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Abstract: The availability of large, high-quality data sets is crucial for artificial intelligence design 

and discovery in chemistry. Despite the essential roles of solvents in chemistry, the rapid 

computational data set generation of solution-phase molecular properties at the quantum 

mechanical level of theory was previously hampered by the complicated simulation procedure. 

Software toolkits that can automate the procedure to set up high-throughput explicit-solvent 

quantum chemistry (QC) calculations for arbitrary solutes and solvents in an open-source 

framework are still lacking. We developed AutoSolvate, an open-source toolkit to streamline the 

workflow for QC calculation of explicitly solvated molecules. It automates the solvated-structure 

generation, force field fitting, configuration sampling, and the final extraction of microsolvated 

cluster structures that QC packages can readily use to predict molecular properties of interest. 

AutoSolvate is available through both a command line interface and a graphical user interface, 

making it accessible to the broader scientific community. To improve the quality of the initial 

structures generated by AutoSolvate, we investigated the dependence of solute-solvent closeness 

on solute/solvent identities and trained a machine learning model to predict the closeness and guide 

initial structure generation. Finally, we tested the capability of AutoSolvate for rapid data set 

curation by calculating the outer-sphere reorganization energy of a large data set of 166 redox 
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couples, which demonstrated the promise of the AutoSolvate package for chemical discovery 

efforts. 

I. INTRODUCTION 

The availability of large, high-quality data sets is crucial for artificial intelligence (AI) design 

and discovery in chemistry. Due to the scarcity of large, cleaned experimental data sets for various 

molecular properties, computational data sets are crucial for training machine learning (ML) 

models used in AI design and discovery. However, most computational molecular property data 

sets, especially the large data sets widely used in ML benchmarking such as QM71, 2 and QM9,3, 4 

focus on gas phase molecular properties, such as atomization energy, ionization potential, electron 

affinity, and frontier orbital energies. The reason behind this is the ease of rapid generation of these 

data sets with quantum chemistry (QC) calculation, which is by default in the gas phase. Various 

toolkits have been developed to automate QC calculation and molecular property data set curation. 

Some are general QC workflows aiming at proving QC software interoperability (QCENGINE,5 

QCARCHIVE6), some focus on specific groups of molecules, such as organic molecules (e.g., 

RDKit7, 8, with some support for organometallics), transition metal complexes (e.g., molSimplify9), 

and materials (e.g., pymatgen,10 AiiDA11), and others focus on specific types of QC calculation, 

such as transition state search (e.g., AARON,12 QChASM13). These workflows enable automated 

high-quality initial structure generation, QC input file preparation, job preparation and execution, 

and data collection, which lead to rapid generation of high-quality computational molecular 

property data sets. 

However, many chemical processes related to real chemistry applications are in the solution 

phase. Solvent environments play an essential role in chemistry by impacting molecular properties 

and modifying reaction rates.14-17 Rapid generation of large computational data sets of solution-
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phase molecular properties or reaction rates is crucial for developing ML models and enabling AI 

design in the solution phase. Nevertheless, setting up an automated workflow for accurate QC 

calculation of solvated molecules is more challenging than the gas phase counterpart. Although 

implicit solvent models, such as the polarizable continuum models,18-24 are now widely available 

in QC packages and the corresponding molecular property data set curation can be easily 

automated with the aforementioned QC workflows, the accuracy of these calculations cannot 

always meet our needs in design and discovery. Accurate prediction of many molecular properties 

requires QC calculation in explicit solvents due to the existence of proton transfer,25, 26 hydrogen 

bonds,27-29 or other strong solute-solvent interactions. Setting up QC calculations of explicitly 

solvated molecules usually involves multiple steps, including building the structure of the solute 

molecule in a solvent box, generating a customized force field for solute/solvent, running 

molecular dynamics (MD) simulations at molecular mechanical (MM) and hybrid quantum 

mechanical and molecular mechanical (QM/MM)30-34 level of theories to obtain equilibrated 

solvation configurations, and the final QC calculation of molecular properties for the 

microsolvated molecule extracted from the solvent box. Software toolkits that can automate the 

procedure to set up high-throughput explicit-solvent QC calculations for arbitrary solute molecules 

in an open-source framework are still scarce. Representative works in this area include the 

systematic microsolvation approach developed by Reiher and coworkers35 based on stochastic 

structure generation and geometry optimization, and the ABCluster global optimization algorithm 

by Zhang and coworkers.36, 37 

In this article, we introduce an efficient and flexible approach to the rapid generation of QC 

molecular property data sets for explicitly solvated molecules in our open-source AutoSolvate 

toolkit.38 This streamlined procedure enables automated structure and force field parameter 
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generation, MD simulation input file preparation, and job execution. In sections II and III, we 

provide a description of the code layout and the detailed routines involved in (i) explicitly solvated 

structure generation and MD parameter preparation, (ii) MD simulation automation, and (iii) post-

processing and QC calculation. We then present benchmarking results of our approach over a 166-

molecule test set. Finally, we provide the conclusions and outlook for our software toolkit. 

II. CODE OVERVIEW 

The developed software toolkit (AutoSolvate38) is an open-source workflow that facilitates high-

throughput QC calculation of explicitly solvated molecular systems. It incorporates solvated 

structure and force field generation, automated set up and execution of MD equilibration and 

QM/MM solvation configuration sampling, and post-processing (automated extraction of 

microsolvated structure for QC calculations) (Fig. 1). The software is designed to support the 

calculation of arbitrary organic solute molecules in a variety of commonly used solvents, with the 

flexibility to accept user-provided solvents with customized force field parameters. Although 

currently focused on organic solute molecules, it can be easily extended to treat organometallic 

compounds in the near future. Our structure generation tools are designed to generate high-quality 

initial solvated structure by using automatically recommended solute-solvent closeness aware of 

the chemical features of different solute-solvent combinations. In addition to a command-line 

version, AutoSolvate is available through a graphical user interface (GUI) to make the code 

accessible to the broader scientific community. 
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FIG. 1. Overview of AutoSolvate workflow. 

III. CODE ARCHITECTURE 

The AutoSolvate38 code is written in Python 3.8, a modern high-level programming language 

that is widely used in the computational chemistry community. The AutoSolvate program uses a 

few open-source toolboxes for structure and force field parameter generation, including 

OpenBabel39 to convert between chemical formats, Packmol40 to pack solvents around the solute 

molecule, and AmberTools 2040 to generate force field parameters for organic solute molecules. 

Portability of the code is maintained by including a conda environment41 YAML file42 in the 

releases, which ensures all dependent packages get automatically installed regardless of the 

operating system. Users may install the AutoSolvate toolkit on any Linux-based or Windows 

platform where the conda environment is available.  

The user interacts with AutoSolvate in one of three ways: import as a Python Application 

Programming Interface (API), run through the command-line interface (CLI), or a graphical user 

interface (GUI). The GUI has been developed using the Python package Tkinter,43, 44 and the 

solute

solvent
charge fitting
FF generation

(ii) MD equilibration & sampling

solvent box generation

(i) Structure & input file generation

(iii) cluster extraction  
QC calculation

+

solute

solvent

heat up

configuration samplingconfiguration sampling

baro-equilibrationbaro-equilibration

thermo-equilibrationthermo-equilibration



 6 

Python bindings for Tcl/Tk.45 The GUI enables a user-friendly interface for building solvated 

molecular systems in a manner intended to be intuitive for the broader scientific community.  

The toolkit consists of three main modules (Fig. 2) described in greater detail in the rest of this 

article: 

(1) The structure and force field generation module.  

(2) The MD simulation preparation and execution module. 

(3) The extraction of microsolvated clusters for QC calculations. 

Although the modules are designed to work together, each module can be called independently 

by the user to satisfy their special needs.  

 

FIG. 2. Flowchart for AutoSolvate code. 

A. Solvated structure and force field generation 

The structure and force field generation module is the central core of AutoSolvate. This module 

generates the essential explicit solvent model files, the foundation for subsequent MD simulation, 
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protein data bank (PDB)46 file of a given solute molecule solvated in a large solvent box, the 

corresponding Amber parameter-topology (.prmtop) file, and the input coordinate (.inpcrd) file. 

1. General approach 

In the general solvated structure and force field generation approach, the user only needs to 

specify (i) a solute molecule xyz coordinate file, (ii) solute molecule charge and spin-multiplicity, 

and (iii) the solvent name as the minimal input. Using this user input (example CLI and GUI input 

shown in Fig. 3), the code then automatically generates the PDB file of the solvent box and the 

corresponding Amber parameter-topology file (.prmtop) and input coordinate files (.inpcrd). The 

user can specify additional input options to customize the generation results further. Detailed 

mechanisms and customizations are explained as follows.  

 
Fig. 3. Example solvent box structure and force field generation in GUI (upper left, right) or CLI 
(lower left). When using the GUI, the user enters from the main window (upper left), selects the 
task, and gets prompted to the structure generation window (right).  

2. Solute force field generation  

The user-provided solute molecules can be any organic molecule of any size, generally a non-

standard residue for Amber force fields.47 Hence, generating customized force fields of the solute 

is an indispensable step to generate the parameter-topology file for the solvated structure. 
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Specifically, the atomic charges are a set of essential parameters not readily available in the 

generalized Amber force field (GAFF)48 and must be provided by the user. To simplify the 

procedure of selecting options and executing different modules of AmberTools (antechamber,49 

parmchk) to generate solute force field parameters, AutoSolvate automatically makes decisions 

for the user based on the nature of the solute (Fig. 4). If the solute molecule is open-shell (spin-

multiplicity > 1), atomic charge fitting is not supported by the semi-empirical charge methods 

contained in antechamber and must be calculated with restrained electrostatic potential (RESP)50, 

51 charge fitting using external QC packages. AutoSolvate will automatically generate the needed 

input files and execute external QC packages (Gaussian 1652 by default) to generate the 

electrostatic potential file, which is then fed to antechamber for RESP charge fitting. If the 

molecule is closed-shell (spin-multiplicity =1), AutoSolvate will directly call antechamber to do 

the semi-empirical AM1-BCC53 charge fitting. The generated atomic charges, together with the 

input solute structure information, will be stored in Tripos mol2 file format,54 which is sent to 

parmchk to check for missing force field parameters in the GAFF force field, and to generate the 

force field modification files (.frcmod) needed for the final prmtop file generation of the solvated 

structure. 
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Fig. 4. Flowchart for automated solvated structure and force field generation. (left) Solvent force 

field parameter preparation steps for the cases with (solid path) and without (dashed path) pre-

equilibrated solvent box. (right) Solute force field parameter preparation steps. 

3. Solvent box generation  

Currently, AutoSolvate supports two ways to generate a solvent box surrounding the solute 

based on the availability of pre-equilibrated solvent boxes and corresponding force fields in 

AmberTools (Fig. 4). For common solvents readily available in AmberTools/tleap [TIP3P water, 

methanol, chloroform, and N-methylacetamide (NMA)], the code prioritizes direct usage of pre-

equilibrated solvent boxes. The code automatically generates the tleap commands that build the 

structure of the solute immersed in the pre-equilibrated solvent box. Subsequent execution of tleap 

simultaneously generates the solvent box PDB structure, and its parameter-topology (.prmtop) and 

input coordinates files (.inpcrd) needed for MD simulation (Fig 4, path indicated by solid line). 
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For solvents not readily available in AmberTools [e.g. acetonitrile (MeCN)] and have no existing 

pre-equilibrated solvent box library (.off) file, the code first calls packmol55 to pack the solute and 

solvent molecules in a box of the desired size, yielding a PDB file. Then the code generates the 

tleap commands that use the PDB file and the custom solvent force field parameters stored within 

AutoSolvate package to generate prmtop and inpcrd files (Fig 4, path indicated by dashed line). 

Furthermore, the users can also provide custom solvent library file (.off) and force field 

modification file (.frcmod) to enable the generation of structures solvated in other solvents not 

included in AutoSolvate. Custom solvent parameter files can be downloaded from databases such 

as the Amber Parameter Database,56 or be found from literature. 

4. Automated recommendation of solvent-solute closeness  

Despite the different software (tleap vs. packmol) used in the two approaches to packing solvent 

boxes around the solute, both request an input parameter to control the distance, 𝑑!,# , between a 

solute atom, a, and a solvent atom, b. For packmol, the parameter is a tolerance, 𝑑$%&, where 

𝑑!,# ≥ 𝑑$%&. (1) 

We can see that 𝑑$%& is the minimum allowed distance between any solute atom and any solvent 

atom, which we refer to as the solvent-solute closeness hereafter. For tleap, the parameter is a 

scaling coefficient, s, where 

𝑑!,# ≥ (𝑅'()! + 𝑅'()# + ⋅ 𝑠, (2) 

and 𝑅'()!  represents the van der Waals radius of atom a. Obviously, s and 𝑑$%& are closely related 

and can be converted to each other. The solvent-solute closeness (𝑑$%&) impacts the generated initial 

structure's quality and thus influences the efficiency of the subsequent MD equilibration process. 

However, 𝑑$%& is not intuitive for users without prior experience simulating the specific solvent-

solute system. To avoid bias and errors in setting an arbitrary default value of solvent-solute 
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closeness, we developed an automated approach to estimate 𝑑$%& based on existing simulations in 

our database. This automatically estimated 𝑑$%& can generate initial structures with solvent-solute 

closeness more similar to that determined from equilibrated trajectories. Detailed implementation 

mechanisms are shown in Section V. 

B. Simulation automation 

Once the parameter-topology file and coordinates of the solvated box are generated, MD 

simulations are needed to further equilibrate the structure to reach desired experimental 

environment (temperature and pressure condition) where the molecular properties of interest are 

measured. After equilibration, additional MD simulations at MM or QM/MM level are performed 

for configuration sampling, generating production trajectories used for final solvated cluster 

extraction and QM property prediction. In this subsection, we describe how AutoSolvate 

automates different stages of the simulations. 

1. Classical MD simulation automation 

The classical MD simulation of the solvated system in the periodic box is composed of the 

following stages: energy minimization, heating the system from 0 K to the target temperature with 

a Langevin thermostat, pressure equilibration to the target pressure with a Berendsen barostat, and 

an optional stage for MM NVE production dynamics. For each of these simulation steps, 

AutoSolvate generates the input file for Amber, together with the Linux command line needed to 

execute Amber to perform the simulation. As a minimal input requirement, the user only needs to 

provide the charge, multiplicity, and file name of the prmtop and inpcrd files. AutoSolvate has set 

default values for simulation temperature, pressure, and the number of steps for each stage of the 

classical MD simulation. The users can also customize the simulation details for each stage from 
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the CLI or GUI. In the GUI, all entries are pre-populated with default settings, which guides 

beginner users through different simulation stages in an intuitive way (Fig 5).  

 
Fig. 5. Example MD automation in GUI (upper left, right) or CLI (lower left). When using the 
GUI, the user enters from the main window (upper left), selects the task, and gets prompted to the 
MD automation window (right). 

2. QM/MM simulation automation 

The QM/MM simulation automation is currently set up for the Amber/TeraChem interface. It 

comprises the following simulation stages in the order of execution: QM/MM energy minimization, 

heating the system to the target temperature with a Langevin thermostat, NVT constant-

temperature equilibration, and NVE production dynamics. The QM region only includes the solute 

molecule by default. The users can customize the simulation details (e.g., number of MD steps, 

temperature, pressure) for each stage from the CLI or GUI (Fig 5). Any stage can also be opted 

out if the user sets the number of steps to be 0, allowing flexible control of the workflow. The 

entire QM/MM simulation can also be skipped if the user has no access to QM/MM calculation 
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packages or prefers to do MM dynamics only. For each of these simulation stages, AutoSolvate 

generates the input file for Amber/TeraChem, together with the Linux command line needed to 

trigger the Amber/TeraChem interface to perform the simulation. As a minimal input requirement, 

the user only needs to specify the charge, spin multiplicity, and the quantum mechanical (QM) 

method needed for the QM region, and AutoSolvate has set default values for simulation 

temperature, pressure, and the number of steps for each stage of the QM/MM simulation.  

C. Microsolvated cluster extraction and QC calculation 

The number of explicit solvent molecules included in the MM or QM/MM configuration 

sampling is usually very large (thousands or even more), and the direct inclusion of all explicit 

solvents into the final QC calculations is computationally infeasible. Instead, a commonly used 

approach is to perform QC calculations on a microsolvated cluster with a small number of explicit 

solvent molecules closely interacting with the solute. AutoSolvate simplifies this post-processing 

step by providing a simple interface that extracts microsolvated clusters of given solvent shell size 

and saves them into the xyz file format widely recognized by QC packages. As a minimal input, 

AutoSolvate only asks for the file names of the prmtop file name, the MD trajectory (.netcdf) file 

name, and the desired thickness of the solvent shell. It is worth noting there are two widely-used 

approaches for microsolvated structure extraction: the "solvent sphere" extraction based on a cutoff 

for the minimum distance between the center of the solute to any atom in the solvent, and the 

"solvent shell" extraction based on a cutoff for the minimum distance between any atom of the 

solute to any atom in the solvent (Fig. 6). We use the latter "solvent shell" extraction because, for 

a general solute molecule whose shape deviates from a sphere, the former "solvent sphere" 

extraction can result in uneven solvation of different regions of the solute (Fig. 6). Users can also 

specify the ID of the first frame to extract (with some initial equilibration MD steps discarded) and 
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the extraction interval (number of MD steps between two extractions) from the CLI or GUI (SI 

Fig. S1). 

For the final QC calculations, the users can either directly run a specific QC package with the 

generated xyz files or load the xyz files into QCENGINE5 to enable sophisticated QC workflow at 

different levels of theory across many different QC packages. 

 

Fig. 6. Comparison of the solvent sphere (upper) and solvent shell (lower) extraction approaches 
for a representative non-spherical solute, b-carotene. In both approaches, 559 explicit water 
molecules are extracted, forming a sphere of 16.000 Å radius around the solute center of mass in 
the sphere extraction (left) and a solvent shell of 9.365 Å thickness around the solute (right). 

IV. COMPUTATIONAL DETAILS 

We use 166 organic redox couples from the ROP31357 data (structures available in SI) set to 

demonstrate the use of AutoSolvate38 for automating QC calculations of explicitly solvated 

molecules, and to analyze the dependence of solute-solvent closeness on solvent and solute 

identities.  Throughout this paper the oxidized charge states of the ROP313 data set are used. We 

use AutoSolvate to generate the solvated structures of the benchmark set, together with input files 

needed for classical MD and QM/MM simulations. The solvated boxes are first minimized for 
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maximum 2000 steps at the MM level of theory. The systems are then slowly heated to the desired 

temperature (default 300 K) over 20 ps with a Langevin thermostat with a collision frequency of 

2 ps-1 and a nonbonded cutoff of 8 Å. Finally, the systems are pressure equilibrated under NPT 

conditions to the desired pressure (default 1 bar) over 600 ps with a Berendsen barostat with a 

pressure relaxation time of 1 ps. This long pressure equilibration is chosen to improve the density 

on the interface between the solute and solvent, which is critical for the explicit redox potential 

calculation (SI Fig. S2). The resulting pressure-equilibrated system is the initial structure for the 

QM/MM simulation with Amber/TeraChem, where the QM region is then treated with B3LYP-

D358/6-31G*, and the MM region is the explicit solvent. The QM/MM simulation involves an 

initial energy minimization (250 steps) to remove potential unexpected bond-breaking of the solute 

due to the abrupt switch from MM to QM description, followed by 0.5 ps of temperature 

equilibration with Langevin thermostat at 298.15 K with a collision frequency of 5 ps-1. The 

following 5 ps of QM/MM trajectories under NVT conditions are used for production 

configuration sampling.  

To demonstrate the applicability of this open-source tool, we investigate the outer-sphere 

contribution to the reorganization energy. The protocol to calculate reorganization energy is 

available in our previous publication.59 Explicit solvent configuration sampling is performed for 

the reduced and oxidized charge states of the aforementioned 166 benchmark systems with 

AutoSolvate, and 200 snapshots of optimal solvent shell size of 4 Å  are extracted from the 

equilibrated 5 ps of QM/MM trajectory. The C-PCM implicit solvent as implemented in TeraChem 

was then applied around these microsolvated clusters to estimate the energy gap between the two 

charge states with B3LYP-D358/6-31G*. The use of C-PCM around the microsolvated cluster 

ensured converged energy gap at a small solvent shell size and saved computational time, as shown 
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in our previous work.59 Reorganization energy was successfully obtained for 151 out of the 166 

benchmark systems, excluding 15 unconverged systems (listed in SI Text S1). 

V. RESULTS AND DISCUSSION 

In this section, we will utilize AutoSolvate to investigate the relationship between solvent/solute 

identities and solvent-solute closeness (𝑑$%&), generating a machine learning model that predicts 

𝑑$%& and guides explicitly solvated calculations. We will first explore two distribution functions to 

quantify 𝑑$%& given the QM/MM trajectory of an explicitly solvated system and compare their 

performance in identifying different solvent layers. Using the optimal minimum distance 

distribution function, we will analyze the trajectories of our AutoSolvate benchmark set with 166 

unique organic solutes immersed in different solvents. We will then investigate the dependence of 

𝑑$%& on solute and solvent identities, generating a machine learning (ML) model that predicts 𝑑$%& 

in MeCN solution based on molecule structure. Finally, we will also demonstrate that Autosolvate 

enables high-throughput calculation of complex properties such as the outer-sphere contribution 

to the reorganization energy of redox reactions from QM/MM trajectories. 

A. Analysis on solvent-solute closeness. 

As discussed in Section IIIA4, the solvent-solute closeness (𝑑$%&) is an important parameter to 

control the generation of the explicitly solvated structure. Here we calculate two different 

distribution functions based on the MD trajectory of an explicitly solvated molecule and compare 

their performance in characterizing solvent layers and 𝑑$%&.  

The radial distribution functions (RDFs) are the most fundamental distribution functions used to 

investigate the interactions between the components of a liquid. In the simple case where the solute 

structure is approximately rotationally symmetric, the location of solvent layers can be determined 

from the RDF of solvent molecules around the solute center. However, the RDFs have several 
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obvious limitations when characterizing 𝑑$%& due to its ignorance of solute shape and size. First, 

most explicit-solvent generation algorithms (see Section IIIA4) focus on the minimum distance 

between any solvent atom and any solute atom. This distance is not directly comparable the 

distance defined in RDF, which describes the distance from the solute center of mass to solvent. 

Second, the solvent layer positions determined from the RDF, 𝐺(𝑟), are not directly comparable 

between systems with differently sized solutes, because the RDF peaks can shift with the solute 

size. A simple fix to these two problems is to introduce a shifted RDF,		

𝐺*+,-$./(𝑑) = 𝐺(𝑟) = 0
123!

∆5
∆3
, (3)

where  𝑑 = 𝑟 − 𝑟*%&6$.  estimates the distance to the solute surface, 𝑟*%&6$.  is the approximate 

radius of the solute (detail available in SI Text S2), Δ𝑛 is the number of atoms in the spherical 

shell with a radius 𝑟 to 𝑟 + ∆𝑟 measured from the solute center of mass, and the scaling factor c 

ensures 𝐺*+,-$./(bulk) = 1 (Fig. 7). However, 𝐺*+,-$./(𝑑) still does not take care of the solute 

structure complexity, which is often non-spherical.  

In contrast, the minimum distance distribution function (MDDF)60-62 calculates the closest 

distance between a solvent molecule and the solute. In this work, we introduce an estimated form 

of MDDF to simplify the analysis, given by  

MDDF(𝑑) =
𝑐

𝐴(𝑑)
∆𝑁
∆𝑑

≈
𝑐

4𝜋(𝑑 + 𝑟*%&6$.)7
∆𝑁
∆𝑑

. (4) 

Here, 𝐴(𝑑) is the surface area of the irregular-shaped cavity where d is the distance to the solute 

surface, Δ𝑁 is the number of atoms in the non-spherical shell with a distance between 𝑑 to 𝑑 + ∆𝑑 

measured from the solute surface, and the scaling factor c ensures that MDDF(bulk) equals to 1. 

Compared to the original MDDF definition, we substitute the surface area 𝐴(𝑑)  with the 

approximated area 4𝜋(𝑑 + 𝑟*%&6$.)7 , but the results are almost identical (SI Fig. S3). The 
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differences in the definitions of 𝐺*+,-$./ and MDDF are illustrated in in Fig. 7. To compare the 

performance of  𝐺*+,-$./ and MDDF, we use both methods to analyze the 5 ps long equilibrated 

QM/MM trajectory of system 11 (Fig. 7). Both 𝐺*+,-$./ and MDDF show that the closest solvent 

molecules start to present at about 2 Å. The first solvent layer peaks at 𝑑 = 4	Å for 𝐺*+,-$./ and 3 

Å for MDDF. The different locations of the first peak can be explained by the more accurate 

counting of atoms with a given distance to the solvent surface with MDDF. The second and third 

solvent layer peaks at around 6 Å and 9 Å, respectively, for MDDF, but the 𝐺*+,-$./ plot is too 

noisy to reliably confirm the location of the two solvent layers. This result shows that MDDF is 

more accurate then 𝐺*+,-$./ in analyzing solvent layers, and we will use MDDF in the next sections 

to calculate the 𝑑$%& of our benchmark data set generated with AutoSolvate.  

 

Fig. 7. (left) Illustration of the definitions of the shifted radial distribution function (Gshifted) v.s. 
the minimum distance distribution function (MDDF). Here, r is the distance from the solute center 
of mass, rsolute is the approximated solute radius, d is the distance from a solvent to the closest 
solute atom, Δn is the number of atoms in the spherical shell with a radius r to r+ Δr, and ΔN is 
the number of atoms in the non-spherical shell with a distance d to d+ Δd measured from the solute 
surface. (right) The solvent layer positions for ROP313 system 11 characterized by Gshifted and 
MDDF. The inset shows the microsolvated structures with increasing solvent layer size of 0, 4 and 
8 Å. 
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As discussed in Section IIIA4, the solvent-solute closeness (𝑑$%&), is an important parameter for 

initial solvation structure generation. In general, 𝑑$%&  is system-dependent and needs to be 

determined from the MD trajectory of the equilibrated system. For practical initial structure 

generation, 𝑑$%& is often heuristically estimated because of the lack of an existing MD trajectory of 

the specific solute-solvent pair. The deviation from the equilibrated 𝑑$%& needs to be corrected 

through a longer MD equilibration process. Here we seek to solve this problem with ML. We 

reveal the correlation between solute/solvent identities and 𝑑$%&  based on the large data set of 

equilibrated QM/MM trajectories of solvated molecules generated with AutoSolvate and build a 

ML model to predict 𝑑$%& for any solvent-solute pair. In this section, we reveal the dependence of 

𝑑$%& on solute identity assuming the solvent is unchanged. In Section VC, we will further reveal 

the dependence of 𝑑$%& on the solvent. 

We curated a 𝑑$%& data set for the oxidized charge states of 166 benchmark systems (see section 

IV) solvated in MeCN, with 𝑑$%&  estimated as the lowest distance to the solute surface where 

MDDF(𝑑$%&) ≥1. The data set is split with a 50:50 train-test ratio, and a Gradient Boost63 ML model 

is trained to predict 𝑑$%& based on solute features including the SOAP64 descriptor generated by 

DScribe65 and the solute net charge. A low mean absolute error (MAE) of 0.09 Å is achieved for 

the 83 test set systems (Fig. 8). Statistics of the 𝑑$%& values of the test set also reveal a chemically 

intuitive correlation between 𝑑$%& and solute structure (Fig. 8). The 𝑑$%& value varies from 1.6 to 

2.6 Å for the test set solutes, where the solutes with -OH or -SH functional groups have a noticeably 

smaller 𝑑$%& than the rest of the solutes (Fig. 8). This observation can be explained by the formation 

of hydrogen bonds between the -OH or -SH groups of the solute with the polar solvent, MeCN. 

Details about the 𝑑$%& data set, input features, ML model hyperparameters, and the trained ML 

model are available in Supporting Information (Text S3 and SI.zip). We also investigated how 𝑑$%& 
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changes as a function of simple solute properties like number of atoms, but the correlation is much 

weaker compared to the ML model results (SI Fig. S4 and S5). 

 

Fig. 8. Predicted ML learned 𝑑$%& compared with the 𝑑$%& obtained from the QM/MM trajectories 
for 83 systems in the test set. Here, 𝑑$%& is the minimum distance between any atom of the solute 
and any atom of the solvent. The x markers indicate systems with -OH or -SH functional groups, 
otherwise the systems are shown as circle markers. The red marker colors indicate higher Kernel 
density estimation for the data points. 

C. Dependence of solvent-solute closeness on solvent  

In this section, we reveal the dependence of 𝑑$%& on the solvent. We curated a 𝑑$%& data set for 

16 benchmark solute molecules (see section IV) solvated in five solvents with different dielectric 

constants, ε. Statistics on this data set show that 𝑑$%&  significantly decreases as the solvent ε 

increases (Fig. 9), in agreement with our intuition that polar solvents (with higher ε) interact more 

strongly with the solute. It is worth noting that this trend applies to all solutes in the set, as all data 

points shifted to lower 𝑑$%& values when the solvent changes from chloroform to water (Fig. 9). 

However, relative 𝑑$%& values of solvents with similar ε (methanol, MeCN, and NMA) cannot be 

well predicted by this simple 𝑑$%&-ε relation and need more sophisticated ML models trained on 

larger data sets with diverse solvent species. We have implemented automated 𝑑$%& 
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recommendation based on the simple 𝑑$%&-ε relation and will further improve this functionality 

with advanced ML models when more training data become available. 

 
Fig. 9. The dependence of solvent-solute closeness (𝑑$%&) on the solvent identity for a data set of 
16 solutes selected from ROP313 data set. For each of the 5 investigated solvents, the average, 
minimum and maximum 𝑑$%& values are illustrated by the box plot.  

D. Application on reorganization energy calculation 

To demonstrate the promise of AutoSolvate for chemical discovery efforts, especially the rapid 

data set curation of complex solution-phase molecular properties, we calculated the outer-sphere 

contribution to the reorganization energy66 for the 166 benchmark redox couples based on 

QM/MM trajectories generated by AutoSolvate. Based on the Marcus theory of electron transfer, 

the reorganization energy, 𝜆, is defined as the energy cost required to rearrange the molecules and 

the dielectric environment upon this change of charge.66  

𝜆 = 𝜆8 + 𝜆9 (5) 

where 𝜆, is the inner-sphere contribution due to the solute nuclear rearrangement alone, and 𝜆% is 

the outer-sphere contribution due to the surrounding solvent. There are various approaches67, 68 to 

calculate 𝜆, 𝜆,, and 𝜆% from MM,69 QM,70, 71 or QM/MM72, 73 calculations in implicit70, 71, 74, 75 or 
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explicit72, 73 solvent models, or from experimental spectrum data.76, 77 Specifically, 𝜆% is usually 

thought to be less easily calculated.74, 75, 78 

We calculated 𝜆 within the limit of linear response approximation, where 𝜆 is estimated in terms 

of the thermal fluctuations of energy gaps between the two charge states:  

𝜆:;< =
𝜎%=.7 + 𝜎<./.7

4𝑘?𝑇
. (6) 

Here, 𝑘?  is the Boltzmann constant, T is the system temperature, and 𝜎 is the variance of the 

vertical energy gap calculated from the oxidized state QM/MM trajectory (𝜎%=.) or the reduced 

state trajectory (𝜎<./.). The superscript “var” indicates that 𝜆 is calculated based on variance. We 

then calculated the inner-sphere contribution, 𝜆,:;<, using the same approach based on the same set 

of QM/MM trajectories, but the vertical energy gap was calculated on the solute structures only. 

The outer-sphere contribution, 𝜆%, is thus calculated as  

𝜆% = 𝜆:;< − 𝜆,:;<. (7) 

 The outer-sphere contribution to the reorganization energy, 𝜆%/𝜆, is reported to span a wide 

range. The 𝜆%/𝜆  values of 9 organic and organometallic dye molecules in MeCN solution 

calculated with implicit solvent model by Vaissier and coworkers range from 64% to 89%.70 

Another implicit solvent calculation study by Buda showed that values of 35%-100% can be 

observed for smaller organic molecules in various organic or aqueous solvents.79 In contrast, the 

𝜆%/𝜆 values determined by experimental spectroscopy for 1st-row transition metal ions in aqueous 

solution are in a significantly lower range of 11%-39%.77  

Despite the wide range of 𝜆%/𝜆 values reported, most computational studies of 𝜆% focus on a 

small set of systems, or use implicit solvent calculations based on geometry-optimized structures 

without configuration sampling, due to computational challenge in QM or QM/MM configuration 

sampling for a large number of explicitly solvated systems. In this work we efficiently calculated 
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the 𝜆%/𝜆 ratio for a larger, diverse benchmark data set of 166 explicitly solvated systems and 

obtained converged results for 151 (SI Text S1). The obtained 𝜆%/𝜆 values range from 0% to 40%, 

with an average of 14% (Fig. 10). This range is on the lower end of the abovementioned 

computational literature results, but the solutes investigated in our data set are different, and our 

calculations are based on explicit solvent configuration sampling instead of implicit solvent-based 

protocol.70, 79 In addition, the outer-sphere contributions in Fig. 10 could be overestimated due to 

using non-polarizable solvent force field, which often underestimates the impact of solvent 

polarization.67 The lowest 𝜆%/𝜆 ratio is found in iodobenzene, and the highest contribution in 

naphthalene (Fig. 10). The higher outer-sphere contribution for naphthalene can be explained by 

the high rigidity of this solute, which limits the inner sphere contribution.  

 

 
Fig. 10. Histogram of the ratio of outer-sphere contribution to the reorganization energy, 𝜆%/𝜆,	for 
151 converged OROP benchmark solute molecules in MeCN solvent calculated based on QM/MM 
trajectories. Representative solute molecules with maximum and minimum 𝜆%/𝜆 values are shown 
in the inset. Systems with unphysical values below 0% are not shown (listed in SI Text S1).  
Structures of two systems with the lowest (iodobenzene) and highest (naphthalene) 𝜆%/𝜆 ratios are 
shown in the inset. 

E. Limitations and future directions 
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The AutoSolvate workflow currently depends on three computational molecular science 

packages: AmberTools for classical MD, Gaussian for RESP charge fitting needed for solute force 

field generation, and TeraChem for QM/MM configuration sampling. In the future, we will 

improve AutoSolvate’s interoperability with different MD and QC packages, and therefore extend 

its functionality and applicability. First, the RESP charge fitting for solute force field generation 

will be extended to use various QC packages, especially open-source packages, such as 

GAMESS80 and PSI481. An alternative approach is to interface with the PyRED82-84 program, 

which will allow automated RESP charge fitting for metal-containing molecules and consideration 

of molecular orientation. Second, the MD simulation automation can be extended to support the 

GPU-accelerated open-source MD package OpenMM85, which supports many different force 

fields formats, including Amber, CHARMM86, and GROMACS87. Finally, we aim at extending 

the QM/MM automation to support more QM/MM interfaces, especially the ones with polarizable 

force fields. This extension will improve the accuracy of the AutoSolvate workflow in predicting 

many important molecular properties, such as redox potential and UV/Vis absorption/fluorescence 

spectrum. 

VI. CONCLUSIONS 

Rapid curation of computational molecular property data sets is crucial for AI design and 

discovery for chemistry in the solutions phase. However, high-throughput explicit-solvent QC 

calculations were previously hampered by the complicated preparation steps involving solvated-

structure generation, force field fitting, configuration sampling, and microsolvated cluster 

extraction. To overcome these obstacles, we developed AutoSolvate, an open-source toolkit that 

streamlines the workflow and enables the seamless generation of microsolvated cluster 

configurations that can be readily used for QC calculations. Specifically, we aimed at automated 
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estimation of the solute-solvent closeness, a crucial parameter to control the initial structure 

generation of explicitly solvated systems. We investigated the dependence of solute-solvent 

closeness on solute identity and trained a ML model to predict solute-solvent closeness for 

different solutes in MeCN solvent. We also found that solvent-solute minimum distance decreases 

as the solvent dielectric constant increases, matching the intuition that polar solvents interact more 

strongly with solutes. Finally, we tested the capability of AutoSolvate for rapid data set curation 

by calculating the outer-sphere reorganization energy of a large data set of redox couples, which 

demonstrated the promise of the AutoSolvate package for chemical discovery efforts. In future 

versions of this package, we will further improve the interoperability of AutoSolvate workflow 

with more MD and QC packages, making it a helpful tool for the molecular AI design and 

discovery community to investigate chemistry in the solution phase. 

VII. EXTERNAL MATERIAL 

AutoSolvate software repository is available at https://github.com/Liu-group/AutoSolvate, and 

the documentation is available at https://autosolvate.readthedocs.io/. The program remains in 

active development. Production computations are underway using many features of the software, 

and test suites are expected to pass. However, users are encouraged to contact the developers as 

they venture afield of the verified tests. 

SUPPLEMENTARY MATERIAL 

See the supplementary material for calculation of solute average radius, cluster extraction in GUI 

and CLI, solvent-solute center distance and closeness vs. system size, NPT MM density 

equilibration, MDDF approximation validation, unconverged benchmark systems and systems 

with unphysical 𝜆%/𝜆  excluded from the 𝜆%/𝜆  histogram, ML hyperparameters, and data and 

machine learning model file description (PDF). 
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Input features of 166 benchmark solutes, 𝑑$%& of the 166 benchmark solutes in MeCN, 𝑑$%& of a 

subset of 16 solutes in 5 solvents, reorganization energies for the 151 converged systems, ML 

model pkl file, and example python script to use ML model (ZIP). 
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