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Abstract

In calculations based on density functional theory, the “HOMO-LUMO gap” (dif-

ference between the highest occupied and lowest unoccupied molecular orbital energies)

is often used as a low-cost, ad hoc approximation for the lowest excitation energy. Here

we show that a simple correction based on rigorous ensemble density functional theory

makes the HOMO-LUMO gap exact, in principle, and significantly more accurate, in

practice. The introduced perturbative ensemble density functional theory approach

predicts different and useful values for singlet–singlet and singlet–triplet excitations,

using semi-local and hybrid approximations. Excitation energies are of similar quality

to time-dependent density functional theory, especially at high fractions of exact ex-

change. It therefore offers an easy-to-implement and low-cost route to robust prediction

of molecular excitation energies.
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Ground state calculations based on density functional theory1,2 (DFT) have transformed

chemical understanding and are increasingly used in a predictive fashion, owing to the avail-

ability of high quality density functional approximations (DFAs) that can be used at a rela-

tively low computational cost.3–7 The prediction of excited state properties is also of much

importance and is usually addressed using time-dependent DFT (TDDFT).8–12 Recently,

ensemble DFT (EDFT)13,14 is being increasingly explored15–30 as a promising alternative to

TDDFT for low-cost quantitative prediction of excitation energies.

Of particular importance is the lowest excitation energy, often referred to as the optical

gap.9,31 The DFT “HOMO-LUMO gap”, defined as εl − εh, where ε indicates an orbital

energy, h indicates the highest occupied molecular orbital (HOMO), and l the lowest un-

occupied molecular orbital (LUMO) is often used as a rough, computationally inexpensive

approximation to the optical gap,9,31 with some approximate argumentation 32,33 but no

rigorous justification. In this work we first show that a carefully defined HOMO-LUMO

gap within EDFT exactly yields the lowest lying excitation energy. Furthermore, this exact

relation applies to both triplet and singlet excitations, and can be used with both traditional

and hybrid density functional approximations (DFAs). We then show that using common

DFAs, this relation leads to results of similar quality to those of TDDFT. The EDFT gap

therefore energes as a low-cost, useful approach to the quantitative prediction of the lowest

excitations.

We begin our considerations by briefly reviewing pertinent issues in DFT and EDFT.

Conventional, pure state DFT expresses the electronic ground state energy, E0, as E0 =

〈Ψ|Ĥ|Ψ〉 = Ts[n] +EHxc[n] +
∫
n(r)v(r)dr, where Ψ is the many-electron ground-state wave

function, Ĥ is the many-electron Hamiltonian, Ts is the non-interacting kinetic energy, EHxc

in the Hartree-exchange-correlation (Hxc) energy, v is the external potential, and n is the

electron density. The difficult many-body problem may then be replaced by the simpler

problem of finding a set of one-body orbitals, {φi} (elaborated below), from which one

obtains the density, n =
∑

i∈occ |φi|2, as well as Ts. A DFA captures the requisite quantum
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mechanics by approximating EHxc.

EDFT for excited states13,14 generalizes DFT to a statistical average across multiple

states, Ew =
∑

κwκ〈Ψκ|Ĥ|Ψκ〉 = Tr[Γ̂wĤ], where Ψκ is the many-electron wave function

associated with a specific energy level, κ, wκ ≥ 0 is the weight assigned to that energy

level, and Γ̂ =
∑

κwκ|Ψκ〉〈Ψκ| is an ensemble density matrix. Conventional DFT is then

the special case w0 = 1 and wκ>0 = 0. The relevant density is nw =
∑

κwκ〈Ψκ|n̂|Ψκ〉 =∑
i f

w
i |φi|2, where fw

i are effective occupation factors that depend on the weights. Standard

DFT machinery may be adapted to ensembles,13,14,19,21–24 yielding Ew = T w
s [nw]+EwHxc[n

w]+∫
nw(r)v(r)dr for a given ensemble state, and therefore Ew ≈ T w

s [nw] + EEDFA,w
Hxc [nw] +∫

nw(r)v(r)dr for an ensemble state obtained using a given DFA, where Ts is the ensemble

non-interacting kinetic energy and EHxc is the ensemble Hxc energy. Excited state energies

may then be computed via Eκ := ∂Ew
∂wκ

, or other formulae.25,28 EDFAs may thereby be used

to predict properties of non-trivial excited states.

A typical practical DFT calculation involves finding orbitals, {φi}, and orbital energies, εi,

obeying the (original2 or generalized34) Kohn-Sham (KS) equation, ĥφi = {ĥ0+ v̂Hxc[n]}φi =

εiφi. Here, ĥ0 = −1
2
∇2 + v contains the one-body kinetic energy operator and nuclear

potential, v. The Hxc potential, v̂Hxc[n], maps the many-electron interactions to the one-

body Hamiltonian. It may depend on spin (in an unrestricted Kohn-Sham formalism) and/or

be non-multiplicative (in the generalized KS approach). All formalisms can be made exact,

in the DFT sense of yielding the exact density and energy, for pure and degenerate ground

states.2,24,34,35 Moreover, in any exact calculation of a molecule, the HOMO eigenvalue, εh,

is the negative of the ionization potential (IP) of the system.35–39 This relationship is often

known as the “IP theorem”.

In practice, v̂Hxc[n] ≈ v̂DFA
Hxc is obtained from a DFA and the resulting orbital energy, εDFA

h ,

does not necessarily come even close to satisfying the IP theorem.40 Kraisler and Kronik

showed41–43 that agreement between εDFA
h and IPDFA could be improved at essentially no

cost by invoking exact relationships from ensembles with non-integer numbers of electrons.36
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This begs the question of whether similar improvements can be made to the HOMO-LUMO

gap by invoking exact results for excited-state ensembles. We proceed to reveal that this is

indeed the case, by first deriving an exact relationship [eq. (1)] and then demonstrating that

the resulting formalism improves the quality of excitations found in practice using common

DFAs.

Like their conventional DFT counterparts, EDFT orbitals obey effective one-body en-

semble GKS (EGKS) equations,24 [ĥ0 + v̂wHxc,i]φ
w
i = εwi φ

w
i +

∑
j 6=i ε

w
ijφ

w
j . Here, a crucial

difference from conventional DFT is that the effective potential v̂wHxc,i can depend on the

orbital label, i. Thus, Lagrange multipliers, εij, can be required to ensure orthonormality,∫
φ∗i (r)φj(r)dr = δij. Despite additional practical complexities, EDFT for excited states

can also be made exact in the same sense as its pure state counterpart.13,14,19,24

We now restrict ourselves to the important problem of finding the lowest excitations in a

system. We illustrate our approach using the case of a singlet ground state, but most results

can be generalized. We have three states of interest: the ground state (gs) |S0〉 = |12 · · ·h2〉,

and singly excited states (sx, h→ l) |T1〉 = |12 · · ·h↑l↑〉 (the triplet is degenerate in EDFT19

so we can equivalently choose one of the other two options) and |S1〉 = 1√
2
[|12 · · ·h↑l↓〉 +

|12 · · ·h↓l↑〉]. The core theory behind our approach may be summarised by the following

exact relationships:

1. The energy of the HOMO of the ground state (S0) GKS state is the ionisation potential

of the system, i.e., εS0
h = Esys

gs − Esys+

gs ;35–37,39,44,45

2. The energy of the highest occupied orbital of any singly-excited (sx ∈ {T1, S1}) GKS

state is given by εsxl = Esys
sx − Esys+

gs ;46

3. The energy of the highest occupied orbital of an EGKS system, Γ̂w = (1−w)|S0〉〈S0|+

w|sx〉〈sx| is equal to that of the sx, εensl = εsxl = Esys
sx − Esys+

gs .

All three follow from fundamental relationships between energy differences and the asymp-

totic behaviour of electronic densities.44,46 The final relationship may be new to this work,
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and can be derived using similar arguments to Perdew et al 36 or Gould et al.39 Details are

provided in Section 1 of the Supporting Information (SI).

The consequence of the three relationships is that,

∆Esys
sx = Esys

sx − Esys
gs = εensl − ε

S0
h , (1)

i.e., the excitation energy is exactly the difference between the ensemble LUMO and ground

state HOMO. For the family of ensembles, Γ̂sx,w = (1 − w)|S0〉〈S0| + w|sx〉〈sx|, we may

conveniently re-express eq. (1) as,

∆Esys
sx =εsx,wl − εsx,w=0

h , ∀ 0 < w ≤ 1
2
, (2)

where the upper bound ensures that the low energy state is always weighted more than the

excited state.13 Here we recognise that Γ̂w=0 = |S0〉〈S0| is a special case of a pure ground

state. Finally, we may take the limit, w → 0+, of an infinitesmal excitation. As we show

below, this limit means that we can bypass additional calculations24,25 that would otherwise

be necessary to compute the ensemble.

Eq. (1) represents the first key result of this work. It is an exact result, despite similarities

to recent, successful approximations.47 It also applies more generally than the illustrative

case of a singlet ground state. Firstly, it applies, as given, to systems where the triplet is the

ground state and/or where 1√
2
[|12 · · ·h↑l↓〉+ |12 · · ·h↓l↑〉] has a lower energy than |12 · · ·h2〉 –

excitation energies simply become negative. Secondly, because the three exact relationships

apply to the lowest excitation energy of any system, it may be adapted to ground states

with large numbers of unpaired electrons, or spatial degeneracies. In such cases one must

identify the correct ensemble, as well as ‘h’ and ‘l’ to use in eq. (1) or (2). Section 1 of the

SI justifies generalizations, subject to a reasonable postulate.

Let us now turn to approximations. A single excitation (S0 → T1 or S0 → S1) from
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h→ l, may be approximated by an EDFA,25,28

E sx,wHxc ≈(1− w)EDFA
Hxc [ρS0 ] + wEDFA

Hxc [ρT1 ]

+ ΘS12w〈hl|lh〉 , (3)

Here, ρS0 is the one-body reduced density matrix (1-RDM) of |S0〉, and ρT1 is the 1-RDM

of |T1〉. The DFA may be of conventional (e.g. PBE48), hybrid (e.g. B3LYP49) or range-

separated hybrid (e.g. ωB97x50) form, although the latter is not considered further. The

last term in eq. (3) is the singlet-triplet splitting, 2〈hl|lh〉 = 2
∫

drdr′

|r−r′|φh(r)φ∗l (r
′)φl(r)φ∗h(r

′).

ΘS1 indicates that it appears only if one is interested in S0 → S1.

The energy is minimized by orbitals obeying,24

[ĥ0 + v̂sx,wHxc,i]φ
sx,w
i =εsx,wi φsx,w

i +
∑
j 6=i

εsx,wij φsx,w
j , (4)

where v̂sx,wHxc,iφi = 1
fwi

δEsx,wHxc

δφ∗i
, which covers both the ensemble KS and GKS cases. Here, fi<h = 2,

fh = 2−w and fl = w are average occupation factors. The terms εij are required to preserve

orthogonality. We may, without loss of generality, assume all quantities are real.

As a first step toward a useful approach, consider the potentials, v̂Hxc,i, in the limit

w → 0+. For all orbitals (i ≤ h) occupied in S0 we obtain,

v̂sxHxc,iφ
sx
i =v̂Hxc[ρS0 ]φ

sx
i +O(w) , ∀i ≤ h , (5)

where v̂Hxc :=
δEDFA

Hxc [ρS0 ]

δρS0
. We use sx without explicit dependence on w to denote w → 0+.

However, the LUMO, φl, has a different effective potential. Only the O(w) terms of eq. (3)

depend on φ∗l , meaning that
δEsxHxc

δφ∗l
= w

{
v̂DFA
Hxc [ρT1 ] + ΘS12v̂x[ρh]

}
φl where v̂Hxc :=

δEHxc[ρT1 ]

δρT1,↑

is the majority spin potential, and v̂x is an exchange operator. But because fl = w is also
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O(w) we obtain,

v̂sxHxc,lφ
sx
l =

{
v̂Hxc[ρT1 ] + ΘS12v̂x[ρh]

}
φsx
l +O(w) . (6)

Therefore, [ĥ0 + v̂Hxc[ρS0 ]]φ
sx
i≤h = εsxi φ

sx
i + εsxil φ

sx
l , and, [ĥ0 + v̂sxHxc,l]φ

sx
l = εsxi φ

sx
i +

∑
i≤h ε

sx
il φ

sx
i .

Details are in Section 2 of the SI.

Our next step is to make the reasonable35 assumption that the orbitals, φi≤h, change only

at O(w). This means that the off-diagonal elements of εsxlj must also be O(w) and may be

dropped. Consequently, the occupied (i ≤ h) orbitals obey the same effective Hamiltonian

as a typical ground state calculation, i.e.,

{ĥ0 + v̂S0
Hxc}φ

S0
i =εS0

i φ
S0
i , v̂S0

Hxc :=v̂Hxc[ρS0 ] . (7)

To determine the LUMO, φsx
l , we first expand it in terms of virtual orbitals, a > h only,

giving φsx
l =

∑
a>h U

sx
al φ

S0
a . This ensures it is orthogonal to all occupied orbitals. The LUMO

is then described by the lowest orbital energy, εsxl , and unitary coefficients, Ual, obeying,

{
εS0
a δab + [∆vl]

sx
ab

}
U sx
bl =εsxl U

sx
al , (8)

where,

[∆vl]
T1
ab =

∫
φS0?
a {v̂

T1
Hxc[ρT1 ]− v̂

S0
Hxc[ρS0 ]}φS0

b dr , (9)

and [∆vl]
S1
ab = [∆vl]

T1
ab + 2〈ha|bh〉. It is important to recognise that the appearance of ρT1 in

eq. (9) means that eq. (8) must be solved self-consistently, because ρT1 depends on φl which

depends on U sx
al . Procedurally, one: i) obtains orbitals and energies for i ≤ h from a typical

ground state singlet calculation; and ii) afterward obtains εsxl by iterating eqs. (8) and (9)

to self-consistency – see Section 3 of the SI.
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Figure 1: Violin plots showing the distribution of errors across triplet (top) and singlet
(bottom) excitations from our test set. Excitations are obtained from KS DFT (green),
TDA-TDDFT (orange) and the pEDFT (blue), using a variety of hybrid DFAs. Horizontal
bars indicate the mean absolute error, shown as positive numbers when the mean error is
positive, and negative otherwise.

Finally, we see the excitation energy is given by,

∆ES0→T1 or S1 = εT1 or S1
l − εS0

h , (10)

which we denote “perturbative EDFT” (pEDFT) to stress that is obtained in the perturba-

tive limit, w → 0+. The pEDFT HOMO-LUMO gap of eq. (10) would be exact if one had

access to the exact Hxc functional. As shown below, it offers significant improvements on

the regular HOMO-LUMO gap when DFAs are employed.

To assess the accuracy of pEDFT we calculate the the lowest lying S0 → T1 and S0 → S1

transitions from the Loos and co-workers 2018 benchmark set52 as well as the BeO ground
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Figure 2: PBE50 potential energy surfaces for low-lying states of BeO, computed using TDA
TDDFT (orange triangles) and pEDFT (blue circles). Reference data is shown as solid lines
(theory) and stars (experiment51). Zero is the optimized |S0〉 energy. Pale, dotted curves
show other energy surfaces to reveal where level crossing occurs.

state potential energy surface (PES). These examples are chosen due to their difficulty in

possessing multiple low lying excited states, or in the case of BeO in reordering of the excited

states across the PES. This is to demonstrate that pEDFT can perform well even in typically

difficult systems, where other excitation calculation approaches might fail. For comparison

we also calculate these transitions using KS orbitals and the Tamm-Dancoff approximation to

time-dependent density functional theory (TDA-TDDFT).53 TDDFT results are computed

using ORCA.54 Technical details are given in Section 4 of SI.

We pay specific attention to the symmetries of the electronic transitions calculated. We

note that acquiring the correct transition symmetry, corresponding to the lowest energy

excitation, is sometimes not strictly from the HOMO-LUMO gap, for example from HOMO

to LUMO+2 instead. Transitions between the highest and lowest orbital of given symmetries

are likely to obey a generalization of eq. (1), as discussed in the paragraph between eqs (2)

and (3). It is beyond the scope of the present work to resolve whether all such cases have

a completely rigorous grounding. Section 4 in the SI provides details of the orbitals that

give rise to specific transitions, the transition symmetry, and an accompanying discussion.

Thus, in the spirit of practicality for the remainder of this discussion, we simply take them

as given.

Concerning ourselves first with the Loos and co-workers benchmark set, we exclude

streptocyanine-C1 due to its doublet ground state, leaving us with 17 S0 → S1 transitions
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and 16 S0 → T1 transitions. To demonstrate that pEDFT can effectively utilize established

DFAs we present results for a variety of hybrid DFAs with different fractions of exact ex-

change: BLYP55 (0%), B3LYP49 (20%), BHHLYP56 (50%), Hartree-Fock (HF, 100%) and

PBE50 (50% HF in PBE0). The collective errors of these transitions for each method are

presented in Figure 1 as violin plots. All calculations on the benchmark set are performed

using cc-pVDZ57 basis set.

The primary result from Figure 1 is the similar performance of pEDFT and TDA-TDDFT

methods across the spectrum of fractional exact exchange. This comparison validates the

use of pEDFT as competitive in terms of accuracy with TDA-TDDFT, using an easy to

implement and low cost routine.

The secondary result is that gap opening by HF exchange31 is completely cancelled by

pEDFT. Indeed, results with 50% mixing seem to be optimal. This reflects the fact that the

effective potential felt by unoccupied orbitals is corrected within the self-consistency cycle,

which ensures that all orbitals are correctly bound.

Finally, twelve of the systems in the benchmark set have singlet and triplet gaps computed

using the same excited state symmetries, which lets us compute their singlet triplet splitting

energies, EST = ES1 − ET1 . TDDFT gives mean errors of 0.32 (BLYP), 0.33 (B3LYP), 0.38

(BHHLYP), 0.52 (HF) and 0.42 eV (PBE50). pEDFT (using εS1
l − εT1l ) is slightly worse

for all DFA except PBE50 and HF, with mean errors of 0.39, 0.40, 0.43, 0.46 and 0.42 eV,

respectively.

So far we have focused on fixed geometries. To go beyond this restriction, the PES for

BeO is presented in Figure 2. Excited state surfaces in BeO have been the subject of long-

standing computational interest.58 Reference CCSDTQ calculations for the BeO potential

energy surfaces are conducted using MRCC.59 All calculations on BeO are conducted using

the aug-cc-pVDZ57 basis set. A CCSD basis set correction to aug-cc-pvqz is applied to the

reference data. pEDFT and TDA-TDDFT results are calculated using PBE50.

Similar performance between pEDFT and TDA-TDDFT is again observed, particularly
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the prediction of the Morse potential minima of T1 and S1, which are both slightly over-

estimated. The Morse potential curve of pEDFT is flatter than TDDFT, which places it

in worse agreement to the reference for T1, but better agreement for S1. Both methods

maintain a smooth curve through the rearrangement of excited states, which is a reflection

of the stability of both methods, something not many excited state transition calculations

(including spin-flip TDA, Supplementary Figure 3) approaches can boast.

KS: nl + 1(r, z) T1: nl + 1(r, z) S1: nl + 1(r, z)

Figure 3: Densities, nl+1 = φ2
l+1, of l+ 1 orbitals in ketene averaged around the C-C-O axis.

Reports the original KS orbital, (left) as well as orbitals after triplet (T1, centre) and singlet
(S1, right) pEDFT self-consistency cycles – all for PBE. Solid/dashed lines are 10−3/10−2

contours.

Finally, let us consider the importance of the pEDFT self-consistency cycle that relaxes

the “LUMO” to minimize the excitation energy. All of the excitations reported so far involve

transitions between different spatial symmetries, meaning their orbitals change only a little

during the pEDFT optimization, as they are “preserved” by the symmetry. However, for

the case of ketene the HOMO and LUMO+1 orbitals have the same fundamental symmetry

(unlike h and l, used in the benchmark set) and therefore offer more interesting results.

Figure 3 shows PBE densities of the l + 1 orbital, averaged around the C-C-O axis. The

pEDFT cycle dramatically changes the density, whether used to compute T1 or S1. Less

obviously, the singlet and triplet densities are also different – a little more charge moves to
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the H atoms in the singlet. Orbital relaxation also reduces the S0 → T1 gap by 0.53 eV (to

3.33 eV) and S0 → S1 gap by 0.47 eV (to 4.09 eV).

To conclude, we have shown that the “HOMO-LUMO” gap (and generalizations based

on symmetries) can be made exactly equal to the excitation energy, by defining it carefully

in terms of ensemble density functionals using Eq. (1). By taking the limit of infinitesimal

interactions it is possible to solve for the gap using a self-consistent cycle only on the LUMO.

The resulting energy is rather effective when approximated: it improves conventional HOMO-

LUMO gaps significantly, yields similar energies to TDDFT, and is able to describe the

potential energy of BeO as well as TDDFT does, and better than spin-flip TDDFT.

Implementation of pEDFT relies only on existing DFA routines, and basic linear alge-

bra operations. Thus, the pEDFT approach may be readily implemented in any quantum

chemistry code. The implementation used for the present work is based on Psi460 and

numpy/scipy and is available at https://github.com/stephengdale/pEDFT_HLgap. De-

tails are given in Section 5 of the SI.

There still remains scope for further improvement. Mostly, the pEDFT gap is of similar

quality to its TDDFT counterpart, but there are a few cases (e.g. water) where its quality

can be significantly worse. This may be partially explained by a failure to include density-

driven correlations21,22 in Eq. (3), leading to density-driven correlation errors in the resulting

energy. Improvements may be possible by devising simple functionals for the density-driven

correlation energy. Understanding why orbital-energy-based techniques like that of Chan

and Hirao47 improve excitation energies may offer insights in this regard. This problem

remains the topic of ongoing work.

Finally, we did not discuss forces here. However, we note that both εS0
h and εsxl are

obtained by variational formulae. Therefore, both should be amenable to Hellmann-Feynman

treatment of forces, with the necessary adjustments for basis set incompleteness. We are

presently working on implementing forces.
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