad region of negative minimal potential in the midpoint, while 𝜑𝑏(𝒓) instead displays 

two separate local maxima along the line between the carbon atoms’ nuclei revealing bonding 
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VSCCs. For the polar C=O and C–O covalent bonds (Figure 4), no negative values of 𝜑𝑓(𝒓) are 

observed in the internuclear region, with instead a single positive local maximum shifted in the 

direction of the electropositive carbon atom. Notably, the distribution of 𝜑𝑓(𝒓) is very similar to 

𝜑𝑃(𝒓).15,46 Potential 𝜑𝑏(𝒓) exhibits two positive peaks of different heights: the higher peak near 

the oxygen atom and the lower one near the carbon atom. Probably, for recovering the location of 

either shared and lone electron pair(s) in terms of electronic potentials, it is reasonable to consider 

the region related to the VSCC with a larger value of 𝜑𝑏(𝒓), which is simultaneously sited inside 

the rather wide Pauli potential well and shows lower possible values of 𝜑𝑃(𝒓). For the carbonyl 

atom O5 in the nonbonding regions, potentials 𝜑𝑓(𝒓) and 𝜑𝑏(𝒓) display two negative and positive 

peaks, respectively, which correspond to the VSCCs or electron lone pairs lying in the plane of the 

ester group, as expected for an sp2-hybridized oxygen atom (the similar case was considered in the 

term of force fields above in Figure 3b). For the sp3-atoms O9 and O14, both functions successfully 

reveal regions containing the electron lone pairs situated above and below the map planes. There 

are distinct differences in the shape and area of the space occupied by the electron pairs described 

by these two potentials: 𝜑𝑏(𝒓) rapidly decreases from the boundary of the core electrons, while 

𝜑𝑓(𝒓) represents the near-zero values of 𝜑𝑃(𝒓), which corresponds to the slow increase of Pauli 

kinetic energy within the atomic basin. Importantly, the volumes occupied by the shared and lone 

electron pairs in the 𝜑𝑏(𝒓) or 𝜑𝑊(𝒓) notation are compressed and placed rather closer to the nuclei 

as compared to the 𝜑𝑓(𝒓) and 𝜑𝑃(𝒓) representations owing to account for the electron quantum 

spread (fluctuation), which is related to the electrostatic attraction of electrons to the nuclei. 

Interestingly, both functions feature the areas of near-zero values, which resemble in shape the 

atomic 𝜌- and 𝜑𝑘-basins shown in Figure 5. Thus, recalling the clear physical meaning of quantum 

potentials and their essential relationships with the fundamental principles of quantum mechanics, 
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potential 𝜑𝑊(𝒓) = 𝜑𝑏(𝒓) on the one hand and potentials 𝜑𝑃(𝒓) and 𝜑𝑓(𝒓) on the other can be 

utilized in bonding analysis as functions for the localization of electrons and the revealing and 

description of electron lone pairs, respectively. 

 

Figure 4. Distributions of bosonic 𝜑𝑏(𝒓) (a, c) and fermionic 𝜑𝑓(𝒓) (b, d) quantum potentials for 

the ester (a, b) and ether (c, d) functional groups of ica in the planes of labeled atoms. Contour 

steps are equal to 0.2 and 0.1 a.u. for 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓), respectively. For the 𝜑𝑓(𝒓) maps, 

additional contour at 8 a.u. is drawn to reveal the atomic shell structure. The maximum and 
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minimum function values are also given at the gradient scale bar. The distance between ticks on 

the graph axes is equal to 1 Å. 

Simultaneous superposing atomic 𝜌- and atomic-like potential-based 𝜑𝑒𝑠- and 𝜑𝑘-basins 

offers a unique perspective on interatomic interactions and bonding within molecules and 

crystals.15 The most important advantage of this approach is the clear visualization of gaps between 

boundaries of different types of 𝜌- and 𝜑-basins apparent due to the natural differences in their 

shapes and volumes. The superpositions of 𝜑𝑒𝑠- and 𝜑𝑘-basins in the planes of selected functional 

groups of the ica molecule are shown as experimental gradient trajectories in Figure 5. In other 

words, curves on the figure are lines of ED gradient (gray), kinetic force (orange), and electric 

(blue) inner-crystal vector fields. Interestingly, the lines of different fields are intricately 

interwoven and intersect foreign zero-flux surfaces (bold lines), especially in the aforementioned 

gaps. The common characteristic of all the presented covalent bonds is the obligatory presence of 

saddle CPs (3, –1) in 𝜌(𝒓), 𝜑𝑘(𝒓), and 𝜑𝑒𝑠(𝒓) and corresponding gradient paths emerged at these 

points and following along similar trajectories between the nuclei of bonded atoms, that is not 

always the case for noncovalent ones. The immediate difference can be noted between polar and 

nonpolar covalent bonds. For the latter, such as C7–C8 (Figure 5d), all three CPs (3, –1) are located 

in exactly the same place and the corresponding 𝜌- and 𝜑-basins’ boundaries between the atoms 

coincide, manifesting the absence of total electron transfer. Conversely, in the case of polar 

covalent bonds, the CP (3, –1) in 𝜌(𝒓) stands apart along the interatomic line closer to the more 

electropositive atom, while the Lagrange CPs (3, –1) in 𝜑𝑘(𝒓) and 𝜑𝑒𝑠(𝒓) are positioned almost 

at the same place closer to an electronegative atom, which forms the gap between the boundaries 

of 𝜌- and 𝜑-basins. Above, we have already noted the comparable sequence of saddle CPs along 

a bond line from an electropositive atom to an electronegative one as follows: CP (3, –1) in 𝜌(𝒓), 
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CP (3, +1) in 𝜑𝑒𝑚(𝒓), and CP (3, –1) in 𝜑𝑒𝑠(𝒓), with two latter very close to each other. In the 

vicinity of CPs (3, –1) in the potentials and ED, both atomic and 𝜑-boundaries are generally nearly 

flat, which indicates an even action of the oppositely directed forces 𝑭𝑒𝑠(𝒓) and 𝑭𝑘(𝒓) normally 

to the 𝜌-boundary along the covalent bond line. Again, the electronic forces 𝑭𝑒𝑠(𝒓) and 𝑭𝑘(𝒓) act 

toward and away from the position of atomic nuclei within 𝜑𝑒𝑠- and 𝜑𝑘-basins, respectively. The 

forces ℱ(𝒓) and 𝑭𝑘(𝒓) fully compensate each other. 

 

Figure 5. Superposition of gradient fields of electron density ∇𝜌(𝒓) (grey), electrostatic potential 

∇𝜑𝑒𝑠(𝒓) (blue), and kinetic potential ∇𝜑𝑘(𝒓) (orange) calculated for the ica crystal in the planes 
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of labeled atoms. Saddle CPs (3, –1) in 𝜌(𝒓), 𝜑𝑒𝑠(𝒓), and  𝜑𝑘(𝒓) are shown by magenta and violet 

rhombuses and green squares, while gradient paths connecting the corresponding field attractors 

are shown by red, violet, and green lines, respectively. An extended version of the map (b) is 

shown in Figure S5. For H15cʹ···O2 (a), CP (3, –1) in 𝜑𝑒𝑠(𝒓) is present but located out of the 

plane. 

Keeping in mind that 𝜑𝑒𝑠-basins behave as electrostatically isolated pseudoatomic regions 

and 𝜑𝑒𝑠-boundaries play the role of envelopes of electric field lines, the observed gap between the 

boundaries of 𝜌- and 𝜑𝑒𝑠-basins allows one to qualitatively describe the direction and extent of 

charge transfer between any two atoms, regardless of whether there is a bond path between the 

atoms or not.15 ED held inside the volumetric gap between a QTAIM atom and an adjoining 

electric field pseudoatom belongs to this 𝜌-atom but experiences attractive 𝑭𝑒𝑠(𝒓) toward the 

neighboring nucleus enclosed by the 𝜑𝑒𝑠-basin. The 𝜌-basin of a more electronegative atom 

captures a portion of electrons of the neighboring 𝜑𝑒𝑠-basin of an electropositive atom. As per the 

previously adopted terminology, an atom with a 𝜌-basin boundary extending further from its 

nucleus than its 𝜑𝑒𝑠-basin boundary behaves as an electron occupier (e-occupier), and its 

connected neighbor behaves as an electron contributor (e-contributor). We deliberately avoid the 

frequently used terms like donor and acceptor when describing charge transfer, which may be 

misunderstood due to their vague usage for different cases, e.g., H-bond acceptor, electron-pair 

donor, etc. As can be seen from Figure 5, for the more polar covalent bonds, such as C=O and 

S=O, the gaps between the 𝜌- and 𝜑𝑒𝑠-boundaries are wider than for the less polar ones, such as 

C–N bond. In our case, in the C=O, C–O, S=O, and C–N bonds, the oxygen and nitrogen atoms 

act as e-occupiers, while the carbon and sulfur ones as e-contributors. Notably, almost no visible 

gap between the 𝜌- and 𝜑-boundaries can be found for the heteroatomic C–S covalent bond, since 
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these two elements have identical values of atomic electronegativity in the Mulliken scale of 6.22 

eV. Similar considerations are valid for C–H bonds. 

Similarly to the charge transfer described via the gap between the 𝜌- and 𝜑𝑒𝑠-basin, the 𝜌-

basin of an e-occupier atom captures a portion of the kinetic potential-based 𝜑𝑘-basin of an e-

contributor (Figure 5). For the covalent bonds, the 𝜑𝑘-boundary always turns out to be very close 

to the 𝜑𝑒𝑠-one, which is not inherent to other types of chemical interactions. Moreover, 𝜑𝑘-

boundary never moves beyond the 𝜑𝑒𝑠-basin of an e-occupier atom. To the best of our knowledge, 

this observation has not been made before. While the gap between the boundaries of 𝜌- and 𝜑𝑒𝑠-

basins along the interatomic line can be interpreted as a real-space manifestation of the interatomic 

charge transfer, the gap between the 𝜌- and 𝜑𝑘-boundaries corresponds to a different, yet unnamed 

phenomenon (see the Discussion section), which in the case of covalent bonds is carried out for 

virtually all transferred electrons contained within the 𝜌- and 𝜑𝑒𝑠-gap. In general, this phenomenon 

is expected to be a part of electron transfer defined by the electric field but should be also 

associated with kinetic and exchange quantum effects. The latter becomes clear if one recalls that 

the shift of a СP (3, +1) in PAEM, and hence a СP (3, –1) in 𝜑𝑘(𝒓), with respect to a СP (3, –1) 

in 𝜑𝑒𝑠(𝒓) is governed by the 𝜑𝑥(𝒓) contribution. 

Hydrogen bonds and noncovalent interactions: kinetic and static potentials’ aspects 

Let us analyze the local one-electron potentials along the bond paths of the selected noncovalent 

interactions. Figure 6 features the one-dimensional profiles of the potentials for the nonclassical 

H12b‧‧‧O9 (𝑅𝑖𝑗 = 2.324 Å, 𝐸𝑔 = 2.92 kcal mol–1) and classical H1‧‧‧O3 (𝑅𝑖𝑗 = 1.425 Å, 𝐸𝑔 = 15.75 

kcal mol–1) hydrogen bonds as well as very weak head-to-head sulfonyl interaction 

S1=O1···O1ʹ=S1ʹ (𝑅𝑖𝑗 = 3.339 Å, 𝐸𝑔 ≈ 0.73 kcal mol–1). For the weak intramolecular hydrogen 
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bond H12b‧‧‧O9 and intermolecular interaction O1···O1ʹ from the ica crystal, distribution of 

−𝜑𝑒𝑠(𝒓) in the interatomic region away from the nuclei features a flat, linear plateau of near-zero 

potential values, which indicates that the 𝜑𝑒𝑚(𝒓) distribution in the vicinity of BCPs is governed 

almost by 𝜑𝑥(𝒓) contribution. This is not the case for the strongest hydrogen bond H1···O3 from 

oxalic acid dihydrate, for which the 𝜑𝑒𝑠-barrier is significantly lower, with the maximum −𝜑𝑒𝑠(𝒓) 

value equal to ca. –0.21 a.u. Consequently, this H-bond has the comparably lowest PAEM barrier 

of approximately –0.87 a.u., while for the other presented noncovalent interactions it ranges –0.24 

and –0.10 a.u. For the sake of comparison, covalent bonds displayed noticeably lower PAEM 

barriers, ranging from –2.2 to –1.0 a.u. (Figure 2). For both abovementioned H-bonds, the 

maximum of 𝜑𝑒𝑚(𝒓) is significantly shifted from the corresponding BCP toward the oxygen atom 

(e-occupiers), while the maximum of −𝜑𝑒𝑠(𝒓) are located even deeper. For example, in the case 

of H1···O3 bond, the maxima of 𝜑𝑒𝑚(𝒓) and 𝜑𝑒𝑠(𝒓) are shifted ca. 0.14 and 0.18 Å away from 

the BCP toward the atom O3. By considering the slope of the 𝜑𝑒𝑠(𝒓) and 𝜑𝑒𝑚(𝒓) curves one can 

estimate the magnitude of corresponding forces 𝑭𝑒𝑠(𝒓) and ℱ(𝒓) within the interatomic region.15,84 

For the noncovalent interactions, the magnitude of ℱ(𝒓) is generally higher than that of 𝑭𝑒𝑠(𝒓), 

which is due to the more uneven distribution of 𝜑𝑥(𝒓) along the bond paths. Further, the 

asymmetry of 𝜑𝑒𝑚(𝒓) distribution is highly influenced by the 𝜑𝑥(𝒓), which increases the steepness 

of the PAEM curve from the side of an e-occupier, in our cases the oxygen atom, and highly 

decreases the height of the 𝜑𝑒𝑚-barrier for the whole interatomic region (see Figure 6c). On the 

other hand, the steeper curve from the side of an e-occupier indicates a higher degree of repulsion 

of electrons by the inner electric field, which is applicable to any kind of interaction. The shapes 

of 𝜑𝑥(𝒓) and 𝜑𝑒𝑚(𝒓) profiles along interatomic lines of various hydrogen bonds in optimized 

dimers has been recently discussed.85 
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Figure 6. Behavior of Pauli 𝜑𝑃(𝒓) (green), von Weizsäcker 𝜑𝑊(𝒓) (magenta), exchange 𝜑𝑥(𝒓) 

(red), and electronic electrostatic −𝜑𝑒𝑠(𝒓) (blue) potentials and static potential acting on an 

electron in a molecule 𝜑𝑒𝑚(𝒓) (orange) along the bond paths of the selected noncovalent 

interactions in the ica (a, b), oxalic acid dihydrate (c), and sodium chloride (d) crystals. Zero value 

on the x-axes corresponds to the position of corresponding BCPs. 

The other notable difference between covalent and noncovalent bonds lies in the distribution 

of von Weizsäcker 𝜑𝑊(𝒓) and Pauli 𝜑𝑃(𝒓) potentials. Instead of the continuous region of positive 

𝜑𝑊(𝒓) in the middle of bonds, which correspond to allowed positive values of the local one-

electron kinetic energy, we observe a sharp and wide negative potential peak (von Weizsäcker 

well), which indicates a region of electron depletion where 𝑭𝑊(𝒓) attempts to drag the electrons, 

but classical electron motion is forbidden and electrons exhibit the quantum behavior. For instance, 
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both nonclassical H12b···O9 and classical H1···O3 hydrogen bonds feature deep and shallow 

negative von Weizsäcker wells with the potential minima of ca. –1.04 and –0.28 a.u., respectively, 

(Figure 6a,c). A series of positive peaks of 𝜑𝑊(𝒓) located closer to the nuclei of oxygen atoms 

corresponds to the lone (but involved in the interaction) electron pair ED concentration within the 

L atomic shell and the ED within the K electron shell. Similarly, for the homoatomic Cl···Cl 

interaction found in the NaCl crystal (Figure 6d), the profile of 𝜑𝑊(𝒓) features the negative von 

Weizsäcker well (𝜑𝑊(BCP) = –0.47 a.u.) and three consecutive peaks with increasing values for 

each Cl– anion, which in turn correspond to the atomic M, L, and K electron shells. Turning to the 

one-dimensional distributions of 𝜑𝑃(𝒓) along the bond paths of the noncovalent interactions, the 

immediate difference between covalent and noncovalent bonds is the absence of a flat, linear 

section of near-zero Pauli potential. Instead, for these interactions there exist a pronounced Pauli 

barrier, i.e., a local maximum of 𝜑𝑃(𝒓) in the interatomic region separating the two atoms.15 

Height of a Pauli barrier therefore reflects the extent of Pauli repulsion occurring between same-

spin electrons in the interatomic region due to the lack of sharing interaction. In turn, 𝑭𝑃(𝒓) acts 

on electrons pushing them away from the barrier in the directions of the respective potential 

minima into their atomic basins. Notably, Pauli barriers accompany negative von Weizsäcker 

wells. Figure 6 illustrates the difference in the height of Pauli barriers for the studied interactions: 

the local maximum of 𝜑𝑃(𝒓) reaches ca. 0.82 a.u for the weaker H-bond H12b···O9, while for the 

stronger H1···O3 bond it has a lower value of ca. 0.67 a.u. For the two considered hydrogen bonds, 

the Pauli barrier and the von Weizsäcker well are shifted closer to the oxygen atoms. In the case 

of two noncovalent homoatomic interactions (Figure 6b,d), one can notice that the distribution of 

𝜑𝑃(𝒓) for the O1···O1ʹ one has a tall, rather narrow positive potential peak with a maximum at ca. 

0.68 a.u., while for the Cl–···Cl– one the maximum of ca. 0.59 a.u. lies at the top of a short, quite 
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broad peak. It might be however more useful to consider the relative height of the Pauli barrier, 

i.e., the potential difference between neighboring maxima and minima of 𝜑𝑃(𝒓). For O1···O1ʹ, 

the Pauli barrier has a height of ca. 0.54 a.u., while for Cl–···Cl– it reaches at most 0.14 a.u. Judging 

by this difference, one can assume that the latter interaction involves a greater contribution of ED 

sharing between the two atoms. This conclusion is also supported by the lower PAEM barrier for 

Cl–···Cl– as compared to O1···O1ʹ (–0.20 a.u. versus –0.10 a.u.). 

As has been shown previously, the most suitable and reasonable way to define the molecular 

surface in crystals for subsequent analysis of various properties on it is to choose the outer 

boundaries of 𝜌-basins.15,63,86 Figure 7 features the 𝜌-basins constructed for ica in the crystal with 

−𝜑𝑒𝑠(𝒓) and 𝜑𝑒𝑚(𝒓) mapped on them, which represent another view on performance of 𝜑𝑒𝑠- and 

𝜑𝑒𝑚-barriers. Analogous maps for oxalic acid dihydrate, sodium chloride, and magnesium 

diboride are presented in Figure S6. Within the regions centered around the BCPs, a local increase 

or decrease of 𝜑𝑒𝑠(𝒓) can be detected. PAEM 𝜑𝑒𝑚(𝒓) is likely a more suitable function for the 

identification and characterization of interatomic interactions, since it explicitly accounts for static 

electron exchange. In practice,  𝜑𝑒𝑚(𝒓) is negative everywhere, and the enclosed areas with more 

negative values of 𝜑𝑒𝑚(𝒓) are observed near the BCPs, which help recognize diverse chemical 

interactions (Figure 7b). On the 𝜌-boundaries, ℱ(𝒓) acts in the direction of reducing 𝜑𝑒𝑚(𝒓), i.e., 

nearby the BCPs, thus promoting their formation.15 
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Figure 7. Inner-crystal electronic electrostatic potential −𝜑𝑒𝑠(𝒓) (a) and static potential acting on 

an electron in a molecule 𝜑𝑒𝑚(𝒓) (b) mapped on the surfaces of 𝜌-basins for ica in the crystal. 

BCPs and bond paths for the noncovalent interactions with the neighboring molecule related by 

the inversion center are presented as magenta spheres and multicolored lines. 

Figure 8 displays the bosonic 𝜑𝑏(𝒓) and fermionic 𝜑𝑓(𝒓) quantum potentials in the plane of 

oxalic acid containing three different classical hydrogen bonds with the water molecules. For the 

atoms O1 and O2, lone electron pairs identified by the regions of highly positive 𝜑𝑏(𝒓) and 

negative 𝜑𝑓(𝒓) are directed toward the ED depletion regions of the neighboring hydrogen atoms. 

Both oxygen atoms hence act as a donor of the lone pair, being at the same time an e-occupier 

(vide infra), while the hydrogen atoms are simultaneously an acceptor and e-contributor. For each 

of the hydrogen bonds H1‧‧‧O3, H3ʹ‧‧‧O2, and H2ʹʹ‧‧‧O2, a local increase of 𝜑𝑏(𝒓) and a 

corresponding decrease of 𝜑𝑓(𝒓) in the interatomic region are observed, which form the channels 

somewhere along the bond path within the respective potential distributions. For comparison, 

Figure S7 shows similar contour maps for the O‧‧‧O contact in the ica crystal, from which it is 

obvious that the VSCCs of oxygen atoms are directed directly at each other, thereby indicating a 

surface-to-surface way of molecular recognition. Thus, 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓) can reveal noncovalent 
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interactions and further distinguish between the Lewis (donor-acceptor or “key-lock”) and van der 

Waals (surface-to-surface) mechanism of interactions. A more unique observation can be made 

regarding the representation of electron lone pairs in the 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓) distributions. In the 

interatomic region of the strongest H-bond H1···O3, the lone electron pair of the oxygen atom O3 

is well localized in 𝜑𝑏(𝒓) showing the nonbonding VSCC lobe directed to H1 qualitatively and 

quantitatively similar to the other nonbonding VSCCs (Figure 8a). However, in the 𝜑𝑓(𝒓) 

distribution, the same lone electron pair presents highly distorted, most likely because a significant 

portion of the transferred ED is shared with the neighboring H1 atom under the influence of 

electron exchange effects. We believe that complementary analysis of the 𝜑𝑓(𝒓) and 𝜑𝑃(𝒓) 

distribution can be further exploited to gain some insights into ED sharing within donor-acceptor 

bonding. The theoretical maps of electronic potentials and various popular functions in the plane 

of the oxalic acid molecule are present in Figure S8. 
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Figure 8. Contour maps of bosonic 𝜑𝑏(𝒓) (a) and fermionic 𝜑𝑓(𝒓) (b) quantum potentials for the 

oxalic acid dihydrate crystal. Contour steps are equal to 0.2 and 0.1 a.u. for 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓), 

respectively. For the 𝜑𝑓(𝒓) map (b), additional contour at 8 a.u. is drawn to reveal the atomic shell 

structure. The maximum and minimum function values are also given at the gradient scale bar. 

The distance between ticks on the graph axes is equal to 1 Å. 

As we noted above, the width of the gaps between boundaries of 𝜌- and 𝜑-basins vary 

significantly within and outside the molecule in a crystal. The superpositions of 𝜌-, 𝜑𝑒𝑠-, and 𝜑𝑘-

basins in the planes of various intermolecular interactions in the crystals of ica and oxalic acid 
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dihydrate are shown as gradient trajectories in Figures 5a and 9. As opposed to covalent bonds, for 

noncovalent interactions, not all three expected CPs (3, –1) in 𝜌(𝒓), 𝜑𝑒𝑠(𝒓), and 𝜑𝑘(𝒓) and 

associated 𝜌- and 𝜑-paths may be present. Even if all these CPs are present, the corresponding 

paths do not always follow the same trajectory. A quite intriguing picture is observed for the 

intramolecular sulfonyl-ether O1···O9 (𝑅𝑖𝑗 = 3.275 Å, 𝐸𝑔 ≈ 0.81 kcal mol–1) and centrosymmetric 

intermolecular sulfonyl-sulfonyl O1···O1ʹ interactions in the ica crystal shown in Figure 9a,b. For 

both interactions, no common 𝜑𝑒𝑠-basin boundary between the bonded oxygen atoms is present 

and, consequently, the CPs (3, –1) and corresponding path in 𝜑𝑒𝑠(𝒓) do not exist. Further, for both 

interactions, the common 𝜑𝑘-boundary between the contacting oxygen atoms exists. This 

boundary almost coincides with the 𝜌-one, but is not, however, accompanied by the corresponding 

gradient 𝜑𝑘-path. 

 

Figure 9. Superposition of gradient fields of electron density ∇𝜌(𝒓) (grey), electrostatic potential 

∇𝜑𝑒𝑠(𝒓) (blue), and kinetic potential ∇𝜑𝑘(𝒓) in the ica (a, b) and oxalic acid dihydrate (c) crystals 

in the planes of labeled atoms. Saddle CPs (3, –1) in 𝜌(𝒓), 𝜑𝑒𝑠(𝒓), and  𝜑𝑘(𝒓) are shown by 

magenta and violet rhombuses and green squares, while gradient paths connecting corresponding 
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field attractors are shown by red, violet, and green lines, respectively. For H2ʹʹ···O2 (c), CPs (3, –

1) in 𝜑𝑒𝑠(𝒓) and 𝜑𝑘(𝒓) are present but located out of the plane. 

For the centrosymmetric S1=O1···O1ʹ=S1ʹ interaction, the superposition of atomic and 

potential basins helps uncover an electrostatic contribution to the bond formation. Recall that this 

closed-shell interaction refers to the van der Waals type. Although there is no common 𝜑𝑒𝑠-

boundary between the two oxygen atoms, it is unexpectedly present between the two sulfur atoms 

as well as between the oxygen and sulfur atoms of the two neighboring sulfonyl groups (Figure 

9a). So, the 𝜌-basin of O1 captures a portion of electrons contained in the 𝜑𝑒𝑠-basin of S1ʹ. From 

this we can conclude that each oxygen atom in this interaction acts as an e-occupier with respect 

to the sulfur atom of the neighboring molecule, identifying the electrostatic interaction between 

pairs of nonbonded atoms O1 and S1ʹ as well as O1ʹ and S1 within the topologically bonded 

O1···O1ʹ contact. This observation is the real-space evidence of the direct influence of surrounding 

atoms on the interaction. Therefore, the proposed approach of basin superposition helps reveal the 

actual mechanism of bond formation, which could not be extracted by the standard topological 

analysis of ED alone. 

A special mention needs to be given to CP (3, –1) in 𝜑𝑒𝑠(𝒓) between the two hydrogen atoms 

H1 and H3ʹ, which share a common 𝜑𝑒𝑠-boundary not mirrored in either 𝜌(𝒓) or 𝜑𝑘(𝒓). 

Conversely, between O3 and H3ʹ there is only CP (3, –1) in 𝜑𝑘(𝒓), although all three common 

boundaries are present. Even though the oxygen atom O3 acts as an electron occupier with respect 

to the hydrogen atom H3ʹ, while the bond path goes between the two oxygen atoms O3 and O3ʹ 

(Figure 9c). 

The use of gradient fields superposition can also help distinguish between weak and 

moderately strong hydrogen bonds. Let us consider a number of hydrogen bonds, which include 
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the nonclassical H12b···O9 (𝑅𝑖𝑗 = 2.324 Å, 𝜌(BCP) = 0.087 e Å–3, ∇2𝜌(BCP) = 1.27 e Å–5, 𝐸𝑔 = 

2.92 kcal mol–1) and H12b···O1 (𝑅𝑖𝑗 = 2.426 Å, 𝜌(BCP) = 0.058 e Å–3, ∇2𝜌(BCP) = 0.88 e Å–5, 

𝐸𝑔 = 1.93 kcal mol–1) ones from the ica crystal (Figure 9b) as well as the three classical hydrogen 

bonds H1···O3 (𝑅𝑖𝑗 = 1.425 Å, 𝜌(BCP) = 0.657 e Å–3, ∇2𝜌(BCP) = –0.11 e Å–5, 𝑔(BCP) = 5.85‧10–

2 a.u., 𝑣(BCP) = –1.18‧10–1 a.u., 𝐸𝑔 = 15.75 kcal mol–1), H2ʹʹ···O2 (𝑅𝑖𝑗 = 1.852 Å, 𝜌(BCP) = 0.230 

e Å–3, ∇2𝜌(BCP) = 1.50 e Å–5, 𝐸𝑔 = 5.55 kcal mol–1), and H3ʹ···O2 (𝑅𝑖𝑗 = 1.903 Å, 𝜌(BCP) = 

0.194 e Å–3, ∇2𝜌(BCP) = 1.59 e Å–5, 𝐸𝑔 = 5.05 kcal mol–1) from the oxalic acid dihydrate crystal 

(Figure 9c). For all the H-bonds, the 𝜌-basins of the oxygen atoms always occupy a part of the 

𝜑𝑒𝑠- and 𝜑𝑘-basins of the contacting hydrogen atoms, so that there exists a gap between the zero-

flux surfaces of the corresponding 𝜌- and 𝜑-basins. Therefore, the oxygen atoms always act as an 

e-occupier, while the hydrogen atoms are e-contributors. Recall that the penetration of 𝜌- and 𝜑𝑒𝑠-

basins represents electron transfer defined by the electric field, while the penetration of 𝜌- and 𝜑𝑘-

basins corresponds to the unnamed quantum phenomenon (vide supra) defined by the kinetic and 

static force fields, which is a part of charge transfer. We noted that the 𝜑𝑘-boundary does not move 

beyond the 𝜑𝑒𝑠-basin of the oxygen atoms and changes its position between the 𝜌- and 𝜑𝑒𝑠-ones 

depending on the actual nature and strength of the H-bond in question. For the weaker H-bonds 

H12b···O9 and H12b···O1, the 𝜑𝑘-boundary is located closer to the 𝜌-one, while, for the stronger 

H-bonds H2ʹʹ···O2 and H3ʹ···O2, it appears closer to the 𝜑𝑒𝑠-boundary. A special case is the 

strongest hydrogen bond H1···O3, for which the 𝜑𝑘-boundary closely approaches the 𝜑𝑒𝑠-one, so 

that the arrangement of atomic and potential basin boundaries begins to closely resemble a very 

polar covalent bond (compare with O1–H1). At the same time, a noticeable gap between the 𝜑𝑒𝑠- 

and 𝜑𝑘-boundaries is still present not only on the periphery but also along the 𝜌- and 𝜑-paths. In 

other words, a stronger hydrogen bond is accompanied by the deeper penetration of hydrogen’s 
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𝜑𝑘-pseudoatom into oxygen’s 𝜌-atom, so that the 𝜑𝑒𝑠- and 𝜑𝑘-basins of the hydrogen atom occupy 

almost the same region of space. Conversely, for the weaker hydrogen bonds, only hydrogen’s 

electric field pseudoatom (𝜑𝑒𝑠-basin) is able to deeply penetrate the 𝜌-basin of the oxygen atom. 

Comparing the magnitude of one-electron 𝑭𝑘(𝒓) acting on the zero-flux surface at the position of 

the BCP for the three classical hydrogen bonds, the highest value of ca. 2.0 a.u. is observed for the 

strongest H1···O3 bond, while for the weaker H2ʹʹ···O2 and H3ʹ···O2 bonds the corresponding 

values are equal to 0.66 and 0.63 a.u. This reasoning can be carried over to any other interactions. 

However, the extent of penetration of e-contributing atom’s 𝜑𝑘-basin into the 𝜌-basin of e-

occupier is not actually directly tied with bond strength, rather it shows the degree of apparent 

covalency of an interaction. In our previous work, we noted that the two strongest noncovalent 

interactions in the crystal of a uracil derivative, which are the C=O···π and C(sp)–H···O contacts, 

have similar estimated bond energies 𝐸𝑔.15 However, for the former contact, the 𝜑𝑘-boundary is 

located very close to the 𝜌-one indicating the dominating electrostatic contribution, while for the 

latter it appears between the 𝜑𝑒𝑠- and 𝜌-basin boundaries alluding to the large “covalent 

component”. A more general conclusion regarding the chemical meaning of mutual arrangement 

of atomic and potential basins will be made in the Discussion. 

From the topological characteristics for H1···O3, i.e., the negative values of ∇2𝜌(BCP) and 

total electronic energy density at the BCP as well as the ratio |𝑣(BCP)|/𝑔(BCP) > 2,83 one might 

assume that this interaction can be formally categorized as a shared one. Our data match the 

previous experimental charge density study of oxalic acid dihydrate.87 However, such conclusion 

is most likely not true, since the value of 𝜌(BCP) is relatively small and ∇2𝜌(BCP), although 

negative, is very close to zero. Additionally, Laplacian of ED suffers from the model quality and 

has a large experimental error.88 Topological analysis performed directly using the periodic 
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wavefunction (𝜔B97X/pob-TZVP-rev2) yields the relatively small 𝜌(BCP) = 0.610 e Å–3, while 

the value of ∇2𝜌(BCP) is positive and equal to 3.016 e Å–5. To avoid the false categorization, we 

compare the gradient fields’ behavior for the H1···O3 hydrogen bond and neighboring covalent 

bond O1–H1 (Figure 9c). Immediately, a clear distinction is noticed: for the covalent bond O1–

H1, although undoubtedly highly polar in nature, the boundaries of 𝜑𝑒𝑠- and 𝜑𝑘-basins almost 

coincide diverging to some extent at the periphery, which is characteristic of covalent bonds, while 

the hydrogen bond H1···O3 exhibits a clear gap between the two zero-flux surfaces of potential-

based basins. 

Closed shell interactions in ionic crystals 

Now we can turn our attention to the ionic crystals of sodium chloride and magnesium diboride. 

The distributions of various potentials along the bond paths of Na···Cl and Mg···B are featured in 

Figure 10 and resemble noncovalent interactions in molecular crystals. The shape of the 𝜑𝑥(𝒓) 

graphs in the middle of the bond lines features the linear segment significantly skewed in the 

direction of the anions. The profiles of static potentials 𝜑𝑒𝑚(𝒓) and −𝜑𝑒𝑠(𝒓) demonstrate 

significant asymmetry. Maxima of both 𝜑𝑒𝑚(𝒓) and −𝜑𝑒𝑠(𝒓) are noticeably shifted from the BCP 

toward the respective anion, while the potential graphs retain a somewhat parabolic shape. The 

maximum of the PAEM barriers is ca. –0.35 a.u. for Na···Cl and ca. –0.61 a.u. for Mg···B. In the 

case of NaCl, a shift of 𝜑𝑒𝑚(𝒓) relative to −𝜑𝑒𝑠(𝒓) is especially noticeable and equal to about 

0.14 Å. As before, the graphs of 𝜑𝑊(𝒓) and 𝜑𝑃(𝒓) highlight the atomic shell structure. However, 

the expected maxima and minima in these potentials for both Na and Mg atoms corresponding to 

the outermost atomic electron shells are missed due to the occurred valence electron transfer. For 

the ionic bonds Na···Cl and Mg···B, the deep negative von Weizsäcker well exists, with the 
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potential minimum values of –1.92 and –1.73 a.u., respectively. This well in turn is accompanied 

by the Pauli barrier, with maxima in 𝜑𝑃(𝒓) of 2.28 and 2.60 a.u. Both von Weizsäcker well and 

Pauli barrier are located in the atomic basin of the Na+ and Mg2+ cations. Conversely, within the 

atomic basins of Cl– and B– anions, the positive local maximum of 𝜑𝑊(𝒓) and the wide local 

minimum of 𝜑𝑃(𝒓) are observed, which correspond to the positions of paired valence ED 

localization. This pattern of 𝜑𝑊(𝒓) and 𝜑𝑃(𝒓) local extrema is consistent with the asymmetry of 

charge distribution expected for ionic bonds. A quite intriguing feature of the 𝜑𝑃(𝒓) distribution 

is a small local minimum near the Pauli barrier within the cationic 𝜌-basin. This local minimum 

of 𝜑𝑃(𝒓) is more pronounced for Na+, while it practically merges with the Pauli barrier for Mg2+. 

The possible explanation for this is almost complete charge transfer followed by effective electron 

pairing in the case of MgB2, for which the cationic atom has a Bader charge of +1.92 e, i.e., very 

close to a formal charge of +2 e. This assumption is supported by the lower 𝜑𝑒𝑚-barrier. Also 

noteworthy is the noticeable electrophilicity of the boron atom in compounds, as well as its 

pronounced ability to act as a Lewis acid. For NaCl, the total electron transfer between atoms is 

equal to ca. 0.82 e. 
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Figure 10. Behavior of Pauli 𝜑𝑃(𝒓) (green), von Weizsäcker 𝜑𝑊(𝒓) (magenta), static exchange 

𝜑𝑥(𝒓) (red), and inverted electrostatic −𝜑𝑒𝑠(𝒓) (blue) potentials and static potential acting on an 

electron in a molecule 𝜑𝑒𝑚(𝒓) (orange) along the bond paths Na···Cl (a) and Mg···B (b) in sodium 

chloride and magnesium diboride. Zero value on the x-axes corresponds to the positions of 

corresponding BCPs. For the potential profiles along the bond paths of covalent B–B and 

noncovalent B∙∙∙B interaction in the magnesium diboride crystal see Figure S9. 

Contrary to the simplified chemical interpretation of bonding in ionic compounds, 

interacting ions can hardly be described as spherical and performing non-directional interactions. 

Moreover, their electron distribution reveals a quite pronounced and specific valence-shell 

structure. Let us now consider the behavior of quantum potentials 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓) in the studied 

salts featured in Figures 11. Both cations in their outer regions feature deep minima and maxima 

of 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓), respectively, indicating the electron depletion regions. Conversely, both 

anions in their outer regions feature deep maxima and minima of 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓), respectively, 

indicating VSCCs or paired ED concentration arias. Around each Cl– anion, lobes of locally 

enhanced 𝜑𝑏(𝒓) or decreased 𝜑𝑓(𝒓) potentials are directed at the respective regions of decreased 

𝜑𝑏(𝒓) and enhanced 𝜑𝑓(𝒓) potentials at the Na+ cation. In the case of NaCl, both pairs of positive 

and negative lobes exactly lie on the bond path trajectory. This bonding picture corresponds to the 

Lewis type of interaction between already formed Na+ (acceptor) and Cl– (donor) ions. The 

distribution of 𝜑𝑘(𝒓) does not reveal any inner atomic structure. However, the channels of locally 

increased kinetic potential are formed along the bond lines, where 𝜑𝑘(𝒓) reaches 0.28 a.u. for 

Na···Cl and 0.44 a.u. for Mg···B (Figure S10). 
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Figure 11. Distributions of bosonic 𝜑𝑏(𝒓) (a, c) and fermionic 𝜑𝑓(𝒓) (b, d) quantum potentials 

for the NaCl (top) and MgB2 (bottom) crystals. For 𝜑𝑏(𝒓) contour steps are equal to 0.2 a.u., while 

for 𝜑𝑓(𝒓) a step of 0.1 a.u. is adopted in the function range between 0 and 1 a.u. and a step of 0.2 

a.u. in the range from 1 to 2 a.u. The maximum and minimum function values are given at the 

gradient scale bar. For the orientation of the selected map plane for MgB2 see Figure S11. 

An interesting feature of the Mg∙∙∙B interaction is that its bond path is significantly curved 

inwards in the direction of the crystallographic 6-fold rotation axis going through the Mg nucleus, 

as shown in Figures 12 and 13. Along each Mg···B bond path there exist channels of minimal 

exchange and correlation energy densities per electron, with the local maximum located at the BCP 

(Figure S12). This indicates some tension in the system. In the literature, there are several charge 

density studies of metal complexes, where curved bond paths involving metal atoms were found.89–

92 This observation was explained by the dominant contribution of back π-donation to the bonding 
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between a metal and an atom of a ligand as compared with direct σ-donation, which was deduced 

by means of the ∇2𝜌(𝒓) distribution. However, in our case the analysis of ∇2𝜌(𝒓) does not lead to 

a similar conclusion. An interpretation of the observed feature can be retrieved from the 

deformation ED 𝛿𝜌(𝒓) (Figure 12b) supported by the 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓) distribution. The atomic 

basin of the Mg2+ cation is elongated along the mentioned 6-fold rotation axis toward the centers 

of two six-membered boron rings (Figure 1g). Along this axis, two small lobes of positive 𝛿𝜌(𝒓) 

can be located inside the manganese’s 𝜌-basin, which indicate the regions of local ED 

accumulation. These are loosely directed at the ED reduction regions near the B– anions. The bent 

Mg···B bond paths cross the regions of local electron accumulation near the Mg2+ ion and proceed 

through the narrow zone of ED reduction at the B– anion, which serves as (Figure 12b) strong 

evidence of the existence of donor-acceptor interaction between counterions. Importantly, the 

valence region of Mg2+ ion appears to be fully deconcentrated, as indicated by the highly positive 

∇2𝜌(𝒓) values, however 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓) allow one to detail this depleted region. It seems that 

the two small regions of electron accumulation and concentration at the Mg2+ cation correspond 

to local increase and decrease of 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓) within very negative and positive areas, 

respectively (Figure 12a,c,d). The course of direct ED donation thus coincides with the way of 

charge transfer, so that Mg2+ simultaneously plays a role of an ED donor in terms of the 𝛿𝜌(𝒓) 

distribution and an e-contributor in terms of mutual arrangement of 𝜌- and 𝜑𝑒𝑠-basins (see below). 

On the other hand, the pronounced regions of ED accumulation and concentration near the B– 

anions do exist, which are also reflected in the 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓) maps. These in turn are directed 

toward the continuous toroidal belt of ED reduction and depletion within the outer shell of the 

Mg2+ ion as shown in Figure 12b-d (see Figure S13 for the 3D picture). Consequently, we observe 

the ED donation in a backward direction, i.e., from the charge accumulations and concentrations 
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at the B– anions to the toroidal belt of charge reduction and depletion around the Mg2+ cation, 

which in fact is not supported by the bond path.  

 

Figure 12. Distributions of the Laplacian of electron density ∇2𝜌(𝒓) [e Å–5] (a), deformation 

electron density 𝛿𝜌(𝒓) [e Å–3] (b), quantum bosonic potential 𝜑𝑏(𝒓) (c), and quantum fermionic 

potential 𝜑𝑓(𝒓) (d) showing the trajectories of 𝜌- and 𝜑𝑘-paths between the Mg and B atoms. 

Distance between major ticks is equal to 1 Å. For (a), the logarithmic scale in the form of ±1, 2, 4, 

8·10n, n = (–2, –1, 0, 1, 2) is adopted. For (b), the contour step is equal to 0.05 e Å–3 in the whole 

function range and 0.01 between –0.05 and 0.05 e Å–3. For the orientation of the selected map 

plane for MgB2 see Figure S11. 

The bond path Mg∙∙∙B avoids crossing the lobes of 𝜑𝑏(𝒓) and 𝜑𝑓(𝒓), as would be expected 

at first sight. Nevertheless, as mentioned a few lines above, there exists the channel of locally 

enhanced 𝜑𝑘(𝒓) between the topologically bonded Mg and B atoms, inside of which an almost 
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straight 𝜑𝑘-path is formed (Figures 12 and 13). We believe that the subtle balance of the 𝜑𝑊(𝒓) 

and 𝜑𝑃(𝒓) potentials, which leads to the optimal distribution of the kinetic potential 𝜑𝑘(𝒓) =

𝜑𝑊(𝒓) + 𝜑𝑃(𝒓), can also explain this intricate and any other interactions. This optimum is 

apparently expressed in the presence of a saddle CP (3, –1) in kinetic potential and 𝜑𝑘-path 

between interacting atoms. Here we stress the importance of joint analysis of partial kinetic 

potentials as well as the kinetic force field 𝑭𝑘(𝒓) to get a comprehensive picture of bonding in 

molecules and crystals. 

To conclude our study of ionic compounds, let us analyze the superpositions of 𝜌- and 𝜑-

basins featured as experimental gradient trajectories in Figure 13. Both NaCl and MgB2 follow the 

established trend of mutual arrangement of 𝜌- and 𝜑-basins, displaying large, visible gaps between 

basin boundaries. Each potential-based basin of the Na or Mg metals expands into the 

corresponding 6 and 12 atomic basins of the surrounding Cl or B non-metals so that the portion of 

its space containing a certain amount of electron density appears inside the mentioned atomic 

basins. Following the direction of charge transfer, the Na and Mg atoms act as e-contributors to Cl 

and B atoms, respectively. As expected for ionic bonds, a substantial degree of charge transfer is 

reflected by the gaps between the boundaries of 𝜌- and 𝜑𝑒𝑠-basins, which are noticeably wider 

than for the covalent bonds, reaching 0.28 Å in the case of NaCl and 0.29 Å in the case of MgB2. 

Relatively simple crystalline structures of both compounds allow for a quantitative estimation of 

volumes for these gaps, which can be calculated as a difference between the volumes of 𝜌- and 

𝜑𝑒𝑠-basins divided by the number of bonds. Table S1 contains the volumes and charges for atomic 

and potential basins. For the Na+ cation, such procedure gives a volumetric difference for each 

individual Na‧‧‧Cl gap of about 2.95 Å3, while for the Mg‧‧‧B a much smaller value of about 0.73 

Å3 is obtained. Even though both compounds are clearly of ionic nature, which is evident from the 
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Bader charges (+1.92 and +0.82 e for Mg2+ and Na+, –0.96 and –0.82 e for B– and Cl–, 

respectively), the difference between the two is evident. On the interatomic line between the Mg2+ 

and B– ions, the boundary of the 𝜑𝑘-basin is apparently located closer to the 𝜑𝑒𝑠-boundary, 

resembling the strongest H1∙∙∙O3 bonds in the oxalic acid dihydrate crystal, while for the Na‧‧‧Cl 

bond is it positioned at approximately the same distance between 𝜌- and 𝜑𝑒𝑠-boundaries. The 

corresponding values for the volumetric difference between 𝜑𝑒𝑠- and 𝜑𝑘-boundaries per each bond 

is equal to ca. 1.64 and 0.17 Å3 for NaCl and MgB2, respectively. This discrepancy in the size of 

the charge transfer gap is in a line with the different values of atomic electronegativities. In the 

pair of Na and Cl atoms, the difference in electronegativity is equal to 5.70 eV and 2.23 according 

to Mulliken and Pauling scale, respectively, while for Mg and B this difference is equal to 0.7 eV 

and 0.73, which is far smaller. Similarly, it is possible to estimate the number of electrons 

contained between the borders of different basins. For instance, within the gap between the 𝜌- and 

𝜑𝑒𝑠-basins in the NaCl there is ca. 0.14 e transferred from the Na to the Cl atoms. A smaller part 

of these electrons, ca. 0.05 e, is located between the borders of 𝜌- and 𝜑𝑘 basins. In the case of 

MgB2, similar numbers were obtained, i.e., 0.12 and 0.08 electrons contained between the borders 

of atomic 𝜌- and potential 𝜑𝑒𝑠- and 𝜑𝑘-basins, respectively. The relative difference between these 

two numbers for the considered ionic compounds is consistent with the arrangement of atomic and 

potential basins borders, i.e., the closer is the 𝜑𝑘-border to 𝜑𝑒𝑠-one, the closer these two values 

are. 

In NaCl, kinetic 𝑭𝑘(𝒓) and electrostatic 𝑭𝑒𝑠(𝒓) act on the common 𝜌-boundary at the 

position of the BCP between two atoms in opposite directions with the magnitude of about 0.33 

and 0.65 a.u., respectively. The corresponding potential pseudoatoms in turn are also experiencing 

the pressure of these two forces, with 𝑭𝑒𝑠(𝒓) pushing on 𝜑𝑘-boundary along the interatomic line 
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toward the Na atom with the magnitude of ca. 0.38 a.u. near the BCP, while 𝑭𝑘(𝒓) draws the 

electrons from inside the Cl electrostatic pseudoatom, estimated at about 0.34 a.u. 

Interestingly, within the monoatomic metal layer, each Mg2+ cation is bonded to its closest 

neighbors by a total of six CP (3, –1) in 𝜑𝑒𝑠(𝒓) with the corresponding 𝜑𝑒𝑠-paths. The 

superposition of gradient fields of 𝜌(𝒓), 𝜑𝑒𝑠(𝒓), and 𝜑𝑘(𝒓) in the plane of the monoatomic Mg 

layer is shown in Figure S14. Although the Mg2+ cations are fully enclosed by the 𝜌-basins of B– 

anions, the existence of the CP (3, –1) in 𝜑𝑒𝑠(𝒓) between the metal cations suggests that they still 

experience the indirect influence of their closest metal neighbors, especially if the said neighbor 

is missing due to the possible structural defect frequent for metal diborides. Considering the 

noncovalent Cl‧‧‧Cl and B‧‧‧B interaction, one can note that both of them are characterized by the 

presence of Lagrange points, where the corresponding force is equal to zero, in the interatomic 

region, in particular BCPs, but not CPs (3, –1) in either 𝜑𝑘(𝒓) or 𝜑𝑒𝑠(𝒓). Instead, we observe the 

existence of two other types of Lagrange points located at the same place, i.e., ring CPs (3, +1) in 

the considered potentials between the bonded Cl atoms and ring (3, +1) and cage (3, +3) CPs in 

𝜑𝑘(𝒓) and 𝜑𝑒𝑠(𝒓), respectively, between the B atoms. 
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Figure 13. Superposition of gradient fields of electron density ∇𝜌(𝒓) (grey), electrostatic potential 

∇𝜑𝑒𝑠(𝒓) (blue), and kinetic potential ∇𝜑𝑘(𝒓) (orange)calculated for the crystals of NaCl (a) and 

MgB2 (b). CPs (3, –1), (3, +1), and (3, +3) are shown by rhombuses, circles, and triangles, 

respectively, and are colored in magenta, violet, and green for 𝜌(𝒓), 𝜑𝑒𝑠(𝒓), and 𝜑𝑘(𝒓). CPs (3, –

3) coincide with the nuclear positions. Gradient paths connecting the field attractors are shown by 

red, violet, and green lines, respectively. For the orientation of the selected map plane for MgB2 

see Figure S11. 

DISCUSSION 

On the role of kinetic potential channels 

One of the ways to determine atomic or ionic radii as well as a molecular boundary is to define 

them via the classic turning surfaces, which appear as a barrier that the classic electron within the 

enclosed turning surface cannot penetrate.48 Both PAEM 𝜑𝑒𝑚(𝒓)93,94 and Kohn–Sham potential95 
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can be used to determine the classical turning surfaces, either by utilizing an isovalue equal to the 

first ionization potential or to the energy of the highest occupied molecular orbital. Choosing the 

topological zero-flux criterion, one can use boundaries of 𝜑𝑘-basins for bounded atoms as a surface 

with a similar meaning. In terms of atomic and potential basins, one could say that the 

corresponding static force ℱ(𝒓) keeps the electrons within the boundaries of kinetic potential 

basins, but not always within the atomic 𝜌-basins, as the space gap between the two may exist. 

The kinetic potential 𝜑𝑘(𝒓) shows well-defined channels of locally enhanced 𝜑𝑘(𝒓) between 

the interacting atoms, which are accompanied by a saddle CP (3, –1) in 𝜑𝑘(𝒓) and a corresponding 

𝜑𝑘-path. Hence, the heterotropic kinetic force 𝑭𝑘(𝒓) pushes electrons out of atoms to these 

channels and thus promotes the ED localization in the internuclear space. At that, they remain 

within the atomic basin of an electron occupier atom (vide infra). Of course, in equilibrium, the 

static force ℱ(𝒓) completely compensates for the kinetic one and pushes the ED back into the 

atoms. These channels are distinguished by the “depth”, i.e., the exact isovalue at which they would 

occur, and width. These two properties can be used to quantitatively describe the covalency and 

strength of a bond. For instance, one of the widest 𝜑𝑘-channels at the given isovalue of 0.02 a.u. 

in Figure 14 is observed for the strongest H1···O3 hydrogen bond in the oxalic acid dihydrate 

crystal, which is comparable to the C–C or C–O covalent bonds. For the H2ʹʹ···O2 bond, the 𝜑𝑘-

channel is noticeably thinner than for the H1···O3. Conversely, for the H3ʹ···O2 H-bond no 

channel is observed at the chosen isovalue, despite the fact that the CP (3, –1) in 𝜑𝑘(𝒓) as well as 

the corresponding 𝜑𝑘-path are present. The described behaviour correlates with the estimated bond 

energies as we discussed above. We speculate that a 𝜑𝑘-path can be treated as a route of privileged 

electron sharing, similar to the bond paths in 𝜌(𝒓), which were argued to be the channels of 

privileged static exchange-correlation.13 The topological bond then, i.e., the bond path in 𝜌(𝒓), 
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does not require by default the existence of a bond path in 𝜑𝑘(𝒓). Thus, we highlight an explicit 

role of kinetic factors 𝜑𝑘(𝒓) and 𝑭𝑘(𝒓) in chemical bonding, and the role of static ones 𝜑𝑒𝑚(𝒓) 

and ℱ(𝒓) in the formation of bonded atoms. 

 

Figure 14. Isosurface of kinetic potential 𝜑𝑘(𝒓) at 0.02 a.u. constructed around oxalic acid and 

the surrounding water molecules in the crystal showing the channels of locally enhanced 𝜑𝑘(𝒓) 

for the presented H-bonds. Isosurfaces are cut from the top for clarity. 

View on charge transfer, exchange effects, and electron sharing in terms of superposition of 

atomic and potential basins 

Now we consider the behavior of one-electron potentials and corresponding gradient forces in 

conjunction with the atomic-like potential basins formed by some of them to present a more 

general and extensive description of the interatomic interaction in terms of mutual penetration of 

atomic and potential basins. 

Let us to begin from a simplified case of interaction of two different atoms: e-occupier and 

e-contributor, which is accompanied by some degree of charge transfer. The driving force behind 

this process is the difference of chemical potentials 𝜇 of the two initial atoms, which in turn 

generates the corresponding force 𝑭𝜇 acting in the direction of the lowest 𝜇 (or the highest 
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electronegativity 𝜒) of the two from the e-contributor toward the e-occupier atom. One could then 

say that the extent of the occurring charge transfer is governed by the equilibrium state, at which 

the chemical potential is constant at any point 𝜇𝑜𝑐𝑐(𝒓) = 𝜇𝑐𝑜𝑛(𝒓) = 𝜇(𝒓), with the latter referring 

to the chemical potential of the resulting system. To reach that, the total force 𝑭𝜇(𝒓) approaches 

zero. The dominating contribution to the total force 𝑭𝜇(𝒓) during the process is the homotropic 

force of electrostatic origin 𝑭𝑒𝑠(𝒓), which attracts electrons formally belonging to the e-contributor 

to the e-occupier, and the heterotropic force of kinetic nature 𝑭𝑘(𝒓), which pushes electrons away 

from the e-contributor. Consequently, both forces would promote the interatomic charge transfer. 

In general, the internal valence-shell structure of an e-occupier atom and the absence of such 

structure in e-contributor, as noted above, are direct consequences of charge transfer due to initial 

difference in chemical potentials. The resulting shape, volume, and general arrangement of 

statistically equilibrium 𝜑𝑘-basins relative to 𝜌- and 𝜑𝑒𝑠-basins are a direct consequence of both 

action of 𝑭𝑘(𝒓) during the process of charge transfer and equilibrium condition 𝑭𝑘(𝒓) = −ℱ(𝒓) 

That is, the electron motion effects are compensated by static force, which describes both electron-

nuclear and electron-electron interactions. The expansion of a 𝜑𝑘-boundary can be treated as a 

response of the system against pure charge transfer expressed as to partial or complete “sharing 

of transferred electrons” between the two interacting atoms. Thus, in contrast to 𝜑𝑒𝑠-basins, the 

definition of 𝜑𝑘-basins explicitly accounts for the exchange effects, which going further allows us 

to exploit this property in the real-space description of electron exchange and interatomic electron 

sharing commonly associated with the phenomenon of bond covalency. Additionally, applying 

Pauli 𝜑𝑃(𝒓) or quantum fermionic 𝜑𝑓(𝒓) potentials, electron pairing within the anionic 𝜑𝑘-basin 

can be revealed. 



 48 

Scheme 1 depicts a general observed arrangement of atomic and potential basins within the 

internuclear region of two interacting atoms: e-contributor (zone I) and e-occupier (zones II-IV). 

Four different zones of interest arranged one after the other along the interaction line can be 

distinguished based on the type of the enclosing boundaries and directions of action of the 

electronic force fields, which are marked I to IV following the route of interatomic charge transfer. 

The first zone I extends from the common zero-flux surface of 𝜌(𝒓) between the two atoms beyond 

the nucleus of the e-contributor atom, exactly occupying the whole volume of its atomic basin. 

Within this zone, the electrostatic 𝑭𝑒𝑠(𝒓) and total static ℱ(𝒓) forces originated at the e-contributor 

draws electrons toward its nucleus, while the kinetic force 𝑭𝑘(𝒓) pushes electrons in the opposite 

direction across the 𝜌-boundary toward the e-occupier. As we have noted previously, no complex 

valence-shell structure is observed in topology of the e-contributor. The zone II, highlighting the 

expansion of the 𝜑𝑘-boundary, is similar to I in terms of directions of electrostatic and kinetic 

forces, except it is located within the atomic basin of the e-occupier (beyond the e-contributor 

atom). So, the ED within this zone actually belongs to the electron occupier. Here heterotropic 

kinetic force 𝑭𝑘(𝒓), originated in the 𝜑𝑘-basin of the contributor, pushes the electrons inside the 

occupier atom and thus acts against the homotropic electrostatic force 𝑭𝑒𝑠(𝒓) originated in the 

𝜑𝑒𝑠-basin of an e-contributor, which in turn draws the already transferred electrons. Conversely, 

the neighboring zone III, highlighting the expansion of the 𝜑𝑒𝑠-boundary, is conceptually 

different, since the electrons confined within the boundaries of 𝜑𝑒𝑠- and 𝜑𝑘-basins experience the 

unidirectional action of both 𝑭𝑒𝑠(𝒓) originated at the contributor and 𝑭𝑘(𝒓) originated at the 

occupier, with both acting up the 𝜑𝑘-boundary towards the electron contributor. Finally, the zone 

IV, is located deeply within the atomic basin of the e-occupier atom, exactly filling the whole 

volume of occupier’s electrostatic force field pseudoatom (occupier’s 𝜑𝑒𝑠-basin). The electrons 
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within this zone are under action of 𝑭𝑒𝑠(𝒓) and 𝑭𝑘(𝒓) forces originated at the e-occupier and 

directed toward or away from its nucleus, respectively. It should be noted that the common atomic 

zero-flux surface appears to be fully permeable by 𝑭𝑒𝑠(𝒓), ℱ(𝒓), and 𝑭𝑘(𝒓) originated at the 

electron contributor atom. Conversely, potential basin boundaries are semi-permeable: 𝜑𝑘-

boundary can only be penetrated by electrons drawn by 𝑭𝑒𝑠(𝒓) of the e-contributor, while the 𝜑𝑒𝑠-

boundary only by those pushed or drawn by kinetic 𝑭𝑘(𝒓) or static ℱ(𝒓) forces of the e-occupier. 

 

Scheme 1. A representative simplification of the relative positions of 𝜌- (black), 𝜑𝑘- (orange), and 

𝜑𝑒𝑠- (blue) basin boundaries between the two interacting atoms: electron contributor (con) and 

electron occupier (occ). The directions of respective forces acting toward and away from these 

boundaries are indicated by the colored arrows. 

As has been briefly noted above, the phenomenon of interatomic electron density transfer 

can be clearly identified by the presence of a gap between the boundaries of 𝜌- and 𝜑𝑒𝑠-basins, a 

specific region of space constituted by zones II and III combined, to which the transferred 

electrons are confined. This is the volume enclosing an exact amount of charge captured by the e-

occupier from the electroneutral bonded pseudoatom (𝜑𝑒𝑠-basin). The electrons captured within 

the charge transfer region in fact belong to the atomic basins of the e-occupier but at the same time 
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are experiencing the action of electrostatic force 𝑭𝑒𝑠(𝒓) attracting them to the nucleus of the e-

contributor. We found that depending on the type of interaction the relative size of zones II and 

III systematically changes. For all studied interatomic interactions, the following pattern was 

empirically confirmed: the boundary of 𝜑𝑘-basin is always located at some point between the 𝜌- 

and 𝜑𝑒𝑠-boundaries within the atomic basin of e-occupier and in extreme cases almost coincides 

with one or the other. This boundary thus determines what portion of the transferred electrons 

would be acted upon by the kinetic forces 𝑭𝑘(𝒓) originated at the occupier or contributor in the 

same (III) or opposite (II) direction as 𝑭𝑒𝑠(𝒓). To find the chemical meaning behind the position 

of 𝜑𝑘-boundary, we anticipated based on the current data the existence of a direct link between 

the relative position of 𝜑𝑘-boundary and the covalency of any bond. We proposed that a region of 

space enclosed by the boundaries of 𝜌- and 𝜑𝑘-basins (II), being part of the transfer region, can 

be considered as an area of sharing of the transferred electrons between two interacting atoms. In 

other words, contributor’s 𝜑𝑘-basin always penetrates occupier’s 𝜌-basin approaching occupier’s 

𝜑𝑒𝑠-basin, which manifests electron exchange effects imposed on the transferred electrons. Thus, 

the 𝜑𝑒𝑠-boundary distinguishes regions where exchange effects can be attributed to a particular 

atom: a contributor serves zones I and II, while an occupier serves III and IV. Further, thus defined 

region of electron sharing of the transferred electrons (II) appeared to be separated from the 𝜑𝑒𝑠-

basin of an electron occupier (IV) by the inner part of the charge transfer region (III). This 

consideration was prompted by the empirical fact that 𝜑𝑘-boundaries practically approach 𝜑𝑒𝑠-

ones for covalent bonds excluding an area (III) where occupier’s kinetic force 𝑭𝑘(𝒓) pushes 

transferred electrons out its 𝜑𝑒𝑠-basin. For the stronger noncovalent interactions, such as a classical 

H-bond or coordination bonds, for which the high covalency is expected, area III is far smaller 

than II. For the weaker H-bonds, the corresponding region of sharing (II) is smaller and the bond 
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itself is less covalent. Interestingly, for the O–H covalent bond involved in strong hydrogen 

bonding, the appearance of zone III reducing the extent of electron sharing could be noted to some 

extent. 

Additional clarifications need to be made regarding the nonpolar covalent and ionic bonds. 

As we have reiterated multiple times throughout the text, the space gap between the boundaries of 

𝜌- and 𝜑𝑘-basins can only be equated to the sharing of transferred ED but not to the traditionally 

accepted concept of electron sharing between bonded atoms. With this, the proposed scheme is by 

definition not applicable to nonpolar covalent bonds, such as C–C or B–B ones. Considering the 

ionic Na‧‧‧Cl and Mg‧‧‧B bonds, we note that the ED found within the wide region of space 

enclosed by 𝜌- and 𝜑𝑘-boundaries, if considered shared between bonded atoms, may raise 

questions or doubts. Specifically, although the mutual arrangement of atomic and potential basin 

boundaries in MgB2 is similar to a one found for strong hydrogen bonds, the Mg‧‧‧B interaction is 

of predominantly ionic nature, which for example is supported by the analysis of delocalization 

indices performed for various metal diborides by Wagner et al.96 Rather, the observed picture 

probably needs to be treated as a manifestation of electron pairing occurring as a result of charge 

transfer, which is supported by the analysis of Pauli and exchange potentials, showing their 

respective minima and linear segments along the bond paths. On the other hand, our data indicate 

the obvious operation of the donor-acceptor mechanism of interaction between ions in the studied 

compounds, which should manifest itself in the sharing of the transferred ED. Similarly to H-

bonds, the occupier atoms (O, Cl, and B) play the role of a donor, while the contributors (H, Na, 

and Mg) act as an acceptor. Nevertheless, both ways of description do not actually contradict each 

other but only represent different views on the manifestation of exchange effects for ionic and 

donor-acceptor bonds. 
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Notably, the Ehrenfest force 𝔉(𝒓) is the average of the instantaneous force over the positions 

of the rest electrons and is not related to gradient field, while the forces ℱ(𝒓) and 𝑭𝑘(𝒓) are 

originated from the PAEM 𝜑𝑒𝑚 and the kinetic potential 𝜑𝑘, respectively. Let us recall that ℱ(𝒓) 

and 𝑭𝑘(𝒓) are attributed to atoms and their mutual balance in an equilibrium system is outlined by 

the boundary of kinetic basins: The static force ℱ(𝒓), like the Ehrenfest force, is directed toward 

the nucleus seeking to neutralize the electric charge and keeps electrons in atomic basins, while 

the kinetic force 𝑭𝑘(𝒓) pushes electrons away from the nucleus. As noted by Martín Pendás with 

co-workers,52,53 the PAEM-derived gradient force field ℱ(𝒓) is very similar to the vector field of 

one-electron Ehrenfest force 𝔉(𝒓). They discussed the topology of Ehrenfest force field 𝔉(𝒓) and 

compared it with the gradient field of ED ∇𝜌(𝒓). As a result, they concluded that although 𝔉(𝒓) 

and ∇𝜌(𝒓) are usually homeomorphic, this is not always the case. Further, when the two fields are 

superimposed onto each other, the gaps between boundaries of the atomic-like 𝔉-basins and atomic 

𝜌-basins are clearly visible for polar bonds, which resemble the gaps found between the boundaries 

of e-occupier’s 𝜑𝑘- and 𝜌-basins. Similarly, the kinetic 𝑭𝑘(𝒓) and static ℱ(𝒓) force fields 

(omitting the force direction) turn out to not always be homeomorphic with ED gradient field 

∇𝜌(𝒓). Both kinetic and Ehrenfest force fields pseudoatoms bear smaller nominal charges than 

matching Bader’s quantum atoms. Moreover, the volume of 𝜑𝑘- and 𝔉-basins generally shows the 

same trend comparing to corresponding 𝜌-basins being larger or smaller for electropositive or 

electronegative atoms, respectively. Hence, the force fields ℱ(𝒓) and 𝑭𝑘(𝒓) contain similar 

quantum chemical information as 𝔉(𝒓) and could be used as a substitute for latter within orbital-

free density functional theory and experimental quantum crystallography to estimate the force 

acting on an electron in a molecule or crystal owing to the presence of the nuclei and remaining 

electrons. 
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In summary, the proposed approach to real-space partitioning of many-nuclear many-

electron systems into the union of atomic and atomic-like potential basins allows one to reveal a 

conceptually novel and physically grounded description of interatomic interaction accompanied 

by charge transfer and electron exchange. In particular, it allows one to obtain an unambiguous 

definition of the charge transfer and electron sharing by highlighting the region in space where the 

respective phenomena occur. The observed experimental picture can be fully described by the 

proposed scheme, with no exceptions so far, including the already published results obtained either 

through experimental X-ray diffraction data, where the superposition of gradient fields of ∇𝜌(𝒓), 

∇𝜑𝑒𝑠(𝒓), and ∇𝜑𝑘(𝒓) was constructed for the uracil derivative crystal,15 or mentioned gas-phase 

theoretical calculations of 𝜑𝑒𝑠(𝒓) and 𝜑𝑒𝑚(𝒓) potentials along covalent and noncovalent bonds 

involving halogen, chalcogen, and pnictogen atoms.84,97 From our point of view, the presented 

scheme extends the functionality of QTAIMC by providing the space gaps between the boundaries 

of atomic and potential basins, which are by default missing from the theory. In this way, it 

becomes clearer to understand how the non-overlapping QTAIMC basins hold together forming 

molecules and crystals. 

COMPUTATIONAL METHODS 

Experimental static ED distributions were restored via multipole models for crystalline oxalic acid 

dihydrate (COOH)2 × 2H2O, sodium chloride (NaCl),22 magnesium diboride (MgB2),
81 and 1-{2-

[2-(methoxycarbonylmethylsulfonyl)ethoxy]ethyl}-3,5-dimethylisocyanurate (ica).15 For crystals 

of oxalic acid dihydrate, the remeasured data, which are in full accordance with the latest published 

results87 have been used. It should be noted that magnesium diboride is a nonstoichiometric 

compound with the exact composition of Mg0.955B2, so the modeled experimental ED is averaged 
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over the crystal. The multipole model parameters for the last three compounds were adopted from 

our previous works. Henceforth, we will analyze the bonding features of these structures and 

compare them. A partial numbering scheme is presented in SI. 

Analysis of the scalar fields 

Analysis of multipole-modeled ED was performed using the WinXPRO v3.4.46, 3DPlot v2.5.25, 

and TrajPlot v.1.4.0.2 software.86,98,99 Calculations were performed according to the published 

procedures.15 For all compounds, an appropriate electroneutral spherical cluster was constructed 

with a radius of more than 10 Å. 

The search for CPs in scalar fields of 𝜌(𝒓), 𝜑𝑒𝑠(𝒓), 𝜑𝑒𝑚(𝒓), and 𝜑𝑘(𝒓) was performed along 

the interatomic lines between symmetrically independent atoms with the maximal “atom-atom” 

distance of 4.5 Å. Interaction energies (in kcal mol–1) for hydrogen bonds and weak noncovalent 

interactions were estimated via the correlation 𝐸𝑔 = 269.2014 ∙ 𝑔(𝒓𝑏) with the kinetic energy 

density 𝑔(𝒓) (in a.u.) at a BCP,100 which in turn was approximated according to Kirzhnits.101 

Atomic 𝜌-basins and atomic-like potential 𝜑𝑒𝑠- and 𝜑𝑘-basins were defined with tolerance on an 

interatomic surface radius of 5∙10–5 Å. Angular parameters 𝑛𝜃 and 𝑛𝜑 defining the number of grid 

points inside a 𝛽-sphere were set to 96 and 120, respectively. An increment factor for the BCP 

search was equal to 0.1 Å. Gradient vector trajectories of 𝜌(𝒓), 𝜑𝑒𝑠(𝒓), and 𝜑𝑘(𝒓) were calculated 

with the following parameters: a step along the gradient path equal to 0.01 Å, an out-of-plane 

distance up to 0.5 Å, and a cut-off value for gradient path termination |∇𝑓(𝒓)| of 0.1·10–5 e Å–4 

and e Å–2, respectively. 

One-dimensional profiles of various functions along bond paths were calculated using the 

grid step length of 0.01 Å or less. Two- and three-dimensional distributions were calculated within 
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the constructed atomic clusters with a step size of 0.05 Å or smaller. If not stated otherwise, all 

functions utilized within this work were computed according to the formulae presented in the 

Introduction. Von Weizsäcker potential 𝜑𝑊(𝒓) was calculated using the exact expression.39,40 

Electrostatic potential 𝜑𝑒𝑠(𝒓) was computed within the finite electroneutral cluster.102,103 It should 

be noted that the obtained values of 𝜑𝑒𝑠(𝒓) and related functions (see above), such as 𝜑𝑒𝑚(𝒓), 

𝜑𝑘(𝒓), and 𝜑𝑃(𝒓), are affected by the size of an atomic cluster, location of point 𝒓 relative to the 

cluster center, and charge asymmetry. Therefore, for each individual compound, the largest 

possible spherical cluster was constructed to simulate the symmetrical electroneutral crystalline 

environment. The difference between properties 𝜑𝑒𝑠(𝒓), 𝜑𝑒𝑚(𝒓), 𝜑𝑘(𝒓), and 𝜑𝑃(𝒓) calculated 

along the bond paths for the symmetry-related pairs of intermolecular contacts of the central 

molecule was less than 0.01 a.u. The Pauli potential 𝜑𝑃(𝒓) was computed according to the 

published procedure46 taking empirical chemical potential 𝜇 = ∑ 𝜇𝑘𝑁𝑘𝑘 / ∑ 𝑁𝑘𝑘 , where 𝑁𝑘 is the 

number of electron of the atom 𝑘 in the unit cell.23 The same approximation was utilized for the 

calculation of kinetic potential 𝜑𝑘(𝒓). Individual atomic chemical potentials were taken as a 

negative of first ionization potentials.104 This approximation underestimates 𝜇 by approximately 

10 %. If not stated otherwise, for the calculation of local exchange potential 𝜑𝑥(𝒓) orbital-free 

local density approximation of von Barth–Hedin105 was used. For the sake of comparison, one-

dimensional profiles of various potentials along the lines of covalent and hydrogen bonds 

calculated using the approximations of von Barth–Hedin,105 van Leeuwen and Baerends106, and 

Becke107, as well as directly from the wavefunctions (𝜔B97X-D/aug-cc-pVTZ) are presented in 

Figures S15 and S16. For the analysis of theoretical data, TOPOND108 and Multiwfn 3.8109 were 

used. 

CONCLUSIONS 
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From the point of view of a chemist, the quantum theory of atoms in molecules and crystals 

provides probably the most intuitive, familiar, and understandable scheme of partitioning 

molecular or crystalline position space into bonded atoms. Among the other things, the ability to 

explicitly visualize the topological portrait of electron density using the bond path network, similar 

to how one would draw a bond line, brought it its well-deserved popularity. By extending the 

powerful ideas of quantum chemical topology to other scalar fields besides the electron density, 

such as electrostatic 𝜑𝑒𝑠(𝒓) and one-electron kinetic 𝜑𝑘(𝒓) potentials, one can retrieve 

conceptually new information about chemical interactions, for instance by comparing the shapes, 

volumes, and charges of the pseudoatoms defined in the electrostatic and kinetic force fields 

(potential-based basins), analogs of quantum topological atoms. 

The presence or the absence of Lagrange saddle critical points in the potentials and potential 

paths arising from these points and connecting pairs of atoms can help one better understand the 

underlying mechanisms of chemical interactions. For example, a saddle CP (3, –1) in 𝜑𝑘(𝒓) and 

a corresponding 𝜑𝑘-path testify the existence of a well-defined channel of locally enhanced kinetic 

potential formed between the interacting atoms, which is assumed to be a path of privileged 

electron sharing between atoms. Inside such a channel the heterotropic kinetic force 𝑭𝑘(𝒓) pushes 

electrons away from the atomic nuclei and thus promotes the electron localization in the 

internuclear space, while the homotropic static force ℱ(𝒓) in the statistically equilibrium systems 

completely compensates for the kinetic one and pushes the electron density back to the atomic 

nuclei. 

In this work, we considered the superpositions of atomic and potential atomic-like basins in 

different kinds of chemical compounds. We found several general patterns, which are applicable 

to any kind of chemical interactions. For polar interactions, two types of participating atoms, i.e., 
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electron occupier and electron contributor, can be distinguished. The former is always 

characterized by a complex internal structure, that is the boundaries of potential basins are located 

within its atomic basin. Additionally, the 𝜑𝑘-basin boundary is always positioned between the 

other two, approaching either 𝜌- or 𝜑𝑒𝑠-boundary depending on the type of interaction. For any 

polar covalent bond, the boundary of electrostatic and kinetic-force pseudoatoms almost coincide, 

but the 𝜌-boundary stands individually. For a polar noncovalent interaction, 𝜑𝑘-boundary is shifted 

away from the 𝜑𝑒𝑠-boundary, separating the charge transfer region into two smaller ones. 

Continuing with the elegant simplicity of QTAIMC, we assigned chemical meaning to these gaps 

between the boundaries of atomic and potential basins. The region of space between the two 

interacting atoms enclosed by the boundaries of 𝜑𝑒𝑠- and 𝜌-basins is identified as a region of 

charge transfer due to the known property of 𝜑𝑒𝑠(𝒓) of defining zero-charged bonded 

pseudoatoms. We proposed that the gap between the boundaries of the 𝜌- and 𝜑𝑘-pseudoatoms 

represents a region of sharing of transferred electrons since the definition of 𝜑𝑘-basins explicitly 

accounts for the exchange effects, which are absent in 𝜑𝑒𝑠-basins. This conjecture is supported by 

both empirical evidences, i.e., the observed boundary arrangement of atomic and potential-based 

basins for various types of interaction, as well as the distribution of electronic potentials, in 

particular, von Weizsäcker, Pauli, and exchange-correlation ones. We suggest that the specific 

arrangement of topological pseudoatomic boundaries is a response of a system to an occurred 

charge transfer, while the exact position of 𝜑𝑘-basin boundary describes the kinetic contribution 

electron exchange as a volumetric characteristic, i.e., a fraction of transferred electrons shared 

between the two interacting atoms. 

Thus, our approach to real-space partitioning of many-nuclear many-electron systems into 

the union of atomic and atomic-like potential basins allows one to reveal a conceptually novel and 
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physically grounded description of interatomic interaction accompanied by charge transfer. 

Importantly, the superposition of atomic and potential basins of different nature explains how non-

overlapping bounded space-filling quantum atoms hold together via the gaps between bounded 

atoms and force fields pseudoatoms. 
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Behavior of one-electron potentials included in the Euler equation for electron density and 

corresponding gradient force fields in crystals was studied. Phenomena of interatomic charge 

transfer and consequent electron exchange were explained in terms of space gaps between the 

zero-flux surfaces of atomic and electrostatic and kinetic potential-based basins. 

 


