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Abstract 

 

Spinel materials often have complex structures and as a result, balancing of reactions with these 

compounds by traditional methods become very time consuming. A method to calculate the 

stoichiometric coefficients for chemical reactions using first a modified matrix-inverse method and then 

an optimised method is proposed. Both methods are explored using linear algebra and the result 

demonstrated using a typical chromite reduction reaction.   

 

Introduction 

 

One of the first concepts that students of chemistry learn is that of conservation of mass. Physical 

changes that demonstrate that mass is conserved during phase change are typically demonstrated, after 

which chemical reactions are introduced.  In a chemical reaction the mass and elements are still 

conserved but the initial substances, reactants, will be transformed into new substances, products. In  

pioneering work done during the late 1700’s, Antoine Lavoisier showed conclusively that the law of 

conservation of mass also applies to chemical reactions with the publication of his Traité élémentaire 

de chimie "In all the operations of art and nature, nothing is created; an equal quantity of matter exists 

both before and after the experiment; the quality and quantity of the elements remain precisely the 

same." (Lavoisier, 1789).  

It was then understood that since the quantities of each element cannot change, even though they 

would form part of different substances, the amounts of reactants and products must be scaled by integer 

coefficients for the law of conservation of mass to hold (IUPAC, 1997). This insight led to the 

development of stoichiometry which studies the relationship between the amounts of reactants 

consumed and products produced in chemical reactions (Brown et al, 2015). As demonstration, consider 

the hypothetical single displacement reaction below: 

 

1 2 3 4      a b c d e fx A B x C x A C x B+ → +   

 

The stoichiometric coefficients 
1 2 3 4, ,  and x x x x   must be some integers such that the number of atoms 

of elements A, B and C are the same on both sides of the arrow. The dominant method taught at high 

school and even university level to find the values of the coefficients is solving by inspection (Toth, 

1997). This casual approach works well with simple chemical equations such as the one shown above. 

But for even slightly more complex reactions involving larger quantities of reactants and products, this 

inspection method becomes slow and unreliable. 

Most students of chemistry would also be familiar with linear algebra and its techniques. To 

demonstrate some of the applications of linear algebra, systems of linear equations are introduced and 

then applied to chemical equations. This algebraic method of using a matrix of coefficients results in a 

much more systematic approach to balancing chemical equations and with the advent of modern 

scientific calculators that can store and manipulate matrices, has become the standard. However, this 

system of equations method becomes cumbersome to work with for large reaction equations with many 

substances and elements. Therefore, it is the goal is to develop a general method that can be applied to 

all chemical equations with ease. 
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Discussion 

 

This project came about during the study of metallothermic reduction of metal oxide ores. These ores 

typically consist of complicated mineral structures which, when undergoing reduction, become very 

burdensome to balance by hand. Consider the following chromite molecule and its subsequent reduction 

with aluminium: 

 

( )( )1 0.44 0.55 1.36 0.55 0.08 4 2 3 4 5 6 2 32
          x Mg Fe Cr Al Fe O x Al x Mg x Fe x Cr x Al O+ → + + +   

 

It is readily apparent that solving the following by inspection would be a very time-consuming task. 

However, below we outline a new augmented matrix method to calculate the coefficients with ease. 

 

Methodology 

 

The steps used solve the stoichiometric coefficients are outlined below: 

 

1) Construct a composition array for the reaction 

2) From this array extract the coefficient matrix ijK  

3) Construct the augmented matrix 
nmA  according to the following rules: 

• Where n i and m j  then nm ija k=   

• Where n i and m j  insert the reversal matrix ajJ    

• Where n i and m j  insert the null matrix 0ad
   

• Where 1n i −  and m j   insert reversal matrix ( )1i d
J

−
  

For the above: ( ) ( ), ,r Max i j Min i j= − then 2a i r= + +  and 2d j r= + +  

4) Extract the final coefficient matrix xyB  such that x y=  according to the rules: 

• If i j  then x i r= +  and y j=  or, 

• If i j  then 1x i= +  and 1y j r= + +  or, 

• If i j=  then 1x i= +  and 1y j= +  

5) Determine the inverse matrix 
1B−
 as well as the determinant ( )det B   

6) Transpose the last column of 
1B−
 into a new matrix C  

7) Multiply C  by the absolute value of the determinant, ( )det B C D =  

8) Divide each element of D  the greatest common divisor, ( )11 1/ gcd , , nD d d E=  

9) The resulting matrix E now contains the stoichiometric coefficients from left to right. 

 

The above method may seem needlessly complex, but the repeatability will become readily apparent. 

In the final section of the paper an optimised method for determining the stoichiometric coefficients is 

derived by investigating the resulting matrices algebraically.  

 

But first, let us demonstrate the above method using a simple double displacement reaction: 

 

The reaction of iron(III) oxide with sulfuric acid 

 

( )1 2 3 2 2 4 3 2 4 4 23
      x Fe O x H SO x Fe SO x H O+ → +   
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Step 1 

Construct a composition array for the reaction: 

 

( )2 3 2 4 2 4 23

2 0 2 0

3 4 12 1

0 2 0 2

0 1 3 0

Fe O H SO Fe SO H O

Fe

O

H

S

−

− −

−

−

 

 

Note that the coefficients for the products are all assigned the negative value. This is a direct 

consequence of the law of conservation of mass since the quantity of any element needs to add to zero 

on both sides of the chemical equation. 

 

Step 2 

From this array we then extract the matrix K : 

 

 

2 0 2 0

3 4 12 1

0 2 0 2

0 1 3 0

K

− 
 

− −
 =
 −
 

− 

  

 

Step 3 

Construct the augmented matrix A: 

 

4

0

6

i j

r

a d

= =

 =

 = =

  

 

2 0 2 0 0 0

3 4 12 1 0 1

0 2 0 2 1 0

0 1 3 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

A

− 
 

− −
 
 −

=  
− 

 
 
  

 

 

 

Step 4 

Extract the coefficient matrix B: 

4

5

i j

x y

= =

 = =
 

2 0 2 0 0

3 4 12 1 0

0 2 0 2 1

0 1 3 0 0

0 0 0 1 0

B

− 
 

− −
 
 = −
 

− 
  
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Step 5 

Determine the inverse matrix 
1B−
 as well as the determinant: 

 

1

1 4 1
0 0

3 3 3

3 1
1 3 1

2 2

1 1 2 4 1

2 3 9 3 3

0 0 0 0 1

3 2 1 6 0

B−

 
− 

 
 − −
 
 
 = − −
 
 
 
 
 

− 
 

 and ( )det 6B = −  

 

Step 6 

Transpose the last column of 
1B−
 into a new matrix D: 

 

1 1
1 1 0

3 3
C

 
=  
 

 

 

Step 7 

Multiply C by the absolute value of the determinant: 

 

 6 2 6 2 6 0C D−  = =  

 

Step 8 

Divide each element of D the greatest common divisor: 

 

( )11 15gcd , , 2d d =     1 3 1 3 0E =   

 

And therefore, 
1 3 1x x= =   and 2 4 3x x= =  resulting in the balanced chemical equation: 

 

( )2 3 2 4 2 4 23
  3     3Fe O H SO Fe SO H O+ → +  

 

To fully understand why the method above yield the stoichiometric coefficients we can explore the 

mathematics behind the method in greater detail. Consider the following hypothetical double 

displacement reaction: 

1 2 3 4a b c d o p q rx A B x C D x A D x C B+ → +   
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Setting up the composition array and the coefficient matrix: 

 

B

0 0

0 0

0 0

0 0

a b c d o p q rA C D A D C B

A a o

B b q

C c r

D d p

−

−

−

−

 and then 

0 0

0 0

0 0

0 0

a o

b q
K

c r

d p

− 
 

−
 =
 −
 

− 

 

 

A traditional algebraic method for solving the values of 
1 2 3 4, ,  and x x x x would involve using 

Gaussian elimination to obtain the reduced row echelon form (Gabriel et. al, 2015; Hamid, 2019). The 

algebraic method is still a step up from solving by inspection and the coefficients can be solved by hand 

if only a few equations are present or by making use of a suitable software package, such as MATLAB. 

However, as the complexity of reaction equations increases so does the effort required to solve by row 

echelon form. 

 

Next, one might express the equations in the matrix form Ax b= , where x and b denotes column 

vectors contain the variable and constant terms respectively. The solutions for the variables are then 

obtained by -1x bA= . For the coefficient matrix above we have: 

 

1

2

3

4

0 0 0

0 0 0
      Kx 0        

0 0 0

0 0 0

xa o

xb q

xc r

xd p

−     
    

−
    = → =
    −
    

−    

 

 

Since Kx 0= , chemical equations form homogenous systems and will have either one unique 

solution, for a non-singular matrix, or an infinite number of solutions if K is singular. To demonstrate 

that it will be the latter, first we calculate that ( )det K acpq bdor= −  and then set up the system of linear 

equations from the above matrix form. Solving them simultaneously: 

 

( )

( )

( )

( )

1 3

1 4

2 4

2 3

0        1

0        2

0        3

0        4

ax ox

bx qx

cx rx

dx px

− =

− =

− =

− =

 

 

1 42 3 2 4

141
422

  and    and  

bx qxdx px cx rx

bxrxpax
xxdx

qco

== =

===
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( )

4 1

1 1

0

det

rx pax
d

c o

bx paxdr

c q o

drb pa

cq o

drbo pacq

acpq bdor

K

 
= 

 

 
= 

 

=

=

− =

=

  

 

Revealing that determinant of the coefficient matrix is indeed zero. Since stoichiometric coefficients 

are scalar multiples, we expect and infinite number of solutions. For example, our previous reaction 

equation:  

 

( )2 3 2 4 2 4 23
1   3   1   3

2               6                    2                       6

3               9                    3                        9

                                       

Fe O H SO Fe SO H O+ → +

                     

 

 

 

It is therefore apparent that a better method is needed to approach these problems if we want to make 

use of matrix algebra and take advantage of the tools available to students of chemistry, such as modern 

scientific calculators. The steps outlined in the methodology section allows us to construct an invertible 

matrix such that ( )det 0B  . Let us now repeat the first hypothetical reaction with this method: 

 

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0 1 0

a o

b q

B c r

d p

− 
 

−
 
 = −
 

− 
  

 and 1

1
0 0 0

1
0

1
0 0

0 0 0 0 1

1

q

b b

p ap apq

do bdo d bdo

a aq
B

o bo bo

cp acp c bdor acpq

do bdo d bdo

−

 
 
 
 −
 
 
 = −
 
 
 
 
 −
− − − 
 

  

 

This time we have that ( )det 0B bdo=  . Computing matrix D: 

 

 

   

  = 0

D doq apq adq bdo bdor acpq

doq apq adq bdo

= −
 

Depending on the values of  d11 – d14 we potentially have to divide by 𝑔𝑐𝑑(𝑑11,⋯ , 𝑑14) if necessary, 

so that the lowest stoichiometric coefficients are obtained in matrix E. The validity of this result can 

again be demonstrated by using a system of linear equations: 
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1

2

3

4

1 4

00 0 0

00 0 0

Bx 0      00 0 1

00 0 0

0 0 0 1 0

xa o

xb q

xc r

xd p

w x

−     
    

−
    
    = →  =−
    

−     
        

  

 

To avoid confusion, wi is used to denote new variables introduced by the augmentation process so 

that it could be easily differentiated from the stoichiometric coefficients xi. From the above we obtain 

a slightly modified version of the set of equations found in the first instance: 

 

( )

( )

( )

( )

( )

1 3

1 4

2 4 1

2 3

4 4

0        1

0        2

0        3

0        4

      5

ax ox

bx qx

cx rx w

dx px

x x

− =

− =

− + =

− =

=

 

 

It can now be seen that the reason for the augmentation with reversal matrices specifically, is that 

several trivial equations such as 
4 4x x=  will result, as well as the same desired equations as given by 

Kx 0= . Solving the above equations: 

 

( ) ( )

( ) ( )

1 4 2

3
4

1
4

1 4

1 4 0

w rx cx

px
rx c

d

axcp
rx

d o

bdo w x bdor acpq

bdo w x

= −

 
= −  

 

 
= −  

 

= −

 =

  

 

It can now be seen that since 
40 ; 0bdo x   and from the earlier example 

( )det 0K bdor acpq= − = , the only way that the left hand side equals the right hand side for the above 

result would be if 
1 0w = . Therefore, we can conclude that 4x bdo= , leading to: 

 

34 1
1 3 2

  and    and  

pxqx ax
x x x

b o d

q bdo a doq p adq

b o d

doq adq apq

= = =

  
= = =

= = =
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Therefore 
1 2 3 4 1  ;     ;     ;     ;   x doq x apq x adq x bdo k bdor acpq= = = = = −  as expected. The 

augmentation steps were chosen such that 
1 2, , , 0iw w w = which means that in general this method 

should work for all chemical equations.  

 

At this point the method is sufficient to yield the stoichiometric coefficient but it can be improved 

by realizing that the inverse depends on the cofactors and by extension the minors of the matrix: 

 

( )
1 1

det

TB C
B

− =  

Where ( )1
i j

ij ijC M
+

= −  .  

Additionally, since we multiply by the determinant we have that ( ) 1det TB B C− = , which reveals 

that we do not have to calculate the entire inverse but only the cofactors or minors. Therefore, focusing 

next on the matrix of minors: 

 

11 12 1

21 22 2

1 2

j

j

i i ij

M M M

M M M
M

M M M

 
 
 =
 
 
  

 

 

Since the first row of a composition matrix for any chemical reaction cannot be all zeros, in fact it 

must contain at least two non-zero elements, all the minors in the ith row cannot be equal to zero. 

Furthermore, if the augmentation is done according to the methodology, this will lead to the minors of 

the ith row containing only elements from the original composition array.  

These two propositions can be demonstrated by simple Laplace expansion: 

 

If 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 

=
 
  

 then 

11 12 13

21 22 23

31 32 33

0

1

0

0 0 1 0

a a a

a a a
B

a a a

 
 
 =
 
 
 

  with 

22 23

11 32 33 32

1

0

0 1 0

a a

M a a a= = −  

 

and so forth for all minors until the matrix of  minors is found: 

 

 

( )

32 31 21 32 22 31

11 32 12 31

12 11 11 22 12 21

13 32 12 33 13 31 11 33 12 31 11 31

0

0 0 0

0

det

a a a a a a

a a a a
M

a a a a a a

a a a a a a a a a a a a A

 − − − 
 

− =
 − − −
 

− − −  
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This assumed a square composition matrix as starting point, but the above method holds for the other 

2 types of matrices as per step 3 of the methodology as well. Additional examples as well as possible 

real-life applications are shown in Appendix A.  

Re-examining the earlier equation and matrix K, the minors of B become: 

 

( )

0 0

0

0 0 0 0

0 0 0

det

bp bd bcp

do ap ad acp

M bdo

bo bco

doq aqp adq bdo K

 − −
 

− − 
 = −
 

− − 
 − − 

 

 

Notice that the last row of minors yields the stoichiometric coefficients as obtained by the matrix 

inversion method and indeed only contain elements from the composition array. Therefore, a more 

efficient final method is now established: 

• Follow steps 1 – 4 of the methodology same as before. 

• Calculate the absolute values of the minors of the xth row of matrix B. 

• Divide each element by the greatest common divisor of the minors of the xth row. 

This leads to the final result: 

 

( )1gcd , ,

xi

i

x xy

M
x

M M
=  

 

This new method yields the same stoichiometric coefficients in far fewer steps and since the tools 

available to chemistry students enable them to calculate determinants with relative ease, finding the 

minors of the last row becomes a relatively trivial task. 

 

Reduction of Chromite with Aluminium 

 

Let us return our attention now to the original problem presented by the reduction reaction of 

chromite.  We will solve the stoichiometric coefficients using the minors and the matrix-inverse 

method below: 

 

( )( )1 0.44 0.55 1.36 0.55 0.08 4 2 3 4 5 6 2 32
          x Mg Fe Cr Al Fe O x Al x Mg x Fe x Cr x Al O+ → + + +  

 

( )

( )
0.44 0.55

2 3

1.36 0.55 0.08 42

44 0 1 0 0 0

63 0 0 1 0 0

136 0 0 0 1 0

55 1 0 0 0 2

397 0 0 0 0 3

Mg Fe
Al Mg Fe Cr Al O

Cr Al Fe O

Mg

Fe

Cr

Al

O

−

−

−

−

−
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From this we then extract the matrix K : 

 

44 0 1 0 0 0

63 0 0 1 0 0

136 0 0 0 1 0

55 1 0 0 0 2

397 0 0 0 0 3

K

− 
 

−
 
 = −
 

− 
 − 

  

 

Construct the augmented matrix A according to the rules and extract the coefficient matrix B: 

 

44 0 1 0 0 0

63 0 0 1 0 0

136 0 0 0 1 0

55 1 0 0 0 2

397 0 0 0 0 3

0 0 0 0 0 1

B

− 
 

−
 
 −

=  
− 

 −
 
  

 

 

Applying the equation: 

 

( )
61

1

61 66gcd , ,

3

1

3

M
x

M M
=

−
=

=

  and  

( )
62

2

61 66gcd , ,

629

1

629

M
x

M M
=

=

=

  

 

and so forth until we have: 

 

( )( )0.44 0.55 1.36 0.55 0.08 4 2 32
3 629 132 189 408 397Mg Fe Cr Al Fe O Al Mg Fe Cr Al O+ → + + +  

 

Using the full augmented matrix-inversion method as described earlier. Determine the inverse matrix 
1B−
 as well as the determinant ( )det B : 

 

1

1 3
0 0 0 0

397 397

55 629
0 0 0 1

397 397

44 132
1 0 0 0

397 397

63 189
0 1 0 0

397 397

136 408
0 0 1 0

397 397

0 0 0 0 0 1

B−

 
 
 
 −
 
 
 −

=  
 
 −
 
 

− 
 
  

 and ( )det 397B =  
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Transpose the last column of 
1B−
 into a new matrix C: 

 

3 629 132 189 408
1

397 397 397 397 397
C

 
=  
 

 

 

Multiply C by the absolute value of the determinant: 

 

 397 3 629 132 189 408 397C D = =  

 

Since ( )11 15gcd , , 1d d =  we again get the balanced equation: 

 

( )( )0.44 0.55 1.36 0.55 0.08 4 2 32
3 629 132 189 408 397Mg Fe Cr Al Fe O Al Mg Fe Cr Al O+ → + + +  

 

Given the large values of the stoichiometric coefficients it would have taken a considerable amount 

of time to solve the reaction equation by inspection but using the new minors method the results was 

determined with ease. 

 

Conclusion 

 

Based on the need to quickly determine the stoichiometric coefficients of reaction equations, the 

proven, but slow, method of using systems of linear equations was expanded upon. The resulting 

procedure allows us to apply the concepts of linear algebra in a convenient- and more importantly 

general method that can handle even large reaction equations with ease. 
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Appendix A 

Mineral Structure of Chromite 

 

For the example above a sample of South African chromite concentrate was analysed at a SANAS 

accredited laboratory and found to have a  composition of metal oxides by weight percent as seen in 

column two of table 1. The method as described by (Schwab, 2019) was then used to calculate the 

mineral structure. 

 

 Oxides 

Present 
% w/w 

Cations 

in Oxide 

Anions 

in Oxide 

Molar 

Mass 

Mol 

Proportion 

Oxygen 

Proportion 

Number 

of 

Anions 

Number 

of 

Cations 

Al2O3 13.94 2 3 101.961 0.137 0.410 0.831 0.554 

Fe2O3 3.00 2 3 159.687 0.019 0.056 0.114 0.076 

Cr2O3 51.10 2 3 151.990 0.336 1.009 2.044 1.363 

FeO 19.57 1 1 71.846 0.272 0.272 0.552 0.552 

CaO 0.40 1 1 56.077 0.007 0.007 0.014 0.014 

MgO 8.84 1 1 40.311 0.219 0.219 0.444 0.444 

 ∑ 96.85      ∑ 1.974 ∑ 4.000 ∑ 3.000 

 
        

    Oxygen Atoms in Structure: 4  

       2.026  
 

 

Chromite is found as a spinel conforming to the general formula of AB2O4, where A2+ and B3+ denote 

the cations that occupy the tetrahedral and octahedral sites respectively (Weller, 2014). Typical chromite 

has the formula FeCr2O4  but the Fe2+ and Cr3+ cations are frequently replaced by other ions such as 

Mg2+ and Al3+ which can be clearly seen from the percentage compositions above. From the data it was 

calculated that the approximate structure of this specific sample of concentrate is

( )( )0.44 0.55 1.36 0.55 0.08 42
Mg Fe Cr Al Fe O  and the corresponding molecular formula was found: 

 

( )( )0.44 0.55 1.36 0.55 0.08 42

0.44 0.44 0.55 0.55 1.36 2.04 0.55 0.83 0.08 0.11

44 44 55 55 136 204 55 83 8 11

44 63 136 55 397

Mg Fe Cr Al Fe O

Mg O Fe O Cr O Al O Fe O

Mg O Fe O Cr O Al O Fe O

Mg Fe Cr Al O



=    

=    

=

 

 

This formula can now be used in the reduction reaction.  
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Additional examples of matrices of minors 

 

Assuming different starting matrices A and the corresponding augmented matrices B: 

 

2x2 square matrix: 

 

11 12 21

21 22 11

22 21 11 22 12 21

1 0 0

0       1 0  

0 1 0

a a a

B a a M a

a a a a a a

   
   

= → = −
   
   − − −   

 

 

 

2x3 non-square matrix: 

 

11 12 13 22 21

21 22 23 12 11

12 23 13 22 11 23 13 21 11 22 12 21

0

      0  

0 0 1

a a a a a

B a a a M a a

a a a a a a a a a a a a

   
   

= → =
   
   − − −   

 

 

Applications: Addition reactions a c o pA C A B+ →   e.g. 
2 2 22 2H O H O+ →  

 

 

3x4 non-square matrix: 

 

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1

                      

a a a a

a a a a
B

a a a a

 
 
 =
 
 
 



 

( )

( )

( )

( )

22 33 23 32 21 33 23 31 21 32 22 31

12 33 13 32 11 33 13 31 11 32 12 31

12 23 13 22 11 23 13 21 11 22 12 21

12 23 34 24 33 11 23 34 24 33

13 22 34 24 32 13 21 34

14 21 33 23 31

0

0

0

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a
M

a a a a a a a a a a

a a a a a a a a a

a a a a a

− − −

− − −

− − −
=

− − − −

− + −

−

( )

( )

( )

( )

( )

( )

( )

( )

11 22 34 24 32 11 23 33 23 32

24 31 12 21 34 24 31 12 21 33 23 31

14 21 33 23 31 14 21 32 22 31 13 21 32 22 31

 
a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a a a a a

 
 
 
 
 

− − − − 
 

+ − + − +
 
 − − − 

 

 

Applications: Reduction of metal oxides a b c o pM O R M R C+ → +   e.g. 
2 3 3 2 3Fe O C Fe CO+ → +  

 

At this point we will switch over to using real and hypothetical reaction equations with numerical 

coefficients since the size of the matrices using only variable like the ones above, quickly span multiple 

pages. However, note that the last row of the minor of B still only contains elements from the original 

matrix A. 

 

 

Hypothetical reaction: 

 

( )1 2 3 1 2 2 3 12 12 10 2 4 4 92
x A B C x DE F x A B C DE F x A B+ → +   
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 

2 0 12 4 0 0 0

3 0 12 9 0 0 0

1 0 10 0 0 0 1

      10 2 1 2 0 0 00 1 2 0 0 1 0

0 2 4 0 1 0 0

0 1 2 0 0 0 0

0 0 0 1 0 0 0

B E

− − 
 

− −
 
 −
 

= → =− 
 −
 

− 
 
 

 

 

Therefore ,we have ( )2 3 1 2 12 12 10 2 4 92
10 2 2A B C DE F A B C DE F A B+ → +  

 

Combustion of octane: 

 

1 8 18 2 2 3 2 4 2x C H x O x CO x H O+ → +  

 

 

8 0 1 0

18 0 0 2
      2 25 16 18

0 2 2 1

0 0 0 1

B E

− 
 

−
 = → =
 − −
 
 

  

 

Therefore ,we have 
8 18 2 2 22 25 16 18C H O CO H O+ → +  

 

Redox reaction involving potassium ferrocyanide: 

 

( ) ( )1 2 3 4 5 6 74 4 2 4 4 2 4 4 28 93 26 3
K Fe CN KMnO H SO KHSO e SO MnSO HNO CO H Ox x x x x F x x x x+ + → + + + + +  

 

 

4 1 0 1 0 0 0 0 0

1 0 0 0 2 0 0 0 0

6 0 0 0 0 0 0 1 0

6 0 0 0 0 0 1 0 0

    10 122 299 162 5 122 60 60 1880 1 0 0 0 1 0 0 0

0 4 4 4 12 4 3 2 1

0 0 2 1 0 0 1 0 2

0 0 1 1 1 3 1 0 0 0

0 0 0 0 0 0 0 0 1

B E

− 
 

−
 
 −
 

− 
 = → =−
 

− − − − − − 
 − − −
 

− − − 
 
 

 

 

Therefore, we have: 

 

( )

( )

4 4 2 46

4 2 4 4 3 2 23

10 122 299

162 5 122 60 60 188F M O

K Fe CN KMnO H SO

KHSO e SO nSO HNO CO H

+ +



+ + + + +

 


