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ABSTRACT: Catalytic hydrogenation of esters is a sustainable 

approach for the production of fine chemicals, and pharmaceutical 

drugs. However, the efficiency and cost of catalysts are often the 

bottlenecks in the commercialization of such technologies. The 

conventional approach of catalyst discovery is based on empiricism 

that makes the discovery process time-consuming and expensive. 

There is an urgent need to develop effective approaches to discover 

efficient catalysts for hydrogenation reactions. We demonstrate 

here the approach of machine learning for the prediction of out-

comes for the catalytic hydrogenation of esters. Our models can 

predict the reaction yields with high mean accuracies of up to 91% 

(test set) and suggest that the use of certain chemical descriptors 

selectively can result in a more accurate model. Furthermore, cata-

lysts and some of their corresponding descriptors can also be pre-

dicted with mean accuracies of 85%, and >90%, respectively. 

The catalytic hydrogenation of esters to alcohols is an atom-

economic and sustainable approach in organic synthesis with 

significant applications in the production of various fine chem-

icals such as detergents, cosmetics, flavors, fragrances, and 

pharmaceutical drugs.1 The concept has also been expanded to 

the hydrogenation of polyesters to enable a circular economy.2 

In the past, several homogeneous and heterogeneous catalysts 

have been developed, among which well-defined ruthenium 

complexes represent the state-of-the-art catalysts for the hydro-

genation of esters to alcohols.1,3 However, most of such cata-

lysts exhibit low TONs (e.g. < 200), and operate under harsh 

conditions (e.g. temperature > 100 oC, and pressure > 20 bars) 

making this approach expensive and incompatible for mole-

cules containing other sensitive or reducible functional groups. 

Thus, the true utilization of hydrogenation methodology relies 

on finding an optimum catalyst that can hydrogenate an ester 

with high activity and selectivity and under mild conditions 

(e.g., room temperature, and ambient pressure). Our current 

conventional approach of catalysis development partly fails to 

achieve this due to its multiple limitations such as (a) empirical 

screening of several parameters such as solvent, temperature, 

pressure, time, additive, etc. can only be limited to certain ex-

tent; (b) syntheses of well-defined ruthenium catalysts often in-

volve complex multi-step processes limiting the scope of com-

plexes that can be studied, (c) lack of mechanistic 

understanding of new complexes limits its application in catal-

ysis, and (d) intrinsic limitation of the human brain to find a 

pattern in large data collection restricts us to a smaller dataset. 

Chemoinformatics provides an attractive alternative to the con-

ventional empirical approach. Although a mechanistic under-

standing of the underlying class of reactions can be highly ben-

eficial in such a venture, one can often find patterns in large 

datasets of chemical reactions even without this. This can be 

accomplished by deploying novel machine-learning methodol-

ogies and architectures tailored to such applications.4 This can 

facilitate the discovery of desirable catalyst designs and cata-

lytic conditions, bypassing the complexity of empirical synthe-

sis and screening. 

Although powerful, the application of the tool of machine 

learning (ML) for the discovery of molecular catalysts is in its 

nascent phase and growing. A few reports have been published 

on the development of predictive models for catalytic reactions 

using various machine learning architectures dictated by the na-

ture of the reaction, molecular catalyst, and available dataset. 

For example,  Kozlovski utilized Quantitative Structure Selec-

tivity Relationship (QSSR) models for the prediction of the cat-

alytic alkylation of aldehydes using beta-amino alcohol cata-

lysts.5 Sigman and co-workers have developed predictive mod-

els for several asymmetric catalytic reactions using multivariate 

regression models.6–15  Along this direction, Doyle, and co-

workers have used a random forest model to predict the yield of 

catalytic C-N cross-coupling reactions.16 Denmark has recently 

reported a computationally guided workflow and a highly accu-

rate predictive model for chiral phosphoric-acid catalysed thiol 

addition to N-acylimines using deep feed-forward neural net-

works.17 A predictive model for the asymmetric hydrogenation 

of alkenes and imines catalysed by chiral binapthyl catalysts has 

been recently reported by Sunoj where a root-mean-square error 

(rmse) of about 8.4 ± 1.8 % (enantiomeric excess) was obtained 

using a random forest model.18 

Considering the contemporary interests in developing sus-

tainable catalysts for the hydrogenation of esters, we report here 

the application of ML to predict the outcome of ester hydro-

genation using well-defined ruthenium catalysts. Our approach 

involves the following three steps: (1) dataset construction, and 

exploratory data analysis, (2) creation of chemical descriptors 

for catalysts, and esters, and (3) development of predictive 



 

models using ML frameworks such as neural networks (NNs), 

and Gaussian processes (GPs).   

1. Dataset construction: We created a dataset of reactions in-

volving hydrogenation of esters by well-defined ruthenium 

complexes from existing (peer-reviewed) literature. This choice 

is guided by two factors. Firstly, homogeneous ruthenium cata-

lysts are known for their high activity towards hydrogenation of 

esters making this family a suitable choice for potential superior 

catalysts. Secondly, substantial research outputs in the past on 

several types of ruthenium catalysts present systematic data 

needed for ML studies. Only those examples have been in-

cluded in the dataset where the structure of ruthenium catalysts 

are well-defined, and they operate under neutral or basic condi-

tions. Mechanistically, all the catalysts (with a few exceptions) 

have been proposed to operate via non-redox metal-ligand co-

operation. Thus, our dataset consists of 460 hydrogenation re-

actions involving 85 ruthenium catalysts and 114 esters (Figure 

1). Each reaction or datapoint is characterized by 12 parameters 

– catalyst structure, ester structure, amount of ester (mmol), cat-

alyst loading (mol%), base structure, base loading (mol%), tem-

perature (oC), pressure of H2 (bar), reaction time (h), solvent 

structure, solvent amount (mL), and yield (%). 

 

Figure 1. Representative structures of catalysts, and esters used 

in our dataset. 

 

2. Creation of chemical descriptors:  

In order to successfully use the dataset to develop a general-

izable ML model, it is important to transform the structures and 

properties of catalysts, esters, bases, and solvents to informative 

numbers called chemical descriptors  as also recently high-

lighted by Grzybowski and co-workers.19 Significant work has 

been done on the development of various types of chemical de-

scriptors and their importance for the development of ML mod-

els for catalytic reactions.20–23 Aspuru-Guzik and Balcells have 

used graph or connectivity-based chemical descriptors com-

puted using autocorrelation function from DFT optimized struc-

tures for a transition-metal complex.24 Choice of descriptors and 

their calculations using DFT, experiments, or ML can also de-

pend on the size of the dataset. In general, there is however a 

tradeoff between descriptor accuracy and computational cost. 

In the case of large datasets, graph-or connectivity-based de-

scriptors can be used successfully in ML approaches with min-

imum computational cost.24 In this work, the design of suitable 

descriptors is challenging due to the small size of the dataset, 

the variety of ligand architectures and complex geometries, the 

known importance of solvent interactions in the studied cata-

lysts operating through metal-ligand cooperation,25–28 as well as 

unknown mechanisms and involvement of several rate-limiting 

states.29–31 We used a combination of DFT-based as well as ex-

perimentally estimated descriptors in addition to graph-based 

descriptors (Figure 2). Catalysts have been represented by three 

types of chemical descriptors. The first type is the graph-based 

descriptor calculated using an autocorrelation function of depth 

4.24 The second type is sterics-based descriptors calculated us-

ing topographic steric maps (%Vfree, %Vfree
quadr.) through DFT-

optimized structures and the Morfeus software (buried volumes 

and solvent accessible surface area and volumes). The third one 

is electronics-based descriptors calculated using DFT (HOMO-

LUMO-gaps, dipole moment, as well as the NBO charge on the 

central Ru-atom). Similarly, esters have also been represented 

by three types of chemical descriptors: (a) graph-based de-

scriptors using an autocorrelation function of depth 4,24 (b) 

sterics-based descriptors (Sterimol parameters and solvent ac-

cessible area and volume), and (c) electronics-based descriptors 

(HOMO-LUMO gap, dipole moment, C=O-stretching fre-

quency and intensity, and NMR chemical shifts). Solvents and 

the nature of bases have also been found to play important roles 

in the catalytic output for this type of reaction, and therefore we 

also represented them with relevant descriptors. Solvents were 

represented by the dielectric constants and Gutman donor num-

bers, whereas bases were represented by their pK-values. Addi-

tionally, solvents and base were also represented by the one-

hot-encoding. 

 

 

 

Figure 2. Summary of chemical descriptors for catalysts and 

esters used in this study. 

  

3. Development of a predictive model for the catalytic hy-

drogenation of esters: 

3.1 Goals and description of ML architectures: In order to 

model the catalytic hydrogenation of esters using machine 

learning, we consider neural networks (NNs) and Gaussian pro-

cesses (GPs). Our broader goals are two-fold: (1) predicting the 

yield of a hydrogenation reaction for a given set of reagents, 

catalyst, and reaction conditions, and (2) predicting catalysts 

that result in a high yield of hydrogenation reactions under mild 

conditions. As a first significant step towards the second goal, 

we (2a) predict the catalyst involved in a given chemical reac-

tion from our compiled list of catalysts; and in a separate exper-

iment (2b) predict the chemical descriptors of the catalysts. 

Therefore, we use a regression setting for (1) predicting reaction 

yields and (2b) predicting catalyst properties, whereas we use a 

classification setting for (2a). A detailed description of models 

and methodologies is provided in the SI. 



 

3.2 Prediction of yield: We started our investigations by the 

input of all the data points and the corresponding descriptors 

calculated using DFT, experiments (spectral data), and ML 

(one-hot-encoding) to the ML architectures. The dataset was di-

vided into a training set and test set containing randomly se-

lected 80%, and 20% of the data respectively. The initial inves-

tigations showed that the mean accuracy for the prediction of 

yields was 78% (training set), and 74% (test set) using GP, 

whereas NN resulted in the mean accuracy of 79% (training 

set), and 75% (test set). Upon analyzing the plots of predicted 

yields vs true yields (see SI, Figure S2), we observed that the 

deviation of the low yielding data (<50%) was significantly 

higher than those of the high yielding data (>50%). We specu-

late this is due to a relatively low number of available data 

points for the reactions giving yields less than 50% (see Figure 

S1, SI). Furthermore, the available data points for the low yield 

reactions are not systematic, for example, a reaction could give 

low yield due to the use of a solvent or reagent that could poison 

the catalyst. This makes the ML architecture, which is primarily 

based on the quantity and quality of data, difficult to develop an 

accurate predictive model. Since our overall aim is to develop 

catalysts that could produce high yields and vice versa, we car-

ried our ML studies on the data points of yields of more than 

50%. Remarkably, a mean accuracy of 98% for the training set 

and 91% for the test set was obtained using NN. A similar result 

was obtained using GP that resulted in the mean accuracy of 

94% for training set and 91% for the test set (Figure 3). For NN, 

we performed a 5-fold cross-validation on the training set over 

the hyperparameters of activation function, number of hidden 

layers, number of nodes in each layer, and dropout amounts (p). 

In case of GP, we carried leave-one-out cross-validation. Both 

the studies resulted in accuracies of ~90% on the test set. More 

details on the estimation of errors of cross-validation for each 

run is provided in the SI (Section 3.2.1). Furthermore, using a 

linear regression, a slightly lower mean accuracy of 88% was 

obtained for the test set (yields > 50%). 

 

Figure 3. Prediction of yields for the catalytic hydrogenation of 

esters using NN and GP architectures for the dataset containing 

yield  > 50%.  

It has been argued in the past that the choice of chemical de-

scriptors plays a significant part in the robustness, and accuracy 

of the ML predictive model.21,32 To assess the significance of a 

particular type of chemical descriptors, we carried systematic 

ML studies by choosing selective chemical descriptors. We di-

vided a total of 20 descriptors into five categories: (a) autocor-

relation function, (b) sterics of catalysts, characterized by 

free/buried volumes; (c) sterics of esters, characterized by 

free/buried volumes and Sterimol parameters; (d) electronics of 

catalysts, characterized by HOMO-LUMO gap, dipole moment, 

and NBO charge and (e) electronics of esters, characterized by 

dipole moment, HOMO-LUMO gap, and spectral parameters 

(NMR chemical shifts and IR stretching frequencies). 30 da-

tasets were created using various combinations of these five 

types of chemical descriptors. Our experiments showed that the 

highest accuracy (e.g. 94% test set for the dataset of yield>60%) 

is obtained by just using electronics of catalysts and esters. In-

deed, mechanistically electronics of both catalysts and esters 

play a significant role in the catalytic activity for the hydrogena-

tion of esters.33-34 However, the accuracy is not significantly dif-

ferent from the case when some other selected descriptors are 

used. Interestingly, just using one-hot encoding without using a 

chemical descriptor, also resulted in the mean accuracy of 86% 

only slightly lower than our best result of 94% using selected 

descriptors. The results obtained using one-hot encoding were 

found to be very similar to those when all the descriptors were 

used. The studies were conducted using the dataset of different 

sizes containing data points of yields higher than a certain per-

centage (e.g. 50%, 60%, etc ranging from 30 to 60%) as de-

picted in Figure 4. Remarkably, in all the cases most accurate 

predictions were obtained using selected descriptors (electron-

ics parameters of catalysts, and esters). These results suggest 

that valuable and interpretable information can be obtained 

from the ML models on factors governing high yield reaction 

outcomes and using relevant descriptors. 

    
Figure 4. Plot of the accuracy of yield predictions relative to 

the size of the dataset (containing datapoints of yields higher 

than the given point). 

3.3 Prediction of catalyst: Having developed an ML model for 

the prediction of yields, we diverted our attention to develop a 

model for the inverse problem – i.e. to predict a catalyst struc-

ture for the desired yield. To simplify the problem and demon-

strate a proof of concept of using the ML approach for catalyst 

prediction, we turned this to a multi-channel classification prob-

lem asking our model to predict a particular catalyst given the 

reaction conditions and yields from the dataset. Gratifyingly, 

our model using the NN architecture predicted the correspond-

ing catalysts (one-hot-encoding) with a mean accuracy of 85% 

(Figure 5).  
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Figure 5. Histogram of actual vs predicted catalysts. 

We employed a simple MLP (multilayer perceptron) architec-

ture and linear regression to predict the various catalyst de-

scriptors. In total we have 8 steric descriptors, and three elec-

tronic descriptors. Since neural networks are good at making 

end-to-end predictions, we attempted to predict all these fea-

tures simultaneously. We conducted two different sets of exper-

iments. In the first set of experiments [Expt. A], we divided our 

dataset into a train-test split of 80-20 and built an MLP model 

that aims to predict all such catalyst descriptors simultaneously. 

We compared our outcomes against linear models (realized 

through linear regression) for each of these features. In the sec-

ond set of experiments [Expt. B], we divided the dataset into 

two disjoint parts such that each catalyst features in exactly one 

of the sets. This is in line with our goal of predicting new cata-

lysts or their properties.   

We state at the outset that our initial efforts in this direction 

have not yielded in predictions of high accuracy. This is largely 

in part due to the small amount of data available to us. We dis-

covered that our models are good at predicting certain steric and 

electronic properties of catalysts. These are buried volume, sol-

vent-accessible surface area and volume (SASA). Similarly, 

both the linear and the MLP models do quite well in predicting 

the HOMO-LUMO gap of the catalysts (>90% test accuracy, 

see Table S5 in the SI). In Figures 6-7 we present a plot of true 

vs predicted HOMO-LUMO gaps and Buried volumes of cata-

lysts from our models, showing a strong agreement. The data 

were standardized to keep the values of HOMO-LUMO gaps 

and Buried volumes in the range of 0-1. 

 

Figure 6. Prediction of HOMO-LUMO gap of Ru-catalysts by 

a (left) linear model and a (right) multi-layer perceptron model. 

This experimental set up corresponds to Expt. B detailed in Sec-

tion 3.2 (SI) for cut-off yield 𝛾 = 0.5. The dashed line in the mid-

dle is the line x=y. The other dashed lines reflect a 10% margin.  

 

 

 

Figure 7. Prediction of buried volume of Ru-catalysts by a (left) 

linear model and a (right) multi-layer perceptron model. This 

experimental set up corresponds to Expt. B detailed in Section 

3.2 (SI) for cut-off yield 𝛾 = 0.5. The dashed line in the middle 

is the line x=y. The other dashed lines reflect a 10% margin. 

In conclusion, we have demonstrated the approach of 

ML for the prediction of yields and corresponding catalyst de-

scriptors for the hydrogenation of esters catalysed by well-de-

fined ruthenium complexes. Our models can predict the reac-

tion yields, and catalyst properties with high accuracies of up to 

91%, and 85%, respectively. Our studies also indicate that the 

use of certain selected chemical descriptors (e.g. electronics pa-

rameters) in the model can outperform the prediction accuracies 

obtained using several other descriptors or just one-hot-encod-

ing although these differences are in the range of 3-6%. More-

over, we can also predict certain chemical descriptors with 

mean accuracies >90%. We note that the small size of the da-

taset with skewed population density (e.g. low datapoints for 

low yields, see Figure S1) is a limitation to our study which is 

primarily due to (a) difficulty in generating a large dataset of 

high quality by conducting high throughput/automation experi-

ments that would need sophisticated equipment for a high pres-

sure/temperature conditions, and (b) the limited availability of 

data (in particular of low yields) in the literature. We therefore 

would like to encourage the community to report low yielding 

results with their main discoveries and hope to develop a more 

generalizable model for the prediction of catalysts using a larger 

dataset in the future. 
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