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ABSTRACT: The Diels-Alder (DA) reaction of biomass derived furans is an emerging technology for the preparation of new 
molecular entities and “drop-in” commodity chemicals. In this work we address the challenge of the direct use of electron-
poor furanic platforms as dienes through the use of an unexplored chitin derived furan, 3-acetamido-5-acetylfuran (3A5AF). 
The 3-acetamido group promoted a remarkable increase in the kinetics of the DA allowing for the preparation of 7-
oxanorbornenes (7-ONB) at 50 ºC. Partial hydrolysis of the enamide to hemi-acylaminals was possible upon fine tuning of 
the reaction conditions, disabling retro-DA processes. Finally, DA reaction of the reduced form of 3A5AF allowed 
quantitative formation of 7-ONB in aqueous condition after 10 minutes. Certanly these are the first steps for expanding the 
toolbox of chitin derived 3A5AF as diene. 

The Diels-Alder (DA) cycloaddition of furans have been sub-

ject of extensive research as of late, in particular, employing 

biomass derived furans such as furfural and 5-hydroxymethyl-
furfural (HMF).1-3 Both these furans have been depicted as part 

of Bozel’s list of top 10+4 biobased products from 

carbohydrates4 and they have been reported in several seminal 

applications in a variety of areas (e.g. materials, energy, drug 
discovery).3, 5-17 Importantly, furfural/HMF derivatives un-

dergo reversible DA with dienophiles to yield 7-

oxanorbornenes (7-ONB). This dynamic character has solely 

led to extensive research on understanding interactions and 
mechanistic nuances governing furan diene/dienophile DA 

and fine tuning reactants to bypass reactivity stability of the 

7-ONB products issues (Scheme 1A).18-23 In this sense, the 

furan DA technology has expanded to create stimuli 
responsive frameworks of the utmost importance in material 

chemistry24, stable adducts usefull for drug discovery,25 

amongst others.26 However, mostly electron rich furans are 

paired with electron poor dienophiles, meeting the conditions 
imposed by the Frontier Molecular Orbital (FMO) theory. 

This particularity renders the use of electron withdrawing bi-

omass derived furfural and HMF “as is” a challenging task, as 

the electronic mismatch does not permit the reaction. Efforts 
to overcome this problem led to Brandvold in 2010 patenting 

the transformation of HMF to dimethylfuran (DiMF), towards 

the formation of biobased p-xylene27 via DA in an elegant se-

quential strategy to prepare “drop-in” chemicals from bio-re-
finery derivatives. Further optimization28-30 led to a one pot 

procedure from HMF to p-xylene.31 A different approach de-

signed by Ananikov and co-workers relied on the simple re-

duction of HMF to the corresponding 2,5-bis(hydroxyme-
thyl)furan (BHMF), thus allowing the [4π+2π] cycloaddition 

with maleimide. However, retro-DA of the 7-ONB hindered 

the isolation of the adduct, mandating for a tandem hydro-

genation to bypass this issue.18 Bruijnincx and coworkers 
recently reported a similar strategy, by trapping the DA 

adduct of furfuryl alcohol and activated acrylates yielding 

stable lactones.19  

 

Scheme 1. A. Employed strategies towards Diels-Alder cy-
cloadditions of biomass derived furfurals; B. Nitrogen contain-
ing furan 3A5AF derived from seafood shell waste chitin C. Di-
rect Diels-Alder cycloadditions on 3A5AF (this work). 



 

Unfortunately, these approaches require reduction of the 

biomass derived furfurals, which is not ideal when aiming at 

producing functionalizable derivatives. “Redox-
neutral“ strategies rely on masking the aldehydes either by 

hydrazone condensation20-23, 32 (which often undergoes 

spontaneous post-DA aromatization) or the temporary 

installment of acetals, as reported by the groups of Jérôme and 
Dumesic.32-36  

However, this latter example was shown that upon deprotec-

tion of the acetal, molecular orbital mismatch promotes com-

plete retro-DA, affording HMF and maleimide. Noteworthy, 
Bruijnincx and coworkers observed that under concentrated 

aqueous solution, biomass derived furfurals underwent 

tandem DA reaction/aldehyde hydration in the presence of 

maleimides.37 The same authors also observed a counterintui-
tive DA of carboxylic acids derived from furfural and HMF un-

der basic conditions. 38 

All the advances on biomass furan DA chemistry have relied 

on lignocellulosic derived furans, leading to products that are 
themselves rich in carbon and oxygen.  

However, an overlooked largely available waste byproduct, 

chitin, can be readily transformed into N-containing furan 3-

acetamido-5-acetyl-furan (3A5AF).39 Since over 5 million tons 
of seafood shells are produced, which contains 15-40% chitin 

by weight,40 it can be envisioned that 3A5AF will play an im-

portant role as a key biomass derived N-containing synthon 

(Schem 1B).  
Based on previous examples of furan DA reactions of sub-

strates bearing 2-amino41 and 3-amino substituents,42 we en-

quired whether the amido group of 3A5AF allowed the direct 

DA reaction of this carbonyl-containing furan derivate with a 
model dienophile, thus bypassing orbital restriction of furfu-

ral, 2-acetyl furan (AF) or even HMF (Scheme 1C). The selected 

model was maleimide, being a bis-activated dienophile shown 

to undergo DA with a variety of furanic scaffolds. To 
strengthen the hypothesis, density functional theory (DFT) 

studies revealed a HOMO-LUMO gap for the 

3A5AF/maleimide pair of 5.86 eV, in comparison with 6.35 eV 

for acetylfuran(AF)/maleimide and 6.32 eV for 
HMF/maleimide (Scheme 2A). The significant decrease of the 

HOMO by 0.5 eV of 3A5AF in comparison with AF was previ-

ously observed in indirect activation strategies of furfu-

ral/HMF to furfuryl alcohol/BHMF.18, 35 Ananikov and cowork-
ers recently observed a strong correlation between the HOMO 

of furan dienes and the free activation energy for the reac-

tion.43 Accordingly the mechanism of the reaction was evalu-

ated by DFT performed at the M06L/6-
311+G(d,p)/SMD(water)// M06L/6-31G(d) level of theory. In-

deed a ΔG‡ difference > 3 kcal.mol-1 was observed when com-

paring 3A5AF with AF and HMF. Moreover, a ΔG of -6.3 

kcal.mol-1 and -8 kcal.mol-1 for endo-1a and exo-1a corre-
spondingly (Scheme 2B) indicates the reaction is exergonic in 

nature, which should hinder retro cyclization processes. 

Herein we explored the first direct DA reaction of biomass de-

rived furans towards the preparation of novel N-containing 
synthons. 

 

Scheme 2. A. Calculated HOMO and LUMO for AF, HMF, 
3A5AF and maleimide. B. Calculated ΔG‡ and ΔG for the DA 
reaction of AF, HMF and 3A5AF with maleimide. DFT studies 
were performed at the M06L/6-311+G(d,p)/SMD(water)// 
M06L/6-31G(d) level of theory. 

We initiated our endeavors by reacting 3A5AF with model un-
substituted maleimide in DMSO-d6 under different tempera-

tures (Table 1, Entries 1 - 5). We observed that the reaction af-

forded a single product in 80% yield under 50 ºC after 24 hours 

(Table 1, Entry 4), with no improvement of yield after 48h. This 
product was identified as the exo isomer of 7-ONB 1a (for 

more information see SI).  

Surprisingly, no endo product was detected by 1H-NMR under 

the aforementioned reaction conditions. Limitations of the 
starting material solubility led to no conversion in most com-

monly used solvents for furan DA such as THF, dioxane, di-

chloromethane and chloroform (Table 1, Entries 6 - 9). Despite 

being soluble in acetonitrile and methanol, both led to poor 
yields of 1a (Table 1, Entries 10 and 11). 

 The acceleration of DA reaction in water via hydrophobic ef-

fect has been thoroughly studied,44 and has found its use on 

biomass furan DA chemistry.37 In fact, one of the earliest re-
ports on faster kinetics of DA reactions in water concerned fu-

ran and maleic anhydride.45 

Aiming at improving the yields of DA adduct 1a, the on water 

effect was studied by performing the reaction in DMSO-
d6:D2O. Under these conditions, a new product 2a was 

formed, corresponding to the partial hydrolysis of the en-

amide into a hemi-acylaminal (Scheme 3). 

 
 

 

 

 



 

Table 1. Reaction optimization.[a]  

 

Entry Solvent Temp. (ºC) Time (h) 
exo-1a 
(%)[b] 

1 DMSO rt 48h 0 

2 DMSO 40 12 25 

3 DMSO 50 12 43 

4 DMSO 50 24 80 

5 DMSO 50 24 80 

6 THF 50 24 0 

7 Dioxane 50 24 0 

8 DCM 50 24 0 

9 CHCl3 50 24 0 

10 MeCN 50 24 21 

11 MeOH 50 24 35 

[a] Reaction conditions: 3A5AF (6 mg, 0.035 mmol), malei-
mide (3.8 mg, 1.1 equiv), solvent (0.4 mL, 0.09M). [b] Yield de-
termined by 1H-NMR. 

 

X-ray crystallography of a crystalline derivative from 2a ob-

tained from the reaction of 3A5AF and N-benzyl-maleimide 
revealed that the single diastereoisomer corresponds to the al-

cohol cis to the ether. Importantly, the new structure is inca-

pable of undergoing retro-DA, which displaced the reaction 

equilibrium and allowed quantitative formation of 2a. Moreo-
ver, the high solubility of 2a allowed its purification through a 

simple washing with organic solvents followed by freeze dry-

ing. Competitive experiment using stoichiometric proportions 

of AF, and 3A5AF confirmed that only the latter underwent 
DA under these conditions, further highlighting the im-

portance of the 3-amido group (See Figure S2). 

When attempting the preparation of 2c to obtain a crystal for 

Single-crystal X-ray crystallography, fine tuning of the reac-
tion conditions was required. Interestingly, the reaction pro-

ceeded with the formation of the hemi-acylaminal 2c under 

acidic conditions (buffer pH 2.6). Under basic conditions 

(buffer pH 8 and pH 10), the equilibrium is also shifted to 2c, 
however hydrolysis of the maleimide hinders the utility of 

these conditions for the reaction. At pH 4 the reaction af-

forded the enamine product 1c.  

The scope for the enamine from 1 was extended to a variety of 
N-substituted maleimides (Scheme 4). Purification of the 

compounds was performed by simple extraction after trapping 

the excess maleimide with a thiol carboxylate, which widely 

contrasts with problematic purification steps reported for 
other 7-ONB from biomass derived furans. 

 

Scheme 3. Unexpected formation of hemi-acylaminal 2a in 
water. 

Moreover, products also tolerate chromatographic purifica-

tion, with minimal formation of 2 in silica (See Figure S1). The 
reaction tolerates a variety of N-substituted maleimides, in-

cluding alkyl (1b, 1c), aryl (1d), polar N-subtituents such as 

C2H4OH (1e), C2H4OCH3 (1f) and C2H4NHBoc (1g). The DA 

adducts 1 were obtained in excellent yield with negligible retro 
cyclization issues, with the exception of 1a and 1g where 20% 

and 14% of 3A5AF, correspondingly, were observed upon col-

umn chromatography. Additionally, HPLC studies of the re-

versible character of the 7-ONB 1c showed full reversibility af-
ter 5 min at 150 ºC (see SI for more information), which goes 

in line with the desirable properties for the use 7-ONB in heat-

responsive materials. 

A scope of hemi-acylaminals was also performed by carrying 
the reaction at buffered pH 2.6, yielding the desired products 

2a-h often in quantitative yields (Scheme 4). The products 

were easily purified through washing the aqueous media with 

organic solvent (ethyl acetate) followed by freeze drying.  
To showcase the synthetic potential of the novel DA adduct, 

model reactions were performed with 1c and 1d (Scheme 5). 

Firstly, 7-ONB 1d underwent acid promoted hydrolysis, yield-

ing ketone 3 in high yield. Secondly, focusing on diversifying 
the electron rich olefin, epoxidation of 1c with mCPBA fol-

lowed by epoxide opening by 3-chloro-benzoic acid afforded 4 

in 58% yield. Spectroscopic evaluation suggests the isomer de-

picted in Scheme 5, unfortunately a crystal to elucidate the 
conformation was unobtainable. Finally, hydrogenation of 1d 

with palladium on carbon and H2 furnished N-containing nor-

cantharidin analogue 5 in 80% yield. 



 

 

Scheme 4. Scope of the Diels-Alder reaction of 3A5AF.  

Unfortunately, all attempts at aromatization of 7-ONBs 1a-d 
and hemi-acylaminals 2a-d either led to no conversion or de-

composition (i.e. 80 ºC in HCl, 80ºC in HBr/AcOH, 0ºC to 80ºC 

in Ac2O promoted by MsOH, 0ºC to reflux in DCE promoted 

by Cu(OTf)2, tBuOK in DMSO). 
  

 

Scheme 5. Synthetic utility of DA adduct. 

In line with the reported examples of BHMF and furfuryl alco-

hol, the corresponding alcohol 7 obtained from the reduction 
of 3A5AF was envisioned to react even faster that the parent 

ketone. To probe this reactivity, 7 was reacted with N-phenyl-

maleimide under aqueous conditions (Scheme 6). Indeed the 

alcohol was remarkably more reactive, achieving 99% yield at 

room temperature after 5 minutes. 7-ONB 8 was isolated as a 
mixture of diastereoisomers (endo-R, endo-S; exo-R, exo-S). 

 

 

Scheme 6. DA reaction of alcohol 7 obtained from the reduc-
tion of 3A5AF. 

In conclusion, the remarkable effect of the acetamide group in 

position 3 of the furan endorsed by ab initio studies, allowed 
for chitin derived 3A5AF to be used as the first biomass furan 

diene in DA reactions “as is”. Fine tuning of the reaction con-

ditions allows selective preparation of 7-oxanorbornenes (7-

ONB) or tandem partial hydrolysis of the enamide to prepare 
7-ONB hemi-acylaminal derivatives. Reaction of the corre-

sponding alcohol allowed for a remarkably fast reaction af-

fording the desired product in almost quantitative yield after 

5 minutes at room temperature.  
The beneficial effect of the 3-acetamide is observed by the 

mild reaction conditions in contrast with commonly em-

ployed harsh conditions which require high temperature or 

catalysts. Also the operational simplicity for the reaction 
setup/isolation is highly appealing for its application in areas 

such as materials, biomaterial chemistry and even biology  

Nineteen new products were obtained from biomass derived 

3A5AF in high yields.  
This is the first step in expanding the toolbox of 3A5AF as 

diene, highlighting its potential growth into a key synthon for 

N-containing scaffolds, materials, and commodity aromatics.  
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In this work 3A5AF, a biomass derived furan obtained from chitin, is used as diene in Diels-Alder reaction with ma-
leimides. This is the first example of isolated 7-oxanorbornenes containing a ketone moiety obtained from biomass 
furanics. Moreover, the use of a chitin derivative allows incorporation of bio-based nitrogen in the final products, a 
challenge unmet by commonly used furanics such as furfural and 5-hydroxymethylfurfural. 

 

 


