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Abstract
One of the critical tools of persistent homology is the persistence dia-
gram. We demonstrate the applicability of a persistence diagram showing
the existence of topological features (here rings in a 2D network) gen-
erated over time instead of space as a tool to analyse trajectories
of biological networks. We show how the time persistence diagram is
useful in order to identify critical phenomena such as rupturing and
to visualise important features in 2D biological networks; they are
particularly useful to highlight patterns of damage and to identify
if particular patterns are significant or ephemeral. Persistence dia-
grams are also used to analyse repair phenomena, and we explore
how the measured properties of a dynamical phenomenon change ac-
cording to the sampling frequency. This shows that the persistence
diagrams are robust and still provide useful information even for data
of low temporal resolution. Finally, we combine persistence diagrams
across many trajectories to show how the technique highlights the
existence of sharp transitions at critical points in the rupturing process.

Keywords: Network Theory, Persistence Diagram, Collagen IV, Ring
Statistics

1 Introduction
Biological networks are often extremely complicated structures, often made of
ordered arrangements of biopolymers. These structures can suffer damage or
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degrade over time, with serious consequences for the functionality of the net-
work and the organism containing that network. It is important to understand
the precise nature of damage over the lifespan of a network; a better under-
standing of how defects or tears propagate over time could be used to inform
methods to either halt or repair the damage. One such biopolymer network of
scientific interest that loses function over time is that of collagen in the ocular
lens capsule. The loss of flexibility owing to damage-induced changes in the
lens capsule has consequences for the visual system losing its ability to accom-
modate different focal depths (Duncan et al (1997)), or the lens capsule can
suffer immediate damage when ruptured during cataract surgery (Liu et al
(2015)) or by exposure to focussed high energy sources.

Some biological systems consist of layers of two dimensional networks —
depending on the network, these layers could themselves be highly ordered
(made up of single repeating geometric units, said by Burd (2009) to be
hexagons) or highly disordered as shown in microscope images from Barnard
et al (1992) and Yurchenco and Ruben (1987). To avoid the computational
complexity of considering the position of every atom, it can be a powerful
approach is to simplify the biological network with a graph theory approach,
treating molecules as edges and their interaction sites as nodes. The use of
graph theory opens up an avenue to analyse the mid-range structure of 2D
networks, an approach that has seen great success when used by Le Roux and
Jund (2010) to analyse inorganic 2D networks such as glasses or by Ormrod
Morley et al (2020) to study amorphous graphene.

The rings in a 2D network can be conceived of as being the next level
up in a hierarchy of network features: a node at an interaction site is a zero-
dimensional feature, an edge between two nodes is a one-dimensional feature,
and the rings formed edges are two-dimensional features as shown in Figure 1.
A ring representation of a 2D network allows for analysis of medium range
order, including how those rings are correlated to one another (for example,
are rings with many sides adjacent to rings with few sides or vice versa as
measured by Sadjadi and Thorpe (2016)) or characterising networks by the
distribution of the rings seen in them (referred to by authors such as Kumar
et al (2014) or Le Roux and Jund (2010) as ‘ring statistics’). Ring statistics
are also used in studies of 3D networks, although the definition of a ring is
less well defined and the ring structure is considerably harder to visualise.
The most intuitive set of 3D features to treat with a persistence diagram are
pores in zeolites as discussed by Lee et al (2017), although those are outside
the scope of this work.

Framing biological networks like this is reminiscent of the persistent homo-
logy frameworks used to characterise proteins, 2D atomic glasses and zeolite
structures (see refs. Xia et al (2015); Ormrod Morley et al (2021); Lee et al
(2017)). Persistent homology approaches work by analysing objects called ho-
mology groups, generally constructed by placing a sphere of size r on each data
point in a point cloud and expanding the size of r. When two spheres over-
lap, an edge is drawn between them and the simplices (polygons, polyhedra,
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(a) Atom positions, a
zero dimensional feature
with little spatial order-
ing information

(b) Molecules formed of
bonds between atoms, a
one dimensional feature
with short range spatial
ordering information

(c) Rings formed by the
gaps between molecules,
a two dimensional feature
with medium-range spa-
tial ordering information

Figure 1: Rings can be seen as medium-range order in a network, and built
up as the highest dimensional feature. Here, the same network is represented
in three different ways: atom positions, molecules and rings

or hyper-polyhedra) that are formed are analysed. The homology groups gen-
erated that way are often unwieldy (Steinberg (2019)), and are most often
simplified into a few useful outputs (among others): Betti numbers βn which
measure the number of n-dimensional features; persistence diagrams which
show how features appear and disappear as functions of r; and birth-death
diagrams which show clusters of features appearing or disappearing. We can
map the persistent homology framework onto the established network theory
simply, as the first three Betti numbers correspond to the number of zero-,
one- and two-dimensional features in the networks. In most persistent homo-
logy approaches, a persistence diagram charts at which value of a length scale
(called a filtration parameter) various features first start to exist (‘are born’,
in the language of persistent homology) or stop existing (‘die’) (Pereira and
De Mello (2015)). Persistence diagrams have been criticised (see, for example,
refs. Sørensen et al (2020) and Ormrod Morley et al (2021)) as they may be
hard to interpret quantitatively, and they often reflect properties of a network
that are difficult to visualise.

Furthermore, analysing biological networks as a function of a length scale
at a single point in time can potentially lose critical information. For a biolo-
gical network, a meaningful length scale is already defined as approximately
the length of one biomolecule, and the most meaningful information is in how
those networks vary across time. To resolve this, we can look at persistence dia-
grams generated at different timescales and a fixed length scale. Related work
by Dong et al (2021) discusses using persistence diagrams that are functions
of both length scales and time scales to measure similarity between zeolites.
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Figure 2: A schematic persistence diagram across time consisting of two
rings. The left ring, labelled A is made up of molecules {1, 2, 3, 4} and exists
continually, leading to a solid persistence bar. The right ring, labelled B, is
made up of molecules {4, 5, 6, 7} and dies once during the simulation at t = 2,
leading to a break in the persistence bar. When it reforms at t = 3 it is
recognised as the same ring and there is a new segment to the bar

In this work, we take the idea of a persistence diagram (and the associated
metrics for birth-death diagrams and ring lifetimes) and show their qualitative
power for analysing ring statistics over time.

2 Methods
2.1 Persistence Diagrams
While criticism has been levelled at persistence diagrams for how much they
rely on qualitative analysis (see refs. Sørensen et al (2020); Ormrod Morley
(2020); Wasserman (2018)), if that is what’s desired they can be extremely
useful. The analysis of persistence diagrams is simplified if instead we track
whether particular features in a network persistent across time instead of
length scale. The medium-range order as represented by a ring structure in a
network is especially interesting to us, as it is often hardest to track. In this
analysis, we define a ring R as being constructed of a unique set of molecules —
for example, a square might be made up of molecules {1, 2, 3, 4} and a second
triangle could be made up of molecules {4, 5, 6, 7}. We then can calculate an
existence function f(t; R) for each ring R over time t during a trajectory of
interest. This function f(t; R) has a major difference from the usual filtration
functions used for persistent homology in that a single ring can be born, die,
and live again. For example, the square {4, 5, 6, 7} could exist at t = 1, die at
t = 2, be reborn at t = 3 and die a final time at t = 4 as seen in the right
bar of Figure 2. This leads to the persistence diagram in Figure 2 striped
in both directions, which will be useful for analysis of repair phenomena. The
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lifespan of a given ring can be defined as L(R) =
∫ ∞

0 f(t; R)dt, and birth-
death diagrams can be plotted using the first birth and final death of a given
ring.

2.2 Polymer Model
To generate trajectories of interest, we use a simplified biopolymer model to
mimic the self assembly process of collagen IV, first used by Bailey and Wilson
(2021a). The biopolymers are made up of a linear chain of beads with bead-
bead bonds modelled using a Morse potential to allow for bond breaking. The
beads at either end of the polymer chain are marked as ‘head beads’ and
experience Lennard-Jones attractions towards other head beads. The beads
within the polymer are marked as ‘body beads’ and a truncated Lennard-Jones
potential is used to mimic repulsion between molecule bodies and provide
an excluded volume. This model has been successfully by Bailey and Wilson
(2021a) used to mimic self-assembly phenomena of biological networks.

We will use the persistence diagram approach to analyse two different net-
works, both simulated using the polymer model: an ordered hexagonal network
(inspired by a model proposed by Burd (2009)) and a disordered self-assembled
network (inspired by studies performed by Yurchenco and Furthmayr (1984)).

For the ordered hexagonal networks we first started with an ordered
hexagonal network with each edge being made up of one polymer. To break
the symmetry of the network, a single polymer was removed to create a ten-
sided ring. Over a time-scale of 100 µs this hexagonal network was stretched
sinusoidally with a time period of 5.00 µs per cycle and the cycles increasing
in amplitude from 10.0 % to 50.0 %. This method has been used by Bailey and
Wilson (2021b) to mimic damage due to stretching in the ocular lens capsule.

To generate disordered networks we used an established self-assembly pro-
cess that starts with a collection of the model polymers (Bailey et al (2020)).
The polymers are initially placed on a random square grid, and allowed to form
a proto-network, which was then equilibrated under a barostat at a constant
stress (‘2D pressure’) p and temperature 100 K to fix the simulation cell size,
and thus area per molecule. The use of different stresses allows networks with
different areas, and hence topologies, to be constructed. This proto-network
was heated to 1000 K using a Langevin thermostat to create a polymer liquid.
This polymer liquid was cooled back down to 100 K over 100 µs to re-form a
network, and ring statistics were tracked during the network forming process.
Once the networks were cooled, we repeated the stretching simulation for used
for the hexagonal networks to induce rupturing and once again tracked the
ring statistics.

Ring statistics in a 2D graph can be tracked easily, as the excluded volume
of the beads in the polymer model means that the polymers naturally form a
planar graph with a defined embedding in a periodic plane under all but the
most extreme conditions. The rings are then found as being nodes in the dual
graph of the polymer graph; the dual graph can be found either by computing
an anticlockwise ordering of edges around each node (de Berg (2000)), or
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by computing the Delaunay triangulation of the points and re-joining the
triangulation into rings (Bailey and Wilson (2021a)). In this work we use the
latter method as we often wish to compute the Delaunay triangulation anyway
for analysing networks (Dhume et al (2019)), and it can be simpler to treat
algorithmically for a periodic simulation cell.

3 Results
With the simulation protocol established, we simulated both ordered and dis-
ordered networks to analyse their formation and damage. We will demonstrate
the use of persistence diagrams to analyse ring structure first with individual
snapshots to link the visualisation method with the simulated networks, and
then move on to showing how persistence diagrams over time can be used to
analyse the formation and rupturing behaviour of networks.

3.1 Ordered Networks
Snapshots of a single stretching simulation of an ordered hexagonal network
are shown in Figure 3 over the first 50.0 µs of simulation time. The snapshots
were taken when the networks passed through an unstretched state during the
simulation, and the maximum amount of stretching increased between each
snapshot. For the first 20.0 µs the network topology remains fundamentally the
same, with only small distortions to the positions of nodes in Figure 3(a-c).
After 30.0 µs however we see the ring structure start to break down, and rings
with many sides begin to appear in Figure 3(d). As the stretching simulation
progresses, we see in Figure 3(f) that by 50.0 µs almost all hexagons have
been destroyed and mostly extremely large rings remain.

The information accessible can be useful in identifying broad mechanisms
by which key processes are taking place, but may be insufficient for obtaining
sufficient statistical information. A systematic approach can be enabled by us-
ing a persistence diagram with the time filtration function f(x, R) as shown
in Figure 4(a). This persistence diagram correlates well with the qualitat-
ive analysis performed earlier — the hexagon lifetimes are solid from 0 µs to
20.0 µs, and begin to break from 25.0 µs to 50.0 µs, with a few ‘stragglers’ last-
ing for a long time. Next, mid size rings form, as shown by redder lines, some
of which live for a long time. For example, the 16-sided shape in the top left of
the snapshots at 30.0 µs to 50.0 µs is represented as a long red line. A few deca-
gons form as the stretching gets more intense, but they have short lifetimes.
For stretching times from 40.0 µs onwards, we observe that very large rings
with extremely short lifetimes are observed; this matches what we see in the
snapshots Figure 3(e) and Figure 3(f). Seeing the lifetime of these rings is
critical as it undercuts a temptation to overinterpret the snapshots — looking
at Figure 3(e), it might seem that the 14-sided rings are important as there
are 5 of them. However, analysing Figure 4(a) shows that those rings are
only ephemeral. The short lifespan rings show up in the birth-death diagram
of Figure 4(b) as red dots close to the diagonal line, whereas the long-lived
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(a) t = 0 µs (b) t = 10.0 µs (c) t = 20.0 µs

(d) t = 30.0 µs (e) t = 40.0 µs (f) t = 50.0 µs

Figure 3: Ring snapshots of a hexagonal system being stretched until break-
ing. The rings are coloured by their number of edges (for example, all hexagons
are dark blue and all decagons are dark green), molecules that are not part of
a ring are removed for clarity

hexagons show up in the same diagram as blue dots all born at t = 0 µs on the
left hand side. In Figure 4(b) we can see the evolution of the medium-range
order as represented by the ring structure, as a series of hexagons die (blue
dots) and are replaced with short-lived large rings (red dots).

3.2 Disordered Networks
The analysis process can be repeated for more complex disordered networks,
showing the power of barcode diagrams inspired from persistent homology
approaches. The networks in this section were first self-assembled then rup-
tured as discussed in Section 2. Pairs of birth-death diagrams and barcodes
are shown in Figure 5 for networks assembled under different initial condi-
tions (here, the area available per molecule when the network formed, chosen
systematically by applying a ‘2D pressure’ to fix the simulation cell size).

The birth-death diagrams can then be used to identify a qualitative differ-
ence in the way the networks form at different available areas per molecule.
In Figure 5(a) and Figure 5(d), only small rings with short lifespans are
formed over the time-span 0 µs to 40.0 µs. Snapshots of the networks at 40.0 µs
are shown in Figure 5(g-i), just before the critical formation point. We can
see that in the high area network there are many loose molecules which will
soon assemble into rings.

Many rings with long lifespans then form over the time-span 40.0 µs to
60.0 µs with few rings formed in the final 60.0 µs to 100 µs as the system is
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(a) Persistence diagram (bar-
code) of a hexagonal network
stretched over 100 µs. Each bar is
one ring, sorted left-to-right in or-
der of the times they were first
observed. The bars are coloured
by the number of edges of each
ring, and may be non-continuous
if a ring was born, died, and was
born again
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(b) A corresponding birth-death
diagram to the lifetimes dia-
gram for a hexagonal network be-
ing stretched. Each (birth, death)
point corresponds to the first time
a given ring was observed and the
last time it was observed

Figure 4: Graphs traditionally used for persistent homology approaches used
to analyse the trajectory shown in Figure 3

now stable. The gradient of Figure 5(d) represents the time between rings
forming; the more horizontal line indicates that rings are formed rapidly and
a more vertical indicates a long time-span between one ring being formed and
the next.

The formation behaviour is no longer as sharply defined for the network
formed at intermediate area per molecule in Figure 5(b), and the network
formed at low area per molecule in Figure 5(c) shows viable networks formed
immediately. For these networks with less area per molecule, there is less room
for molecules to ‘dangle’ and the network formation process has already begun.

A magnified view of the ring life lines is shown in Figure 6 and emphasises
a key difference this approach has from the traditional simplicial complex
approach used in persistent homology. As discussed in Section 1, a dynamical
system varying over time there is no guarantee that a given ring R that is
born time t will still exist at a later time t′. Furthermore, dying at time t′ does
not preclude a ring from being born again even later at time t′′. The loss of
the mathematical continuity of simplices prevents us from using some further
persistent homology analysis techniques (Stolz-Pretzer (2019)), such as using
the barcodes to measure similarity of trajectories as performed by Chung et al
(2021) or to identify spatially important information such as binding sites in
the manner of Kovacev-Nikolic et al (2016). However, it is useful to identify
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(a) Birth-Death at A =
82 200 nm2 per molecule
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(b) Birth-Death at A =
61 800 nm2 per molecule
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(c) Birth-Death at A =
46 100 nm2 per molecule.
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(d) Lifetimes at A =
82 200 nm2 per molecule.
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(e) Lifetimes at A =
61 800 nm2 per molecule
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(f) Lifetimes at A =
46 100 nm2 per molecule

(g) Snapshot of a A =
82 200 nm2 per molecule
simulation at 40.0 µs

(h) Snapshot of a A =
61 800 nm2 per molecule
simulation at 40.0 µs

(i) Snapshot of a A =
46 100 nm2 per molecule
simulation at 40.0 µs

Figure 5: Birth-death diagrams and persistence barcodes (lifetimes) for net-
works with simulation cells equilibrated at different areas per molecule. The
area per molecule was set by first forming a preliminary network and applying
a ‘2D pressure’ via a barostat to fix the simulation cell volume. The prelimin-
ary network was then melted at that fixed volume and reformed. Each diagram
shows results from a single trajectory, while the top and bottom diagrams of
each pair represent different analyses of the same trajectory

repair phenomena which are often of key interest in biological networks. We
can see that rings in Figure 6(a) sometimes are born and die a few times
before they finally have a stable lifespan, but broadly their life lines are solid
and uninterrupted. However, one or two rings (for example, the left-most line)
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Area per polymer /nm2 Unique Hexagons Rebirths

46 100 62.8 4.81
61 800 56.7 3.66
82 200 26.4 3.39

Table 1: The number of non-ephemeral unique hexagons observed on average
for simulations with a given area per polymer, and the average number of
times each unique hexagon is reborn
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(a) A highlight of Figure 5(d)
showing rings 400 to 750 sputter-
ing into existence
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(b) A highlight of Figure 5(f)
showing rings 1600 to 2100 sput-
tering into existence even more

Figure 6: Magnified sections of the persistence barcodes in Figure 5 showing
detail on the life-lines of some rings

are dead for extended periods of time but are reborn and continue to exist
afterwards. For the higher density network shown in detail in Figure 6(b) we
see a key difference from the low density network. For a high density network,
the rings are close to one another and the polymer edges are packed in tightly.
This means that few rings with long continuous lifespans are observed, but
many microscopic damage / repair events happen continuously. This can be
quantified with the data in Table 1, showing there are more unique hexagons
observed for as the area per molecule decreases and the hexagons that are
observed are reborn more often.

Turning our attention to the top right quartile of Figure 5(a-c) and
the top half of Figure 5(d-f) we can see how this framework is useful to
analyse the difference in rupturing phenomena. We can see in Figure 5(a)
and Figure 5(d) that many rings are destroyed at approximately t = 150 µs,
although a few rings live for an unusally long time. At the end of the simulation
a few small rings are briefly re-formed, leading to a point placed high on
the birth-death diagram but no obvious corresponding line on the lifetime
diagram. This is because certain tiny rings exist for one sampling point right
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at the end of the simulation, below the resolution of the barcode diagram.
The rupturing at approximately 150 µs is seen for networks at all densities,
although differences can be seen in how many new rings are formed during
the rupturing process. For the low density network, only very few entirely
new rings are formed during the rupturing process but for the high density
network many rings are formed (seen as more points in the top right corner of
the birth-death diagram) owing to the increased density of polymers allowing
for easier repair and reforming of rings.

3.3 Timestep
Persistence diagrams are useful in that they allow us to identify patterns in
data that exist in small regions of interest (usually spatial, here temporal) or
large regions of interest; either of these regimes may be most useful for further
analysis depending on the topic at hand (Stolz-Pretzer (2019)). As samples of
trajectories are taken with finite gaps of time between them and disk space is
not infinite, the temporal sampling rate of a trajectory is a controllable vari-
able. Similarly, the sampling rate for our persistence diagram analysis can be
some integer fraction of the sampling rate from the trajectory. Analysing net-
works at different sampling rates can reveal important patterns in the data, for
example low-frequency sampling rates can smooth out ephemeral patterns in
the data, and high-frequency sampling rates can draw attention to short-lived
phenomena. Alternatively, low-frequency sampling rates can save the compu-
tational expense of tracking many unique and short-lived rings. Importantly,
the similarity between Figure 7(a-c) reinforces the idea that high resolution
temporal data is not required for persistence diagrams to be a useful analysis
tool. Even at the coarsest sampling frequency, key behaviours can still be seen
in the persistence diagram and the bars can show which regions of time are
interesting enough to study in more detail.

In Figure 7 we can see the effect of different sampling frequencies. While
the overall pattern remains the same, they differ in a few ways that are use-
ful for overall analysis of a trajectory. For example, the same critical points of
formation beginning at about 40.0 µs and rupturing at 150 µs exist in all dia-
grams. While the lines of critical behaviour become clearer with more samples,
the fact that they exist at all timesteps reinforces their importance. At a very
small timestep, short-lived rings (or absences of rings) can be missed out.
A short timestep will count a superset of the rings identified using a large
timestep, but include many more rings with lifespans less than the window
size ∆t. This also means that repair phenomena can be missed if the timestep
is too short compared to the timescale of repair. This is especially obvious if
we highlight the number of times a given ring is repaired against the times-
cale, as is shown in Figure 8. These show that if the timescale is increased,
repair phenomena can be missed entirely; this manifests as the graphs trailing
off to show on average one birth per ring and that they are alive continuously
over their lifespan for long sampling timescales. However, at lower sampling
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(a) Lifetimes at ∆t =
10.0 µs
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(b) Lifetimes at ∆t =
2.00 µs
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(c) Lifetimes at ∆t =
0.200 µs
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(d) Birth-death at ∆t =
10.0 µs
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(e) Birth-death at ∆t =
2.00 µs
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(f) Birth-death at ∆t =
0.200 µs

Figure 7: Lifetimes and birth death diagrams for the trajectory previously
seen in Figure 5(a) and Figure 5(d) (which was sampled at ∆t = 2.00 µs)

timescales the repair phenomena become clear as each ring is repeatedly re-
born and is only alive for a fraction of its total lifespan. This does not plateau
at short timespans, indicating that there are possibly infinitely many micro-
scopic damage and repair phenomena before a ring is destroyed for good as a
consequence of the thermal motion of the connecting sites.

3.4 Combined Trajectories
Finally, we can use the birth-death diagrams to analyse families of simulations
and see how critical behaviour emerges from them. The self assembly then
rupture simulations were repeated 20 times with different random seeds and
the birth death diagrams (as first seen in Figure 5(a-c)) for each trajectory
were combined. The resulting combined birth-death diagrams are shown in
Figure 9, and the critical behaviours are now more obvious. We can see in
all three subfigures lines just after 100 µs in x and y axes, representing minor
damage to rings when the rupturing process begins.

The change in ring formation is also clearer, with many rings being born
only after 40.0 µs in Figure 9(a), but starting from 0 µs in Figure 9(c). Next,
the different in rupturing behaviour is clearer with a clear line through 150 µs in
Figure 9(c) for all rings, which is not present in the first two figures. Finally,
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(a) The fraction of their total
lifespan that hexagonal rings are
alive for in the A = 46 100 nm2

per molecule simulations
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(b) The number of times each
hexagonal ring is reborn during
the A = 46 100 nm2 per molecule
simulations

Figure 8: Two metrics of repair, the fraction of their lifespans spent alive
and the number of rebirths, for hexagonal rings. These figures only include
non-ephemeral rings — i.e. rings that are alive in more than one sample. The
error bars represent a bootstrapped 95.0 % confidence interval averaged across
20 simulations

(a) A = 82 200 nm2 per
molecule

(b) A = 61 800 nm2 per
molecule

(c) A = 46 100 nm2 per
molecule

Figure 9: Birth-death diagrams at specific formation areas repeated over
many trajectories

these diagrams allow us to see with great clarity which rings form at different
times of a simulation; the first region of births from 0 µs to 55.0 µs shows that
mainly small rings are formed, while larger rings are formed from 55.0 µs to
150 µs and any rings that form after that are small rings in the detritus of the
ruptured network. This can be seen in the coloured regions going blue-red-blue
from bottom-left to top-right of each figure, with relatively sharp boundaries
between each region for simulations with low area per molecule and softer
boundaries for simulations with larger area per molecule.
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4 Conclusion
In conclusion, we have demonstrated how the tools of persistent homology,
especially the persistence diagram and the concept of tracking births and
deaths of individual features, can be useful to analyse temporally varying data.
The use of temporal persistence diagrams analysing unique rings being born
and dying (possibly repeatedly) over the course of a simulation gives us the
ability to clearly identify which rings are long-lived and which are ephemeral. It
also allows us to observe how medium-range structure (as represented by rings)
changes over time, and which topological features are favoured when. The key
difference from traditional persistence diagrams, in which time is not a factor,
is the fact that given rings can be born, die, and be born again. This is critical
for analysis of repair phenomena in biological networks which have, until now,
been difficult to visualise and effectively quantify. Critically, the density of the
temporal data does not appear to mask significant network changes from being
identified. The method employed aids as a lens to analyse the networks, and
this provides further insights into how a network changes over time, allowing us
to assess the timescale of network behaviours. We anticipate that this analysis
can be extended from 2D biological networks to other network formation and
damage analysis tasks, such as glass ageing or zeolite formation.
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