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Abstract

The Non-Covalent Interactions Atlas (www.nciatlas.org) has been extended with

two data sets of benchmark interaction energies in complexes dominated by London

dispersion. The D1200 data set of equilibrium geometries provides a thorough sampling

of an extended chemical space, while the D442×10 set features dissociation curves for

selected complexes. In total, they provide 5,178 new CCSD(T)/CBS data points of the

highest quality. The new data have been combined with previous NCIA data sets in

a comprehensive test of dispersion-corrected DFT methods, identifying the ones that

achieve high accuracy in all types of non-covalent interactions in a broad chemical

space. Additional tests of dispersion-corrected MP2 and semiempirical QM methods

are also reported.
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1 Introduction

The Non-Covalent Interactions Atlas (NCIA, www.nciatlas.org) is a collection of bench-

mark data sets of interaction energies in non-covalent complexes. This work introduces two

new data sets covering complexes mainly driven by London dispersion, the D1200 set of

equilibrium geometries and the D442×10 set of dissociation curves computed for selected

systems from the D1200 set. These two data sets bring 5,178 interaction energies computed

at a true benchmark CCSD(T)/CBS level, a substantial addition to the 11,445 data points

provided by the earlier NCIA data sets covering hydrogen bonds1,2 and repulsive contacts.3

Compared to earlier data sets used in the field, the NCIA data sets are not only larger

and more accurate, but they also offer additional advantages such as more systematic con-

struction, increased diversity of the model systems, quality geometries verified to be minima

and, last but not least, the availability of all the data in an easy-to-use form.

Recently, two other large databases of benchmark non-covalent interactions have been

introduced by other authors. The NENCI-2021 data set4 combines the 66 dimers from the

S66 data set5,6 with another 35 complexes of organic molecules with water7 and 40 new ion-π

complexes, sampling both dissociation curves (up to a very repulsive region) and angular

displacements, which results in 7,763 data points computed at a proper benchmark level. It

is a well-rounded data set for e.g. the testing of wavefunction or density functional theory

(DFT) methods as it extends the coverage of earlier data sets to more complicated systems;

nevertheless, with only 141 unique dimers, it does not have enough diversity for the param-

eterization of more empirical methods. The DES370K database8 is much larger, comprising

3,700 non-covalent complexes with an extensive sampling of non-equilibrium geometries, re-

sulting in 370,000 data points. Here, the accuracy of the CCSD(T) benchmark is slightly

lower as smaller basis sets are used in the larger systems. This data set is complemented by

an even larger set of 5,000,000 data points computed using MP2 with a correction fitted to

the core data set. Because of their size and extensive sampling of non-equilibrium geome-

tries, these databases are well-suited for the development of machine learning (ML) models,
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but they may be too large for applications in quantum chemistry.

One of the most important features of the current data sets and the whole NCIA database

is the coverage of a wider chemical space. The D1200 and D442×10 sets cover not only the

usual organic chemistry but also boron, sulfur, phosphorus, halogens up to iodine, and noble

gases up to xenon. This is necessary for the development of more empirical methods which

use element-specific parameters (such as molecular mechanics forcefields or semiempirical

quantum-mechanical methods) that would cover this chemical space. It is, however, very

important also for the testing and development of methods using only more general param-

eters, such as DFT functionals and dispersion corrections for them, where the diversity of

the data sets helps to identify possible issues not found in a narrower chemical space. More-

over, the systematic construction of the NCIA database with data sets devoted to specific

classes of non-covalent interactions as well as further grouping of the systems in each data set

allow a straightforward interpretation of the results in line with the intuitive classification

of the non-covalent interactions used in the field (but also with the actual physics of the

interactions, as we provide interaction energy decomposition for all the systems).

Focusing on the London dispersion covered by the two data sets presented here, these data

sets address two different requirements in method development and validation. The D1200

data set of 1,200 complexes in equilibrium geometries is large enough to provide a detailed,

systematic coverage of the target chemical space. For each element, multiple atom types are

considered, and the data set contains several representatives for each combination of these

atom types. The D442×10 set is a subset of 442 systems from the D1200 set (where each

combination of atom types is present only once), for which ten-point dissociation curves have

been constructed. This data set covers the most important coordinate of the intermolecular

potential energy surface crucial for method development. A combination of these two data

sets provides both the coverage of non-equilibrium geometries and a high diversity of systems

but keeps the size of the database manageable.

The D1200 and D442×10 data sets can be used on their own in applications focused solely
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on London dispersion, but their main strength lies in their combination with the other NCIA

data sets. Together with the already available data sets focused on hydrogen bonding,1,2

repulsive contacts3 and σ-hole interactions9 (prepared simultaneously with this work), they

provide a complete coverage of the common classes of non-covalent interactions in neutral

organic molecules. We plan to extend the database further in the future, namely by covering

ionic species including select metal ions important in biochemistry and by complementing

the existing data sets with more non-equilibrium geometries.

The increased coverage of the chemical space enabled several interesting applications

of the new data sets. Computational methods including empirically parameterized correc-

tions for London dispersion were usually developed on smaller data sets of mostly organic

molecules, and it is interesting to examine their performance in a broader chemical space. In

this paper, this is applied to dispersion-corrected MP2 and DFT methods. A wide range of

dispersion-corrected DFT methods have been tested not only in the newly introduced data

sets but also in the other NCIA data sets covering different classes of interactions in order to

find the most accurate as well as the most robust ones. The coverage of a broader chemical

space combined with the availability of non-equilibrium geometries in the D442×10 data set

also allows a deeper analysis of the role of the damping function in DFT-D3. Finally, several

dispersion-corrected semiempirical quantum-mechanical (SQM) methods have been tested,

although the errors of these methods themselves clearly outweigh the possible error of the

dispersion corrections used.

2 Methods

2.1 The Construction of the D1200 Data Set

The data set is constructed by combining monomers featuring specific valence states of the

elements studied. A single type of monomer, a free atom, is used for noble gases. For

hydrogen and halogens, the data set uses only one class of monomers where the element
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forms a single covalent bond. For the remaining elements, separate monomer classes are

defined for compounds with the element of interest involved in single, double and triple

bonds (where applicable), and for aromatic rings. Additionally, aliphatic hydrocarbons are

subdivided into linear, cyclic and double-branched. The list of compounds representing each

of these classes is provided in the Supporting Information (SI), Table S1.

Initially, these monomers were combined into dimers, retaining up to five complexes for

each combination. This set of 2,175 dimers was subjected to geometry optimizations. Here,

some systems had to be removed because of convergence problems, but it was ensured that

each combination of monomer classes is still covered sufficiently. Subsequently, hydrogen

bonds (with the XH–Y contact shorter than the sum of van der Waals radii and the XHY

angle greater than 120◦, with X and Y being O, N or S) were removed because they are

covered by the existing HB375 and HB300SPX data sets. The same was applied to σ-hole

interactions (close contacts between S, P, Cl, Br or I and N, O or F at a distance shorter

than the sum of van der Waals radii within 30◦of the estimated axis of the σ-hole); these are

covered by the dedicated data set SH250.

Next, SAPT0 interaction energy decomposition10,11 was computed for the remaining

dimers, and the ratio of the dispersion energy to the remaining terms except for the first-

order exchange repulsion (i.e. electrostatics and induction) was computed. Complexes with

less than 40% dispersion were discarded.

This procedure yielded 1,350 complexes, from which the final data set was selected. The

aim was to balance the coverage of different groups of elements. The first group is formed

by systems comprising H, B, C, N and O elements (the HBCNO group). In the second

group, named PS, there are interactions involving also sulfur and phosphorus (i.e. their

mutual combinations as well as their interactions with the previous group). The third group

(halogens) adds F, Cl, Br and I. Finally, the fourth group (noble gases) adds He, Ne, Ar, Kr

and Xe. The HBCNO and PS groups were used without any further reduction, which means

that there are up to five complexes representing each combination of monomer classes. For
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halogens, each combination of monomer classes was limited to four members, or to three

if the other monomer represented carbon. Similarly, in the noble gases group, the number

of dimers representing each combination was reduced to three, or to two in complexes with

carbon. The discarded systems were chosen randomly. Furthermore, four dimers from the

most populated combinations of the halogen group (which is the largest) were removed to

round the number of complexes in the data set to 1,200.

This selection led to four groups of approximately the same size, as listed in Table 1. In

the groups of halogens and especially of noble gases, a larger number of element combinations

is represented by fewer systems, but their diversity is lower, as a result of which no important

information is lost (e.g. for a given noble-gas atom, it would probably be redundant to include

more complexes with a specific class of hydrocarbons). The counts of systems representing

each element combination are listed in SI, Table S2.

Table 1: Groups of the D1200 and D442×10 data sets and their sizes. Each group covers inter-
actions involving the listed elements as well as their interactions with elements covered by all the
previous groups.

# Group D1200 D442×10
1 HBCNO 308 105
2 PS 293 103
3 Halogens 310 94
4 Noble gases 289 140

2.2 The Construction of the D442×10 Data Set

The dissociation curves are computed only for a subset of the D1200 data set. This has

mainly been motivated by the need to reduce the computational demands of the benchmark

calculations, but it also keeps the size of the data set of the dissociation curves comparable

to the other data sets from the NCIA series. To build this subset, we randomly selected

one representative system for each combination of element valence states. Since this proce-

dure yields 442 complexes, the resulting data set of ten-point dissociation curves is named

D442×10.
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It is divided into the same groups as the D1200 data set, and the numbers of complexes

in these groups are listed in Table 1. The sizes of the HBCNO, PS and halogen groups are

comparable in about 100 entries; the noble gases group is larger, consisting of 140 items,

which is a result of the growing number of possible combinations. The counts of the systems

representing each element combination are provided in SI, Table S3.

The D442×10 does not use a separate numbering – the identification of the systems is

taken from the D1200 data set. This allows easy assignment of the dissociation curves to the

corresponding entries of D1200, and it simplifies application where both data sets are used

together.

Smaller predefined subsets are also selected from D442×10 dataset, which makes them

applicable to D1200 as well. Like the other NCIA data sets, these subsets are defined by

clustering analysis, which maximizes their diversity. As the clustering is based on the errors of

all the methods tested in this work, the resulting subsets should capture as many differences

between these methods as possible at a given set size. The clustering algorithm used has been

described in detail in ref. 1. The subsets (with 20, 50, 100 and 200 systems) are listed in the

SI, Table S4, and the assignment of the systems to the subsets is also provided in the data

files. The use of a smaller subset from each NCIA data set would yield a general-purpose

data set covering multiple classes of non-covalent interactions whose size can be tailored for

a specific purpose. The rational selection of the systems ensures the maximum diversity of

the set at any given size.

2.3 The Preparation of the Complexes

The non-covalent complexes were built from the monomers automatically, positioning the

molecules at a van der Waals distance and orienting them so that their contact surface is

maximized. These initial geometries were then optimized at the same level as all the previous

NCIA data sets, namely using B3LYP-D3(BJ)/def2-QZVP. The choice of this setup had been

justified in the papers on the previous data sets.1,2 Each structure was verified to be a true
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minimum (having real vibrational frequencies); when this condition was been satisfied, the

mutual orientation of the molecules was displaced randomly and the procedure was repeated

until a minimum was found. An exception were noble-gas dimers, for which experiment-

derived van der Waals distances had been used.12,13

The quality of the resulting geometries can be tested by comparing the optimized inter-

molecular distance (defined as the closest contact between the monomers) with its counter-

part interpolated from CCSD(T)/CBS dissociation curves. The average absolute difference

is only 1.03 %, and the systematic error is even smaller – the average (signed) difference is

0.24 %. Out of the 442 complexes, 23 have an error over 2.5 % and two over 5 %, with the

maximum of 7 % in the He–H2 complex, where the minimum is very shallow.

2.4 Benchmark CCSD(T)/CBS Calculations

The benchmark CCSD(T)/CBS interaction energies in the D1200 and D442×10 data sets are

computed using exactly the same setup as in the previous data sets from the NCIA series.1,2

The CCSD(T)/CBS results are obtained using a composite scheme where MP2 correlation

energy is extrapolated to the complete basis set limit from large basis sets,14 and a CCSD(T)

correction (the difference between CCSD(T) and MP2 correlation energies) is added. The

Hartree-Fock energy is taken from the largest basis set used in this scheme without extrap-

olation. All the benchmark calculations also employ the counterpoise correction of the basis

set superposition error15 and frozen-core approximation.

This composite scheme employs the correlation-consistent basis sets from the Dunning

family augmented with diffuse functions (aug-cc-pVXZ, with X being D, T, Q or 5).16 For

heavier elements (Br, Kr, I, Xe), effective core potentials (ECPs) and matching variants of

the basis sets are used to account for the relativistic effects.17 In addition, the sub-valence d

orbitals on these elements are excluded from the frozen-core approximation, as it had been

shown that they may significantly contribute to dispersion interactions.18 This requires a

polarized-core variant of the basis sets, specifically from the aug-cc-pwCVXZ-PP series.19
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The resolution of identity approximation is applied in the calculation of correlation energy

using the auxiliary basis sets optimized for the specific atomic orbital basis.20,21

The whole D1200 data set as well as the anchor points of D442×10 dissociation curves

(the equilibrium and the closest point) are calculated at a “gold level” with MP2 correlation

energy extrapolated from aug-cc-pVQZ and aug-cc-pV5Z basis sets and CCSD(T) correction

computed in the heavy-aug-cc-pVTZ basis (cc-pVTZ for hydrogen, aug-cc-pVTZ for other

elements). It should be noted again that in order to obtain a reliable benchmark, it is

necessary to use a triple-ζ basis for the CCSD(T) correction.

The remaining points on the dissociation curves were computed at the “silver level”

with MP2 extrapolated from aug-cc-pVTZ and aug-cc-pVQZ basis sets and the CCSD(T)

correction calculated in the aug-cc-pVDZ basis. The interaction energies in these points were

then rescaled to the gold level as described in ref. 1. This procedure yields only a negligible

error, which was verified again on ten randomly chosen systems from the D442×10 data set

(complexes no. 1.07.45, 1.11.12, 2.02.04, 2.03.37, 2.04.02, 2.05.13, 3.08.17, 3.11.08, 4.12.09

and 4.23.04), for which all the points were computed at the gold level. The RMSE between

the actual gold-level results and the ones obtained by scaling the silver-level interaction

energies was 0.003 kcal/mol, with the largest difference being 0.01 kcal/mol. This confirms

that for all practical purposes, the D442×10 dissociation curves can be considered of gold-

level quality.

The benchmark calculations have been carried out using the Turbomole program package

version 7.3 or later.22,23

2.5 SAPT0 Interaction Energy Decomposition

To estimate the contribution of London dispersion to the interaction energies of the complexes

studied, the approximate symmetry-adapted perturbation theory, SAPT0, was used.10,11

The calculations were performed in the jun-cc-pVDZ basis,24 which is recommended for this

method as it offers favorable error compensation. This basis set is not available for iodine,
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where it was substituted with a similarly-sized def2-TZVP basis coupled with the corre-

sponding pseudopotential. The SAPT0 calculations were carried out in the Psi4 program.25

2.6 Density Functional Theory Calculations

Similarly to the previous NCIA data sets, D1200 and D442x10 were used to test a variety of

DFT functionals and associated corrections for London dispersion. The DFT methods tested

are summarized in Table 2. Stand-alone GGA, meta-GGA and hybrid DFT functional are

combined with several dispersion corrections. These include the D3 correction in the original

version with zero damping – D3(zero),26 the revised version with Becke-Johnson damping

– D3(BJ),27 and the later “optimized power” extension D3(OP).28 The next correction is

D4,29,30 which extends D3 with charge-dependent C6 coefficients. Another approach tested

is the non-local van der Waals correction,31 applied as a post-SCF calculation to the B3LYP

functional.32 The D3 correction has been added to the common functionals using the Cuby

framework33,34 as it implements the OP damping and other experimental features used in

this study. The D4 correction has been computed using the standalone program provided

by the authors.35

The functionals from the (ω)B97 family include either the non-local (-V suffix) or D3(BJ)

dispersion correction. Similarly, some of the double-hybrid functionals include either D3 or

D4 dispersion. In these cases, the correction is considered as integral part of the functional,

as it has been parameterized together with the rest of the method.

The DFT calculations have been carried out in Orca 4.236 using RI approximation. The

large def2-QZVP basis set37 has been used in all DFT calculations in order to minimize the

errors caused by the basis set size. It is also the basis set for which the D3 and D4 dispersion

corrections have been parameterized, so that their performance should be optimal in this

basis.
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Table 2: The DFT functionals tested on the presented data sets. The dispersion corrections used
are listed separately if they have been developed separately and not parameterized as an integral
part of the functional.

Functional Ref. Dispersion corrections
GGA functionals
PBE 38 D3(BJ), D4
BLYP 39,40 D3(BJ), D3(zero), D3(OP), D4
BP 39,41 D3(BJ), D4
Meta-GGA functionals
B97M-V 42
B97M-D3(BJ) 43
SCAN 44 D3(BJ), D4
TPSS 45 D3(BJ), D3(OP), D4
Hybrid functionals
B3LYP 46,47 D3(BJ), D3(zero), D3(OP), D4, NL
BHLYP 47 D3(BJ), D4
PBE0 48 D3(BJ), D4
M06-2X 49 D3(zero)
TPSSH 45 D3(BJ), D3(OP), D4
Range-separated hybrid functionals
ωB97M-V 50
ωB97M-D3(BJ) 43
ωB97X-V 51
ωB97X-D3(BJ) 43
Double-hybrid functionals
DSD-BLYP 52
DSD-BLYP-D3 53
DSD-PBEP86 53
DSD-PBEP86-D3 53
revDSD-PBEP86-D3 54
revDSD-PBEP86-D4 54
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2.7 Semiempirical QM Calculations.

The new data sets have also been used for testing several semiempirical QM methods with

either built-in or standalone corrections for London dispersion. From the classic NDDO-

based SQM methods, we have selected the PM6 method55 with D3H4X (dispersion, hydrogen

bonding56 and halogen bonding57) corrections and the PM7 method, which already includes

analogous corrections.58. These calculations have been performed in MOPAC 2016.59

The self-consistent-charge density-functional tight binding methodology is represented

by DFTB360 with D3H4 and D3H5 corrections61–63 and the 3OB parameter set.64,65. All

DFTB3 calculations have been carried out in the DFTB+ program, which now implements

all of these corrections as well.66,67 The extended tight binding approach, GFN2-xTB,68 is

a related approach that has been designed with non-covalent interactions in mind (GFN

stands for geometries, frequencies and non-covalent interactions) and includes a dispersion

correction as well as other features needed for a good description of non-covalent interactions.

The GFN2-xTB calculations have been carried out in the standalone code provided by the

authors of the method.69

2.8 Other Data Sets Used in This Work

The testing of DFT methods presented here also uses four other data sets from the NCIA

database. The HB375 data set covers hydrogen bonding in organic molecules as well as other

interactions of polar systems that do not form hydrogen bonds.1 The HB300SPX set features

hydrogen bonds involving additional elements, namely halogens, S and P.2 SH250 is a new

data set covering σ-hole interactions – halogen, chalcogen and pnictogen bonds.9 In this

work, only the equilibrium geometries are used, which is denoted by dropping the ×10 suffix

utilized for the corresponding data sets of ten-point dissociation curves. Finally, the R739

data set of repulsive contacts also employs one geometry per system from the R739×5 set of

dissociation curves.3 Here, we use the first point of the curve that represents a moderately

repulsive geometry.
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Most of the data have been taken from previous publications, but some new DFT func-

tionals have been calculated in order to provide a complete, up-to-date set. These results

will be added to the data files published at the www.nciatlas.org website.

3 Data Availability

The D1200 and D442×10 data sets (molecular geometries, benchmark results as well as other

results discussed in this paper and additional metadata) are available in the Supporting In-

formation and at the NCIA website www.nciatlas.org. At the website, it is also possible to

browse all the systems. The whole NCIA database is also available as the GitHub repository

https://github.com/Honza-R/NCIAtlas.

The minimum package consists of geometries in .xyz format, also including the benchmark

interaction energies, the definition of the monomers and selected additional metadata. The

benchmark CCSD(T)/CBS results, the components used to construct them, the results of

other calculations presented here, and more detailed metadata are available as plain text

tables as well. The metadata describe the classification of the systems and their assignment

to predefined groups and subsets.

Additionally, all this information is also provided in the form of a machine-readable

YAML data file used to automate the calculations in the Cuby framework.33,34 The data

set will also be bundled with a future version of the framework. Cuby can be used to

run calculations on the data set with a single input file and to process the results. Since

YAML is a structured data format70 that is human-readable and accessible from all common

programming languages, these data can easily be used outside of Cuby as well.
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4 Results and Discussion

4.1 Benchmark Calculations

The benchmark CCSD(T)/CBS interaction energies in the D1200 data set range from -7 to

nearly 0 kcal/mol. The distribution of the interaction energies in the groups of the data set,

plotted in Fig. 1, is very similar in the HBCNO, PS and halogen groups; as expected, only

the complexes of noble gases exhibit significantly weaker interactions. Together with similar

sizes of all the groups (Table 1), this suggests that the whole data set is well balanced and

does not overemphasize any group of elements.

In the D442×10 set, the distribution of the interaction energies, of course, shifts toward

weaker interactions in the non-equilibrium geometries. An important feature is that there

are only a few points with positive interaction energies, so there is no significant overlap

with our R739×5 data set dedicated to repulsive interactions in a similar chemical space.3

Figure 1: The distribution of interaction energies in the groups of the D1200 (solid lines) and
D442x10 (dashed lines) data sets.
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4.2 MP2 and MP2D Calculations

The calculations needed to construct the composite CCSD(T)/CBS benchmark can also be

used to look at the performance of MP2 and its various modifications. MP2 is notorious
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for overestimating the strength of dispersion interactions. This observation had been ra-

tionalized down to the properties of uncoupled Hartree-Fock dispersion,71 which was also

exploited in several attempts to correct this behaviour.72–75 Another, more empirical ap-

proach to correcting the interaction energies is scaling the spin components of the MP2

correlation energy in SCS-MP2 and SCS-MI-MP2 methods.76,77 The results obtained in the

whole D1200 data set are in line with previous findings; the errors of MP2 are rather large,

and neither SCS-MP2 nor SCS-MI-MP2 addresses this problem satisfactorily when compared

to e.g. dispersion-corrected DFT, which is also less expensive. Therefore, the MP2 results

are listed only in the SI in Tables S5 and S6.

An interesting topic is, however, the discussion of MP2 errors in the broader chemical

space covered by the D1200 data set. It is well known that MP2 overestimates London

dispersion in some systems, and the large discrepancy between the description of saturated

hydrocarbons and π – π interactions is a prime example of this effect. The D1200 set

includes over 60 hydrocarbon–hydrocarbon complexes on which this issue can be analyzed

with more statistical relevance. The results, summarized in Table 3, confirm all previous

findings. Complexes of saturated hydrocarbons are described rather well with a relative

error of about 5 %, while complexes featuring π–π interactions (i.e. both molecules featuring

double or triple C–C bonds or an aromatic ring) have an error of 43 %.

What is less known is how this error behaves in interactions involving other elements.

The D1200 set makes it possible to study two series of similar elements with growing proton

number, specifically halogens and noble gases (neglecting helium, whose interactions are

too weak for reliable analysis). For this purpose, subsets of complexes of hydrocarbons with

molecules containing a specific element have been selected, and the errors in these subsets are

reported in Table 3. Especially in the complexes of noble gases, the trends in the description

of dispersion can be clearly related to the growing polarizability of the atoms as they are

not a part of a molecule that can interfere with the studied effect. In both series, the error

steadily grows and becomes very large for the heaviest element in the series, i.e. iodine and
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xenon. This cannot be attributed merely to the increase in the strength of the interaction

because this trend is also exhibited by the relative error (the RMSE divided by the average

interaction energy). The relative errors for the heaviest elements, I and Xe, amount to 37

and 46 %, which is comparable to the large error in complexes of unsaturated hydrocarbons

(43 %).

This effect can be explained based on interaction energy decomposition. In both series,

the SAPT0 dispersion term grows faster than the total interaction energy, but it is compen-

sated for by larger exchange repulsion (the data are provided in the SI, Table S7). As the

majority of the error of MP2 calculations comes from the dispersion, it is proportional to

the dispersion component rather than to the total interaction energy.

Table 3: The errors of MP2/CBS, MP2D/CBS and SCS-MP2D/CBS interaction energies with
respect to the CCSD(T)/CBS benchmark for selected subsets of the D1200 data set. First, we
consider the interaction between hydrocarbons, which are divided into saturated and unsaturated
(labeled π). Next, we select complexes of hydrocarbons with molecules containing a selected el-
ement. (The RMSE is in kcal/mol, the relative error is calculated as the RMSE divided by the
average magnitude of interaction energy.)

MP2/CBS MP2D/CBS SCS-MP2D/CBS
Subset RMSE rel. err. RMSE rel. err. RMSE rel. err.

Hydrocarbons
sat. – sat. 0.132 5.3 % 0.050 2.0 % 0.027 1.1 %
sat. – π 0.596 25.0 % 0.139 5.8 % 0.104 4.4 %
π – π 1.285 42.6 % 0.207 6.9 % 0.172 5.7 %

Interactions involving a specific element
F 0.450 20.1 % 0.145 6.5 % 0.169 7.5 %
Cl 0.736 28.5 % 0.224 8.7 % 0.208 8.0 %
Br 0.851 31.7 % 0.269 10.0 % 0.210 7.8 %
I 1.337 37.8 % — — — —
Ne 0.038 11.6 % 0.019 5.7 % 0.026 8.0 %
Ar 0.231 28.9 % 0.054 6.8 % 0.063 7.8 %
Kr 0.404 35.5 % — — — —
Xe 0.615 45.9 % — — — —

It is interesting to investigate how these errors are corrected in the MP2D approach,

which replaces the problematic uncoupled dispersion term with the more appropriate coupled

dispersion. Both of these terms are calculated empirically (analogously to the correction used
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in DFT-D) from a corresponding set of C6 coefficients (which are, however, not available for

all the elements studied here).74 SCS-MP2D then extends this model by scaling the spin

components of the MP2 correlation energy.75 The results are listed along with uncorrected

MP2 in Table 3. Both of these approaches work very well in hydrocarbons, reducing the

error in π – π interactions from 43 to about 6 %. In the interactions of the other elements,

the errors are similar in magnitude, around 0.2 kcal/mol, but due to the smaller interaction

energies in these subsets, the relative error becomes slightly larger, up to 10 %. It is notable

that in MP2D, the errors grow systematically when passing to heavier elements, but the

relative error of SCS-MP2D is practically constant. These results show that these methods,

parameterized on mostly organic molecules, are robust enough to be applicable to a wider

chemical space.

4.3 DFT Calculations in the D1200 and D442×10 Data Sets

The results of DFT calculations in the D1200 data set are considerably different from those in

the other NCIA data sets; this comparison is shown below. In dispersion-bound complexes,

the intermolecular distances are larger than in e.g. hydrogen or halogen bonds, which means

that the DFT methods are tested in a different regime. The description of the contacts at

a short distance is more difficult both for DFT itself (where the description of exchange

repulsion can be problematic) as well as for the dispersion corrections where the transition

region strongly affected by the damping function is being sampled. In the complexes studied

here, purposefully excluding any strong short-ranged interactions, we test only the ability of

the method to describe “pure” dispersion. The results are thus less dependent on the overall

quality of the method and should not be used on their own for ranking DFT functionals.

The errors of DFT methods are plotted in Fig. 2; an analogous plot of the systematic

error (MSE) as well as tables of these results are provided in the SI (Fig. S1, Tables S8 and

S9). The DFT functionals that perform well in other benchmarks are found at the top of

the list here as well, but they are accompanied by some functionals that are not suitable
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for general use. The best-ranking functional here is BHLYP-D3(BJ), which, despite its high

contents of exact exchange, does not work well for e.g. hydrogen bonds. It is followed by

revDSD-PBEP86-D3 and several functionals from the (ω)B97M/X family with non-local

dispersion correction, and these functionals appear on top of the list in the other data sets

as well. The ωB97M-V functional also exhibits a practically zero systematic error not only

in the data set as a whole but also in each of its groups separately (see Fig. S1 in the SI). It

is interesting that the variants of these (ω)B97M/X functionals with D3 dispersion perform

considerably worse here. Another notable feature is the difference between revDSD-PBEP86-

D3 and revDSD-PBEP86-D4 (having the RMSE of 0.15 and 0.26 kcal/mol, respectively).

Apparently, the results in this data set are very sensitive to subtle details in the dispersion

correction and its parameterization to a specific DFT functional. However, it must also be

noted that the errors here are usually smaller than in other data sets, and the analysis of

such small differences has only a limited practical value.

The methods with larger errors (still around 0.5 kcal/mol) exhibit one clear trend. Here,

the systems limited to first-row elements show a significantly smaller error than PS and halo-

gen groups. These are usually the classical DFT functionals with a posteriori parameterized

dispersion, and it is very likely that the parameterization of the correction is biased toward

organic molecules, which comprise the majority of the training set used.

The situation is different in the D442×10 data set of dissociation curves. When we

compare the D1200 data set, its subset forming the D442 data set, and the full D442×10

data set, it is clear that the results in equilibrium geometries differ from those obtained on the

curves (see Table S10 in the SI). At the level of equilibrium geometries, practically nothing

changes when passing from D1200 to the smaller D442 data set. The errors stay practically

the same (the average changes by 0.01 kcal/mol) and correlate almost perfectly (R2 = 0.999).

However, when we compare D442 and D442×10, the average error increases from 0.34 to 0.47

kcal/mol, and the ordering of the functionals becomes different – the correlation between

their errors is now much worse with R2 of 0.77 and practically random (R2 = 0.55) when
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Figure 2: The error (RMSE in kcal/mol) of DFT calculations in the D1200 data set and its
groups. The DFT functionals are sorted by ascending RMSE in this data set. The labels of the
functionals are colored as follows: double hybrids – red, range-separated hybrids – blue, hybrids –
black, GGA and meta-GGA – green.
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the two functionals with the largest error are removed from the comparison (these are BP

with D3 and D4 corrections).

This increase in the errors clearly comes from the close points of the dissociation curves;

the errors at the equilibrium and longer distances are smaller. The interactions at the short

distances become repulsive, and it is no surprise that the overall results in the D442×10

correlate better with the errors in the R739 data set of repulsive contacts (R2 = 0.75, with

BP-D3 and BP-D4 excluded). The ordering of the functionals also becomes closer to what

is observed in the other data sets. The errors of individual DFT methods in the D442×10

data set are available in the SI, Tables S11 and S12.

4.4 Benchmarking DFT across the NCIA Data Sets

As shown above, the DFT results in the D1200 data set must be viewed in the context of

other classes of non-covalent interactions covered by the NCIAtlas. For this comparison,

we use the HB375 and HB300SPX data sets of hydrogen bonds, the SH250 set of σ-hole

interactions, and the R739 set of repulsive contacts. These are equilibrium geometries, with

the exception of the R739 data set, which uses the first points of the dissociation curves,
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moderately repulsive contacts. Only neutral molecules are considered here, with the IHB100

data set of ionic hydrogen bonds being excluded.

The results are summarized in Fig. 3 and also available as Table S13 in the Supporting

Information. From a broader perspective, the performance of the studied DFT methods

in the D1200, HB375 and R739 is similar, with errors rarely exceeding 0.5 kcal/mol. The

functionals are differentriated by their performance in the other two data sets, HB300SPX

(hydrogen bonds including halogens, S and P) and the SH250 data set (σ-hole interactions –

halogen, chalcogen and pnictogen bonds). Here, only the modern double-hybrid functionals

from the revDSD family and some range-separated ones from the ωB97 family achieve a

RMSE smaller than 0.5 kcal/mol in each of these data sets. Another functional reaching this

limit is M06-2X, both with and without D3 dispersion correction. All of these functionals

involve a number of empirical parameters, and they have been optimized on large databases

covering diverse properties in a broader chemical space.

In the remaining cases, the errors can be rather large in these two data sets. This can

be attributed to the presence of strong interactions putting heavier atoms in close contact.

In the HB300SPX, this applies to complexes of iodine, but the H-bonds involving sulfur

and phosphorus are also often described poorly.2 In the SH250 data set, the largest errors

are observed in halogen bonds of chlorine, where especially GGA functionals artificially

overestimate charge transfer.9

The overall performance of the DFT method can also be summarized as the average

RMSE in the five data sets used here. Table 4 lists the functionals with an average error

below 0.5 kcal/mol; full listing is available in the SI as Table S14. These tables order the

functionals by the average error, but the maximum error (also listed) is equally important

as discussed above. However, the few best functionals do well in both of these measures.

To go beyond the issues already described in the papers on the respective data sets,

the data can be combined in other interesting ways. The most useful view of the whole

database can be obtained when the systems are selected by individual chemical elements.
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Figure 3: The errors (RMSE in kcal/mol) of DFT calculations in the D1200, HB375, HB300SPX
and SH250 data sets (equilibrium geometries) and in the R739 set (initial close-contact geometries).
The DFT functionals are listed in groups with decreasing computational complexity, from double-
hybrid methods to pure GGA functionals.
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Table 4: The average and maximum errors (RMSE in kcal/mol) of the best-performing DFT
methods in the D1200, HB375, HB300SPX, SH250 and R739 data sets. The table is sorted by the
average error.

Functional Avg. err. Max. err.
revDSD-PBEP86-D3 0.227 0.397
revDSD-PBEP86-D4 0.236 0.338
ωB97M-V 0.243 0.431
DSD-BLYP-D3 0.309 0.569
ωB97X-V 0.309 0.522
ωB97X-D3(BJ) 0.338 0.46
M06-2X-D3(zero) 0.350 0.467
DSD-PBEP86-D3 0.368 0.607
M06-2X 0.381 0.495
ωB97M-D3(BJ) 0.383 0.751
BHLYP-D3(BJ) 0.408 0.617
B3LYP-D3(OP) 0.408 0.657
B97M-V 0.417 0.821
DSD-PBEP86 0.434 0.57
BHLYP-D4 0.445 0.568
DSD-BLYP 0.447 0.563
B3LYP-D4 0.450 0.677
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More specifically, this partitioning of the database starts with pure organic molecules (the

elements H,C,N,O) and defines further subsets for S, P, F, Cl, Br, I, As, Se, Ne, Ar, Kr and

Xe selected as systems including this element and all lighter ones. This analysis excludes B

and He, which are represented only by a small number of systems. Again, only equilibrium

geometries have been selected from the D1200, HB375, HB300SPX and SH250 data sets

along with the initial (moderately repulsive) points from the R739 set. The error in each

subset is calculated as an average over the subsets from all the data sets that contain the

respective element. A plot of relative errors is shown here as Fig. 4; an analogous plot of

the RMSE is provided in the SI as Fig. S2. The errors are also listed there in Tables S16

and S15.

This analysis clearly illustrates the difference between simple organic molecules, where

the error stays below 0.5 kcal/mol (or 15 %) for practically all the tested functionals and

dispersion corrections, and complexes involving other elements, where the errors can be

significantly larger. There are only few DFT functionals that perform consistently well for

all the elements. The best is ωB97M-V with relative errors under 10 % and the RMSE under

0.5 kcal/mol for all the element groups. The double-hybrid functionals revDSD-PBEP86-

D3 and revDSD-PBEP86-D4 perform only slightly worse. These functionals are also the

ones with the highest accuracy in the organic molecules where the errors are as small as

0.16 kca/mol (6 %). A surprise here is the M06-2X functional, both with and without

dispersion correction, which also describes all the elements consistently with good accuracy.

It has, however, one downside – the error in the HCNO subset is about twice as large (0.3

kcal/mol) compared to the best functionals. The only remaining functional with no error

exceeding 15 % is ωB97X-V.

In all other cases, which includes all the traditional DFT functionals with an a posteriori

added dispersion correction, there is at least one element where the relative error is larger

than 15 %, which translates approximately to a RMSE above 0.5 kcal/mol. Most frequently,

the problematic elements are halogens, and these errors have already been discussed in the
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analyses of the individual data sets.

In the complexes of noble gases, the relative errors can become rather large, but this is

mostly caused by the small magnitude of these interactions. These systems are not included

in Fig. 4 as it is better to look at the absolute values of the error (Fig. S2), where they

rarely exceed 0.5 kcal/mol.

Figure 4: The relative error of DFT calculations involving a specific element across the D1200,
HB375, HB300SPX, SH250 and R739 data sets. The relative error (the RMSE divided by the
magnitude of interaction energies) averaged over the respective subsets of the datasets containing
the element. The DFT functionals are listed in groups with decreasing computational complexity,
from double-hybrid methods to pure GGA functionals.
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4.5 The Analysis of the Relationships between the NCIA Data

Sets

The testing of the same set of methods on multiple data sets yields information not only on

the methods themselves – these results can also be used to analyze the relationship between

the data sets quantitatively. Again, the five NCIA data sets of neutral complexes featuring

different types of non-covalent interactions are considered. The similarity of two data sets

is evaluated as a correlation between the errors of the set of 39 DFT methods used here.

This measure does not include any direct information on the chemical composition of the

data sets and should thus be free of arbitrary presumptions such as the assignment of the

non-covalent interactions to named classes. On the other hand, it is possible to show whether
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data sets covering seemingly different systems are truly independent or not. This analysis is,

of course, fully valid only in the context of the methods tested here, but it can be expected

that the findings obtained here can be extrapolated to other computational methods at a

similar level of approximation.

The correlation between the DFT errors in each pair of data sets is quantified using the

Pearson correlation coefficient R2, and these values are listed in Table 5. In addition to the

correlation between the data sets, we also evaluate the correlation of the errors in one data

set with the errors averaged over all the sets, and this criterion is used to sort the sets in

the following discussion. The data set that is the most different from the others is D1200

(with the R2 on average being 0.63). This is likely to reflect the fact that it features weaker

interactions at van der Walls distances, while all the other sets include significantly closer

contacts, either because of the nature of the interactions or by design. The second most

different data set is HB375 – it is distinguished by the limited chemical space that it covers

(only H,C,N and O), although it correlates rather well with the HB300SPX set of hydrogen

bonds involving other elements. The remaining data sets, R739, HB300SPX and SH250, are

more similar to each other and thus also to the average (with the R2 of 0.84, 0.94 and 0.96,

respectively). In addition to having short intermolecular contacts, they also cover a similar

chemical space, where the errors are dominated by heavier elements.

4.6 Benchmarking DFT in Representative Subsets of the NCIA

Database

The testing of many computational methods on the complete NCIA database, such as the

benchmarking of DFT methods presented above, is computationally demanding. When

working with robust methods that do not yield unexpected outliers, the database may be

reduced to a more manageable size. For each NCIA dataset, we provide predefined represen-

tative subsets of several different sizes. These subsets are obtained by a clustering analysis

(see the Methods) designed to capture as much diversity of the whole data set as possible.
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Table 5: The correlation (expressed as R2) between the errors in the five NCIA data sets, and the
error averaged over these data sets (the first part of the table) and the correlation of the errors in
the complete data sets and their smaller subsets.

Correlation between data sets
D1200 HB375 HB300SPX SH250 R739 Average

D1200
HB375 0.35
HB300SPX 0.46 0.70
SH250 0.54 0.53 0.89
R739 0.45 0.62 0.71 0.77
Average 0.63 0.70 0.94 0.96 0.84

Correlation with smaller subsets
D1200 HB375 HB300SPX SH250 R739 Average

Subsets 50 0.98 0.93 0.98 0.99 0.97 0.99
Subsets 20 0.94 0.92 0.96 0.99 0.90 0.99

Here, this approach is tested by comparing the DFT results obtained in the D1200,

HB375, HB300SPX, SH250 and R739 data sets (2,846 data points) with their equivalents

computed in the respective subsets with 50 entries (250 data points). The resulting data

set will be labeled NCIA250. For each DFT method, the RMSE is computed in the whole

dataset and its subset; these are reported in Table S17 in the SI. The average RMSE in

the five complete data sets and the NCIA250 subset is then plotted in Fig. 5. It is clear

that all the trends in the ranking of the functionals are reproduced very well even in the

smaller-scale calculation. If there is any difference, the error in NCIA250 is higher than in

the complete data set – the subsets are built to be as diverse as possible, and they are thus

a more difficult test case.

This can also be evaluated quantitatively as the correlation between the errors in the

full and reduced data sets. This correlation is very good, with the correlation coefficient

R2 ranging from 0.94 in the HB375 data set to 0.99 in the SH250 data set; for the average

RMSE in all five data sets, the R2 is 0.99 (all the values are listed in Table 5). If we use this

ranking to select the best three (all with the RMSE < 0.25 kcal/mol) or the best ten (the

RMSE < 0.4 kcal/mol) functionals, this selection will yield the same set in both the full and

reduced databases, although the ordering within these groups may differ slightly.
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Figure 5: The RMSE of DFT methods average over the five NCIA datasets discussed here evalu-
ated in the complete data sets (black) and their subsets with 50 entries (NCIA250, red). The DFT
functionals are sorted by increasing error in the complete calculations; labels are not shown.
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In this application, practically equivalent results can be obtained at 10 % of the cost

of computing the whole database. This may be generalized to the benchmarking of all less

approximate computational methods with a solid physical basis and a limited number of

empirical parameters. On the other hand, using the complete database is advisable when

working with more empirical methods, such as semiempirical quantum chemistry, where

more specific errors can occur. Similarly, the complete database would be preferred for the

parameterization of empirical methods whenever it is computationally feasible.

Practically the same correlation is achieved when the database is reduced even more,

using subsets with only 20 entries that form the NCIA100 database of only 100 non-covalent

complexes (see Table 5, source data in Table S18 in the SI). This, of course, increases the

chance that an error specific to some kind of systems would escape unnoticed, but the

NCIA100 set is still much more diverse than e.g. the commonly used S66 data set. The

correlation of the DFT errors between the NCIA100 database and the S66 data set has

the R2 of 0.38, which can be interpreted as a failure of the S66 set (focused on common

interactions in organic molecules) to identify errors occurring in more diverse interactions

and a broader chemical space.
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4.7 DFT-D3 Damping Function Parameterization

The work on the HB300SPX data set revealed a frequent problem of DFT-D3 with describing

hydrogen bonds involving iodine.2 It was hypothesized that it may be caused by the atomic

radii used in the damping function. However, the lack of other complexes involving iodine

than hydrogen bonds prevented the making of any strong conclusions. Here, this issue is

revisited, parameterizing the damping function on the D442×10 data set or its combination

with HB300SPX×10. Again, the B3LYP functional is taken as an example because it can

be expected to be rather robust, often performing the best among the classical functionals

to which the dispersion correction is added a posteriori.

The D3 dispersion correction with the Becke-Johnson damping, D3(BJ), can be rewritten

as a function of the interatomic distances RAB and the dispersion coefficients C6,AB and

C8,AB:

Edisp =
∑
A<B

(
fd(RAB, 6)

C6,AB

R6
AB

+ s8fd(RAB, 8)
C8,AB

R8
AB

)
(1)

with damping functions of orders β = 6 and 8 taking the form

fd(RAB, β) =
Rβ
AB

Rβ
AB + (a1R0,AB + a2)β

. (2)

The damping radii R0,AB are pairwise parameters derived from the C6,AB coefficients.27

This dispersion correction has three empirical parameters, a1 and a2, used in the damping

function, and the scaling of the 8th order term, s8. The “optimized power” damping, denoted

D3(OP), makes the exponent β in the 6th order term a free parameter and uses β+ 2 in the

8th order.28

Three versions of the damping function are considered here: the original D3(BJ), its

modification using independently computed damping radii taken from the “zero” damp-

ing26, labeled as D3(BJ’), and the D3(OP) version that offers additional flexibility in the

parameter β. These were refitted on either the D442×10 or the D442×10 data set com-

bined with HB375×10 and HB300SPX×10 (where the objective function minimized is a
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linear combination of the RMSE in these data sets with the weights of 1.0, 0.5 and 0.5,

respectively). The resulting errors in D442×10 and HB300SPX×10 are presented in Table

6 (equilibrium geometries only; the results on the whole dissociation curves are similar – see

Table S19 in the SI). The optimized values of the parameters are listed in the SI, Table S20.

Note, however, that the reparameterization has been performed to explore the properties of

the damping function rather than generally for actual applications.

Table 6: The errors of B3LYP-D3 with different versions of the D3 correction in the D442 and
HB300SPX data sets, and in the XH–Br and XH–I groups of the latter.

RMSE, kcal/mol
Version Fitted to D442 HB300SPX XH–Br XH–I
D3(BJ) original parameters 0.37 0.79 0.47 0.74

D442×10 0.21 0.85 0.54 0.74
D442×10 + H-bonds 0.22 0.75 0.45 0.68

D3(BJ’) D442×10 0.20 0.93 0.68 0.87
D442×10 + H-bonds 0.21 0.80 0.57 0.81

D3(OP) original parameters 0.22 0.58 0.29 0.52
D442×10 0.22 0.77 0.48 0.68
D442×10 + H-bonds 0.23 0.63 0.33 0.53

D3(BJ, scaled C6) D442×10 0.15 0.85 0.64 0.76
D3(BJ, scaled R0) D442×10 0.15 0.83 0.63 0.74

The results indicate that using an alternative set of damping radii does not bring any

improvement, and the hydrogen bonds of iodine are described significantly worse than the

ones of bromine, regardless of the version of the D3(BJ) correction. It is also clear that

the parameterization on the D442×10 set itself does not yield a transferable correction,

and other non-covalent interactions such as hydrogen bonds must be used to balance the

narrow focus of D442×10. In the latter case, the resulting D3(BJ) parameters are similar

to the original ones. A combination of D442×10 with R739×5 does not make a significant

difference, probably because of the redundancy of the repulsive points on the D442×10 curves

with the R739×5 set. The D3(OP) approach brings some improvement, both in its original

form and when reparameterized to D442×10 and H-bonds, which can be attributed to its

additional flexibility.
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The next step is the introduction of more empiricism into the damping functions. Both

the dispersion coefficients and damping radii come with some uncertainty, and modifying

them empirically may improve the accuracy further, but this requires more reference data.

The size of the D442×10 data set allows such an experiment. To keep the number of pa-

rameters reasonable, elementwise scaling factors sA and sB are introduced, and pairwise

scaling factors are constructed using combination rules previously utilized for the construc-

tion of C6,AB or R0,AB from elementwise parameters. Now the new dispersion coefficients

and damping radii are computed as

C ′6,AB = C6,AB
2sAsB
sA + sB

(3)

and

R′0,AB = R0,AB
sA + sB

2
. (4)

The scaling factors s are optimized along with the three global parameters in the disper-

sion correction (with the exception of carbon in the case of radii scaling because there is a

redundancy with the global parameter a1). The results (the last two rows in Table 6) show

that the scaling of either the C6 coefficients or damping radii leads to practically identical

results. In both cases, the error in the D442 data set drops to 0.15 kcal/mol. However, the

description of the hydrogen bonds in the HB300SPX set remains rather poor. If this error

were caused by the values of the C6 coefficients or by the damping function, it would be

reduced with the introduction of the elementwise parameters. As this is not the case, the

only remaining explanation is that the large errors in e.g. the XH–I halogen bonds come

from the DFT calculation itself, likely related to overdelocalization of the electron density

in the complex.

The last question to answer is the source of the error removed by the empirical scaling

of the C6 coefficients or damping radii. Both approaches yield seemingly equivalent results,

but a look at the scaling factors (Table S21 in the SI) shows that they are complementary –
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the same effect is achieved by reducing the C6 coefficient or increasing the damping radius

and vice versa. This can be determined by looking only at the most distant points of the

D442×10 dissociation curves – here the damping function should have no effect, and the

correction depends solely on the C6 coefficients. The scaling of the C6 coefficients increases

the error there, so it can be concluded that the scaling of the radii is the physically more

sound solution. This suggests that the next step in the possible development of the dispersion

corrections would be the refinement of these radii.

4.8 Semiempirical QM calculations

Only few semiempirical methods are applicable to all the elements included in the D1200

data set. Therefore, a subset of 778 systems, excluding boron and noble gases, is used

here instead. This has made it possible to add DFTB3 calculations (DFTB3 does not have

parameters for boron and noble gases) to the generally applicable methods PM6, PM7 and

GFN2-xTB. For PM6 and DFTB3, several corrections for non-covalent interactions have

been applied: D3 dispersion correction, H4 and H5 hydrogen-bonding corrections and the X

correction for halogen bonds. The H and X corrections are not needed in this data set, but

it is useful to determine whether they affect the results at all.

The resulting errors (RMSE and MSE) are plotted in Figures 6 and 7. The actual values

of the errors are listed in the SI, Tables S22 and S23. In the simple organic molecules

comprising no more than H, C, N and O atoms, all the methods with a dispersion correction

yield a satisfactory RMSE of about 0.5 kcal/mol. The systematic part of the error, MSE, is

usually also small. It is the largest in GFN2-xTB which is otherwise a rather accurate and

robust method. The large systematic error indicates that there may be a room for further

improvement in this direction.

The additional corrections beyond dispersion have only a negligible effect here because

the D1200 data set has been designed to exclude hydrogen- and halogen-bonded complexes.

These results confirm that these corrections work as expected, acting only in the systems
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for which they have been designed. The largest residual effect has been observed in the X

correction for DFTB3, which leads to a slight increase in the RMSE, although it notably

reduces the systematic part of the error.

Figure 6: The errors of semiempirical QM methods in the subset of the D1200 data set to which
they are applicable. RMSE in kcal/mol.
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Figure 7: The systematic errors of semiempirical QM methods in the subset of the D1200 data
set to which they are applicable. MSE in kcal/mol.
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Moving to other elements, the situation becomes worse. PM6 and PM7 have problems

already in the complexes with S and P, and these methods along with DFTB3 also fail to

describe halogens accurately. Only GFN2-xTB yields the RMSE below 1 kcal/mol in all the

groups. It is clear that this lack of robustness originates from the methods themselves, not

from the dispersion correction used. Moreover, the dispersion interactions studied here are
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rather weak and do not involve any large changes in the electronic structure of the molecules.

It is thus likely that these problems stem from the deficiencies in the parameterization of these

methods, rather than from the limitations of the semiempirical formalism used. Also the

results of GFN2-xTB suggest that the accuracy of 1 kcal/mol can be achieved in dispersion-

bound complexes in a broader chemical space.

5 Conclusions

The D1200 and D442×10 data sets represent a substantial step in the development of the

Non-Covalent Interactions Atlas database. Together with the other NCIA data sets, they

complete the coverage of the most common classes of non-covalent interactions in neutral

systems. Their size, diversity and coverage of chemical space significantly exceed the previous

state of the art. All the data, including not only the geometries and benchmark results but

also the results of our calculations on these data sets, are openly available, both here and at

the www.nciatlas.org website.

The enhanced diversity of the D1200 data set has been exploited in the analysis of the

errors of MP2. Besides the well-known failure in π–π interactions of hydrocarbons, the

new data show a clear trend of increasing error when passing to heavier elements. This

can be explained using the SAPT interaction energy decomposition, where the contribution

of London dispersion grows faster than the final interaction energy in the analyzed series.

The MP2D and SCS-MP2D methods, which replace the problematic dispersion term with a

correct one calculated in the spirit of DFT-D, work rather well in correcting all these errors

despite being parameterized for a narrower chemical space.

The D1200 data set also highlights very specific features of dispersion-corrected DFT

methods because it isolates the dispersion well from other interactions. Along with the

D442×10 data set, it would be very useful for the development of dispersion corrections;

for the general testing of DFT methods, however, it should be used together with other

32

www.nciatlas.org


data sets. In this paper, we analyze the performance of DFT methods across five datasets

from the NCIA database, covering a wide range of types of non-covalent interactions. The

analysis has made it possible to identify not only the functionals that are the most accurate

for a specific problem, but, more importantly, those that are the most robust and have the

highest chance of success in more difficult systems. The highest-ranking functionals are

revDSD-PBEP86-D4, revDSD-PBEP86-D3, ωB97M-V, ωB97X-D3(BJ), M06-2X-D3(zero)

and M06-2X. All the GGA or meta-GGA functionals have more or less serious problems in

strong interactions of heavier elements in either the HB300SPX or the SH250 data set.

A comparison of the DFT results in the different NCIA data sets has also enabled the

quantification of the relationship between them. The D1200 data set has been found to

be the most dissimilar to the rest of the database, likely because it covers only weaker

interactions and avoids any close contacts where the errors of DFT become larger and more

diverse. It has also been shown that the smaller subsets of all of these data sets, built

using a clustering analysis, represent the complete data sets well and together they form a

smaller but still highly diverse test set useful for applications. The NCIA100 and NCIA250

databases, extracted from the five NCIA data sets of neutral systems, provide very diverse

test sets, which reduce the cost of computing the whole database in many applications.

Several experiments with the reparameterization of the damping function in the D3 cor-

rection have indicated that in the case of standalone DFT functionals, such as B3LYP, used

as an example here, the overall error in the NCIA data sets is dominated by the DFT part of

the calculation itself. In the correction, a small improvement can be achieved when a more

flexible damping function is used. It is possible to achieve further gain in accuracy by refining

the atomic radii used in the damping function. However, these effects are rather small and

may be practically important only in the development of more accurate DFT functionals

including the dispersion correction.

Several semiempirical QM methods with dispersion corrections have also been tested on

the D1200 data set. All of them describe the HCNO chemical space with good accuracy, but
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they often fail in systems with additional elements. These problems are caused neither by

the description of the London dispersion itself nor by the semiempirical approximations used,

but most likely by issues in the parameterization of the methods. The only SQM method

to yield errors below 1 kcal/mol in the whole data set is the empirical tight binding method

GFN2-xTB.

This paper introduces the new D1200 and D442×10 data sets and demonstrates their

use in benchmarking various approximate computational methods. Nevertheless, the data

sets have mainly been designed for the development of future methods that could overcome

at least some of the issues discussed here. These data could help especially in making

semiempirical QM methods more accurate in a broader chemical space.
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(56) Řezáč, J.; Hobza, P. Advanced Corrections of Hydrogen Bonding and Dispersion for

Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012, 8, 141–

151.
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Sánchez, C. G.; Sternberg, M.; Stöhr, M.; Stuckenberg, F.; Tkatchenko, A.; Yu, V.

W.-z.; Frauenheim, T. DFTB+, a software package for efficient approximate density

functional theory based atomistic simulations. J. Chem. Phys. 2020, 152, 124101.

(67) DFTB+, general package for performing fast atomistic simulations. http://www.

dftb-plus.info/.

(68) Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly

Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multi-

pole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory

Comput. 2019, 15, 1652–1671.

(69) XTB, Semiempirical Extended Tight-Binding Program Package. 2019; https://

github.com/grimme-lab/xtb.

(70) The Official YAML Web Site. http://yaml.org/.

(71) Cybulski, S. M.; Lytle, M. L. The origin of deficiency of the supermolecule second-order

Moller-Plesset approach for evaluating interaction energies. J. Chem. Phys. 2007, 127,

141102.

(72) Heßelmann, A. Improved supermolecular second order Møller–Plesset intermolecular

42

http://www.dftb-plus.info/
http://www.dftb-plus.info/
https://github.com/grimme-lab/xtb
https://github.com/grimme-lab/xtb
http://yaml.org/


interaction energies using time-dependent density functional response theory. J. Chem.

Phys. 2008, 128, 144112.
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