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Abstract 

 

Laccases are enzymes catalyzing oxidation of a wide range of organic and inorganic substrates 

accompanied by molecular oxygen reduction to water. Previously studies of oxygen reduction by 

laccases have recently been reported. They were based on single-crystal serial X-ray 

crystallography with increasing absorption doses at subatomic resolution, As a result, 

coordinates of all non-hydrogen atoms of the active site have been determined with high 

precision for both oxidized and reduced states of the enzyme. Those data can be used to clarify 

the mechanism of molecular oxygen reduction by laccases. However, the X-ray data lack 

information about protonation states of the oxygen ligands involved. Applying quantum 

mechanical calculations, in the present work protonation of oxygen ligands in the active site of 

laccase was determined for both reduced and oxidized states of the enzyme (the stable states 

observed in experiments at reduction of molecular oxygen in laccase). The high precision of X-

ray-determined atom coordinates allowed us to simplify preliminary calculations of molecular 

mechanics for models used in the quantum mechanical calculations. 
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1. Introduction 

 

    Laccases are multi-copper oxidases which catalyze oxidation of different substrates such as, 

e.g., p-diphenols, simultaneously reducing molecular oxygen to water. Laccases have been found 

in bacteria, fungi, plants, and insects. Starting from the 1990s, laccases have been studied by 

spectroscopic methods (Solomon et al., 1996) and then structures of laccases were determined by 

X-ray crystallography (review of results up to 2015 in (Hakulinen & Rouvinen, 2015)). 

    Laccases are globular proteins comprised of two or three domains of cupredoxin fold 

(Hakulinen & Rouvinen, 2015). Their active site includes four copper ions arranged in two 

separated centers: the T1 copper site and the trinuclear copper cluster (TNC). Three types of 

copper ions (Abriata, 2012) in laccases were well established in earlier spectroscopic studies 

(Solomon et al., 1996; Cole et al., 1990). The TNC contains a triangle of closely located copper 

ions including a pair of T3 copper ions coordinated by three histidine residues each and one T2 

copper ion coordinated by two histidine residues. Electrons are accepted from substrate at the T1 

copper site. Via an electron-transfer chain the electrons are transferred to the TNC where 

molecular oxygen reduction reaction O2 + 4e
-
 + 4H

+
 → 2H2O occurs (Solomon et al., 1996; 

Jones and Solomon, 2015). The TNC is connected to surrounding solvent via the T3 and T2 

channels clearly observed in structures as chains of water molecules (Fig 1 in Polyakov et al., 

2017). Molecular oxygen gets to the TNC through the T3 channel. 

    The molecular oxygen reduction at the TNC was considered in works by Solomon and 

coworkers (Cole et al., 1990; Jones and Solomon, 2015) based on spectroscopy and early X-ray 

studies of ascorbat oxidase (Messerschmidt et al., 1992). It includes a couple of two-electron 

reduction stages. Among the TNC states at the oxygen reduction, the following ones can be 

distinguished. In the fully reduced state of the TNC all three copper ions are reduced to charge 

+1 and two oxygen ligands are involved (one between two T3 copper ions outside TNC and 

other one near the T2 copper ion in channel T2). The peroxy intermediate (PI) state includes 

deprotonated hydrogen peroxide located inside the copper ion triangle. The T2 and one of T3 

copper ions are oxidized to Cu(II) and there is oxygen ligand near the T2 copper ion involved. In 

the native intermediate (NI) state all three copper ions are oxidized to charge +2e and there are 

three oxygen ligands involved. One is the oxygen ligand near ion T2, one in the center of the 

copper ions triangle and one between two copper ions T3. The last two appear from peroxide 

when the O–O bond is broken. Each of T3 copper ions is five-coordinated by three nitrogen 

atoms of histidine residues and by two oxygen ligands between the T3 copper ions in the TNC.  

   The fully reduced and NI states are clearly observed from X-ray data, whereas the PI state has 

been deduced entirely from spectroscopic data. Features of this oxygen reduction scheme are 
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asymmetric location of the two oxygen ligands in respect to copper ions T3 of the TNC in the PI 

state and involvement of proton transfer between an aspartic acid residue in the T2 channel and 

the oxygen ligand near the T2 copper ion. It leads to appearance of a hydroxyl ion instead of a 

water molecule as the T2 copper coordinating oxygen ligand in channel T2 (Augustine et al., 

2010). According to experimental data, the fully reduced state is stable, whereas the NI decays 

but this process is very slow (Lee at al., 2002). It should be noted that the physics of penetration 

of molecular oxygen into the trinuclear copper cluster has not been discussed within the 

framework of this scheme. 

    Based on the abovementioned scheme of molecular oxygen reduction in laccases (Jones and 

Solomon, 2015), there were done studies using quantum mechanical (QM) and molecular 

mechanical methods (Rulisek et al., 2005; Yoon and Solomon, 2007; Yoon et al., 2007; Srnec et 

al., 2011). Those QM calculations based on the density functional theory (DFT) agreed with the 

suggested reaction mechanism and demonstrated a strong dependence of obtained energies on 

protonation of the oxygen ligands coordinating the TNC copper ions (Yoon et al., 2007; Srnec et 

al., 2011). However, the oxygen ligand transfer from the center of the trinuclear cluster to the 

copper coordinating position in the T2 channel (Yoon et al., 2007) is questionable. According to 

high resolution X-ray data structures of laccase (Polyakov et al., 2017), surrounding residues 

involved into coordination of the TNC copper ions leave no space for such move because of 

steric restrictions in the trinuclear center. 

    Recently there have been reported serial structures of laccase with different degree of TNC 

copper ions reduction solved at high resolution for sets of X-ray data collected from one crystal 

(Polyakov et al., 2017, Polyakov et al., 2019). These studies as well as other reported results for 

serial crystallography (Komori et al., 2012; Komori et al. 2014) revealed a picture that 

contradicted to some extent to the scheme of oxygen reduction suggested earlier. Due to high 

quality of subatomic resolution data for sets of structures with different degree of oxidation, both 

oxidized and reduced states of the TNC were resolved and clearly interpreted. As a result, it was 

possible to determine coordination of the TNC copper ions in the two states (Fig. 1). There were 

detected two positions of each copper ion T3 corresponding to its states Cu(I) or Cu(II). In state 

Cu(I) the copper ion is three-coordinated by three histidine residues. In the oxidized state Cu(II) 

is five-coordinated by those histidines residues and two oxygen ligands. In the reduced state the 

distance between the T3 ions is about 5.2 Å and it is about 3.3 Å in the oxidized state. There was 

detected switching between two positions of the oxygen ligand coordinating the T2 copper ion in 

channel T2. The latter clearly indicates a change of the T2 copper ion coordination at its 

oxidation. In the reduced TNC state, Cu(I) ion T2 is linearly coordinated to nitrogen atoms of 

two surrounding histidine residues. The neighboring oxygen ligand in the T2 channel interacts 
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with copper ion T2 via electrostatic forces. When the oxygen ligand is found at the center of the 

trinuclear cluster, the T2 Cu(II) ion has square-planar four-coordination with addition of the 

oxygen ligand in the T2 channel and this oxygen ligand at the center of the copper ion triangle. 

As a result, the distance between the T2 copper ion and the oxygen ligand in the T2 channel 

diminishes.  

   Based on those serial X-ray data, some corrections to the oxygen reduction scheme were 

discussed (Polyakov et al., 2017). In this model of the reaction, an oxygen molecule, being an 

induced dipole attracted by the trinuclear cluster of ions Cu(I), penetrates between two copper 

ions T3, oxidizing both of then. The appearing PI state is symmetrical in respect to the five-

coordinated T3 ions. It will wait for the next coming electron that reduces one of the T3 copper 

ions. The following cleavage of the peroxide O–O bond is cased by the oxidation of this copper 

ion and copper ion T2 by the two oxygen atoms and change in coordinating the T3 and T2 

copper ions. The final structure corresponds to the NI state of TNC. The next reductions of TNC 

copper ions due to the electrons supply release two oxygen ligands from the copper ion cluster, 

restoring the reduced state of TNC. According to this scheme, the change of T2 copper ion 

coordination is accompanied by the cleavage of the peroxide O–O bond. In this scheme all the 

stable TNC states are quasi symmetrical structures in respect to the pair of copper ions T3, 

copper ion T2 is oxidized last and there is no need in appearance of a hydroxyl ion in the T2 

channel near the T2 copper ion. 

    The oxidized (NI) and reduced states of the TNC were well interpreted from serial X-ray data.  

On the other hand, in all structures there were detected no traces of the asymmetrical location of 

the central oxygen ligand needed for the peroxide intermediate states of the TNC, suggesting for 

their short life time. 

     Positions of the TNC atoms and ligands in the oxidized state of the TNC (the native 

intermediate) are shown in Fig. 1a. Their positions for the TNC reduced state are shown in Fig. 

1b. The oxygen ligand in the center of the copper triangle is denoted as W1, the oxygen ligand in 

channel T2 as W2 and the oxygen ligand in channel T3 as W3. In the reduced state ion Cu(I) T2 

is linearly coordinated by two nitrogen atoms of the histidine residues H400 and H65 and oxygen 

ligand W2 at its position W2(I) is connected to the ion by only ion-dipole electrostatic 

interaction, whereas in the fully oxidized state position W2(II) is closer to the ion due to 

involvement of the oxygen ligand W2 into the T2 Cu(II) coordination. Positions Cu2(I) and 

Cu2(II) almost coincide. 
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Figure 1. The oxidized (a) and reduced (b) states of the TNC (Polyakov et al., 2019). Positions 

of copper ions (purple) are denoted as Cu(I)T3 and Cu(II)T3 for the T3 ions and Cu(I)T2 / 

Cu(II)T2 for ion T2 for the reduced and oxidized states, respectively. There are also shown 

oxygen ligands (red spheres) and surrounding histidine residues coordinating the three copper 

ions. 

 

    The strong dependence of the QM-calculated energies of states at cleavage of the O–O bond 

upon protonation of the oxygen ion in the center of the trinuclear cluster (Srnec et al., 2011) 

raises questions about true protonation state of oxygen ligands involved. It cannot be resolved 

from solution of X-ray data structures where protonation of the oxygen ligands remains 

undetermined even at atomic resolution. In the present work QM DFT calculations have been 

applied for a study of protonation of the TNC oxygen ligands (Fig. 1) for the observed stable 

oxidized (NI) and reduced states of TNC based on serial one-crystal X-ray data at subatomic 

resolution (Polyakov et al., 2019). QM calculations of energies of the system at different 

protonation states of oxygen ligands involved allow us to find out preferential states of the 

complex, which might advance understanding of the molecular mechanism of oxygen reduction 

in laccases. 

 

 

2. Computational Details 

 

       All initial coordinates of non-hydrogen atoms were taken from 6RGP record of Protein Data 

Bank (Polyakov et al., 2019). The 6RGP structure was solved at subatomic resolution (0.97 Å) 

and presents clearly distinguishable oxidized and reduced enzyme forms (Fig. 1). To model the 
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proton transfers, the QM calculations included TNC’s adjacent environment in gas phase. Such 

an approach is possible due to the fact that the TNC is immersed into hydrophobic core of the 

laccase macromolecule. In all models there were included three TNC copper ions and side chains 

of eight histidine residues coordinating them.  

     The chosen molecular model around the active site was a compromise between delivering a 

minimal adequate chemical environment and computational cost. The input structures were 

prepared in the following way. Initially the 6RGP structure was imported into Maestro 11.8 

graphical interface within Schrodinger 2018-4 software (Schrödinger Release 2018-4, 2018). For 

oxidized and reduced laccase forms the corresponding copper and oxygen atoms coordinates 

were chosen from X-ray data according to the analysis performed previously (Polyakov et al., 

2019). Then, all hydrogens of the model were added and bond orders were assigned employing 

the Protein Preparation Wizard and manually edited as necessary for the model chosen. In most 

cases histidine residues were truncated to their side chains with beta carbons substituted by 

methyl groups. When proton transfer in the T2 or T3 channels was considered, also the water-

coordinating functional groups (C=O, NH, COO-) were preserved as well as other oxygen 

ligands. The side chains of amino acids other than histidine were removed and backbone 

fragments were capped (N-methylated C-termini and acetylated N-termini). Aspartatic side 

chains were truncated to acetates. To fill up the free valences where the backbone and side chain 

fragments were cut off, the hydrogens were added.  

       All the DFT calculations were performed with Gaussian 16 Revision B 01 (Frisch et al., 

2016) software using TPSSh density functional (meta-hybrid density functional: Tao et al., 2003; 

Staroverov et al., 2003). It performs well in describing reactions of transition metal systems 

(Jensen, 2008; Moltved and Kepp, 2019). The basis sets were composite: the Pople’s split-

valence 3-21G* and 6-31G** for p-elements and effective core potentials (ECP) for copper 

atoms (Ditchfield et al., 1971; Francl et al., 1982). The pseudopotentials and basis sets 

themselves were taken for 10 core electrons, multi-electron approximation and completely 

relativistic (ECP10MDF) (Figgen et al., 2005; Frisch et al., 2016).  

     Positions of copper ions and most of non-hydrogen atoms of residues were taken from the X-

ray data structure and kept frozen, whereas all hydrogen atoms, oxygen ligands chosen for a 

particular model and carbon atoms of capping methyl groups were free.  The initial geometry 

optimization was carried out using smaller 3-21G* basis set for s- and p-elements. There were 

calculated energy second derivatives for final optimization that was done with larger 6-31G** 

basis set.  Geometry optimizations followed by frequency calculations to confirm the correctness 

of stationary points found and also thermochemistry calculations including zero-point energy.  
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     Oxygen ligand protonation was evaluated via comparison of the energies of a system with 

different protonation of oxygen ligands. The energy barrier of a proton transfer from the W3 to 

W1 oxygen ligands was also evaluated.  The potential barrier at the proton transfer was studied 

by means of determining the transition state using quadratic synchronous transit 3 (QST3) 

algorithm (Peng and Schlegel, 1993). The transition state finding was verified by the IRC 

approach (Fukui, 1981). 

 

 

3. Results 

3.1. Protonation of the W1 oxygen ligand in the center of TNC 

    The model for QM DFT calculations to explore protonation of oxygen ligand W1 in the NI 

state of TNC is shown in Fig. 2. When it is protonated, both oxygen ligands W1 and W3 are OH
-

. This model was also applied to the geometry optimizations. 

 

 

Figure 2. W1 protonation study model. The surroundings of the oxygen ligand W1 in the centre 

of the copper ions Cu(II) cluster that were chosen for QM calculations. The green arrow shows 

the proton transfer in the reaction H2O + O
2-

 → OH
-
 + OH

-
. Coordinating bonds are depicted as 

black lines. An oxygen ligand (H2O) in channel T3 from the structure (pdb entry 6RGP) was 

included in the model. 
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The model includes atoms of eight histidine residues. Residues His 67, His 454, His 110, His 

402, His 112, His 452 coordinate the pair of T3 copper ions. Residues His 65 and His 400 

coordinate the T2 copper ion. For DFT calculations, the polypeptide chain was truncated and 

each beta carbon of the residues is replaced by a methyl cap. The model includes three TNC 

copper ions in the oxidized state Cu(II) and four oxygen ligands from the X-ray data structure 

corresponding to the oxidized state of TNC. Three of them are ligands W1, W2 and W3 (Fig. 1a) 

and the fourth one is oxygen ligand near to W3 in the T3 channel. In all calculations the oxygen 

atoms of ligands W3 and W2 were retained. Due to steric restrictions inside the trinuclear 

cluster, two positions of hydrogen of the central OH
-
 ion are only possible: “above” and “below” 

the plane of copper ions triangle, almost perpendicular to the plane. Both of them have been 

studied in following geometry optimization and DFT calculations. In the following text they will 

be called positions “up” and “down”. Further in this section we also denote the state of the 

system according to the protonation state of oxygen ligands W1, W2, and W3 as (W1,W2,W3) 

(for example, (O
2-

,H2O,H2O)). 

    The study included several DFT calculations. Two ones were done with the central oxygen 

ligand (as O
2-

 and OH
-
 ion) released to determine its calculated positions. A particular QM study 

was pointed to determine the transition state at the proton transfer from H2O at position W3 to 

O
2-

 at position W1 in order to evaluate the potential barrier of this reaction. Finally energies of 

the three states ((O
2-

,H2O,H2O), the transition state, (OH
-
up,H2O,OH

-
)) were calculated. Energy 

of state (OH
-
down,H2O,OH

-
)) was calculated separately. 

    The QM calculations revealed that W1 O
2-

 ion of the oxidized form should get a proton from 

oxygen ligand W3 if the latter one is a water molecule. We considered: (i) the coordinate shifts 

of both protonated (OH
-
) and deprotonated (O

2-
) ions in respect to the T2 copper atom when 

constraint was removed for W1 oxygen specimen; (ii) energy of proton transfer from W3 water 

molecule to W1 O
2-

 oxygen ligand. Results of QM calculations are as follows. 

(i) The DFT-determined position of W1 ligand was found close to its position in the X-ray data 

structure. In the case of released protonated W1, the oxygen atom shift relative to the T2 copper 

ion position accounted for 0.03 Å compared to the input structure from X-ray data, whereas such 

a shift consisted about 0.12 Å for deprotonated oxygen O
2-

.  

(ii) Using QST3 algorithm (Peng and Schlegel, 1993), there was studied the transition state of 

the proton transfer from water molecule W3 to fully deprotonated ion of oxygen O
2-

 at position 

W1: H2O + O
2-

 → 2 OH
-
.  Results of energy calculations for different states of the system are 

collected in Table 1. As one can see, the potential barrier is high enough (~ 18 kcal/mole), but 

the final state (OH
-
,H2O,OH

-
) has a noticeable lower energy than the initial state (decreased by ~ 
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-20 kcal/mole) and there is a relatively small difference between two states of the hydroxyl ion 

(hydrogen atom “up” and “down” ) of about 6 kcal/mole.  

   It should be noted that we used H2O as ligand W2 (Fig. 2), but in a case of OH
-
 instead of H2O 

this energy difference in a favor of a hydroxyl ion at W1 would only be higher, as the proton is 

additionally attracted by the negatively charged hydroxyl ion at W2. 

 

 

Table 1. DFT calculations of state energy differences at a proton transfer from oxygen ligand 

W3 (H2O) to oxygen ligand W1 (O
2-

).  

 

            - E = E2 – E1, kcal/mol 

                          2 

       state 

              1   

(O
2-

,H2O,H2O) transition 

state  

(OH
-
up,H2O,OH

-
) (OH

-
down,H2O,OH

-
)

a
 

(O
2-

,H2O,H2O)             -      18.4     -27.1      -21.6 

transition state           -     -45.5               - 

(OH
-
up, H2O,OH

-
)                -         5.5 

(OH
-
down, H2O,OH

-
)                  - 

a
 The transition state was not studied for this reaction product.  

 

 

3.2. Protonation of W3 oxygen ligand in the oxidized state of TNC. 

      The molecular model for DFT calculations is shown in Fig. 3. Transfer of a proton from the 

neighboring oxygen ligand in the T3 channel as a hydroxonium cation to W3 OH
-
 was 

considered. The protonation of oxygen ligand at position W3 is estimated via the difference of 

DFT-calculated energies of these two states. The input structure in calculation setup comprised 

T3 channel including acetate fragment of Asp 456, phenol group of Tyr 117 as a hydrogen-bond 

donor and extended part of His 454 residues. The O-H bond lengths in hydroxonium cation were 

fixed. The model was constructed so as all molecular fragments involved can form hydrogen 

bonds with water molecules chosen in channel T3 or interact with them via long-range 

electrostatics. 
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Figure 3. The TNC surroundings for DFT calculations of the proton transfer from hydroxonium 

cation H3O
+
 to the neighboring oxygen ligand W3 (OH

-
): H3O

+
 + OH

-
 → 2H2O. The central 

oxygen ligand is presented as a hydroxyl ion (OH
-
). The copper ion coordinating bonds and 

covalent bonds are depicted as black lines. Three more oxygen ligands in channel T3 in addition 

to the W3 ligand (pdb entry 6RGP) are added to model. 

 

    The DFT calculation results suggest that the system energy grows at the proton transfer from 

hydroxonium cation located at a position of the next towards T3 channel entrance oxygen atom 

to the hydroxyl ion at position W3: the energy difference consists +6.28 kcal/mol. Thus, 

according to this calculation, oxygen ligand W3 should be treated as OH
-
. However, it will be 

H2O in reality (see section Discussion).  

 

3.3. Protonation of oxygen ligand W3 in the reduced state of TNC. 

    The protonation of W3 in the reduced state of TNC (Fig. 1b) was studied via DFT-calculated 

energies for a system similar to considered for oxidized TNC. The only difference is absence of 

the W1 oxygen ligand, all three copper ions are reduced to Cu(I) and both W2 and W3 are 
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retained via electrostatic interactions (Fig. 4). In this case we consider two proton transfers in the 

channel, i.e. energies of three systems are calculated. 

 

Figure 4. T3 channel environment chosen for DFT calculations of three states to explore 

protonation of oxygen ligand W3 when the TNC is reduced. The electrostatic interactions are 

shown as dotted lines. The coordinating and covalent bonds are shown as solid lines. 

 

    The DFT-calculated results unambiguously suggest in favor of a water molecule as ligand W3. 

The energy differences are given in Table2 where we describe the state as (W3+2,W3+1,W3) 

with W3+1 and W3+2 denoting first and second oxygen ligand from the W3 oxygen ligand in 

the channel, respectively. These results are in accordance with expectations since induced 

polarization of an oxygen molecule would hardly be competitive with doubled energy of ionic 

pairs OH
-
–Cu

+
 to approach the pair of copper ions T3. On the other hand, competition between 

an induced dipole of molecular oxygen and a permanent dipole of a water molecule looks 

plausible enough. 
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Table 2. DFT-calculated energy differences for states with different protonation of oxygen 

ligand W3 and neighboring oxygen ligands at proton transfer shown in Fig. 4. 

 

             - E = E2 – E1, kcal/mol 

                          2 

       state 

              1   

(H3O
+
,H2O,OH

-
) (H2O,H3O

+
,OH

-
) (H2O,H2O,H2O) 

(H3O
+
,H2O,OH

-
)             -        -13.0        -31.2 

(H2O,H3O
+
,OH

-
)              -        -18.2 

(H2O,H2O,H2O)                - 

 

 

3.4. Protonation of the W2 oxygen ligand in the reduced state of TNC. 

    In this section we describe results of DFT calculations for the reduced state of TNC (Fig. 1b). 

To determine protonation of oxygen ligand W2, energies of states with the W2 oxygen ligand as 

H2O and OH
-
 are compared. The TNC environment chosen as a model of DFT calculations is 

shown in Fig. 5. Energies of three states of the system are calculated. In this section we will 

denote each state as (W2+2,W2+1,W2) with W2+1 and W2+2 denoting first and second oxygen 

ligand from oxygen ligand W2 in the channel, respectively. Then three states considered will be 

 (H3O
+
,H2O,OH

-
), (H2O,H3O

+
,OH

-
) and (H2O,H2O,H2O).  
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Figure 5. DFT calculations model chosen for a proton transfer along the water molecules chain 

of the T2 channel to OH
-
 at position W2(I) in the reduced state of TNC. Oxygen ligands H3O

+
, 

H2O, and OH
-
 (W2) correspond to the proton transfer chain (marked by the green arrow), other 

two oxygen ligands in channel T2 are water molecules (all positions from pdb entry 6RGP). 

Purely electrostatic interactions are depicted as dashed lines. Coordinating and covalent bonds 

are shown as solid lines. See text for further details.  

 

    The model includes two protein chains surrounding channel T2. Uncharged amino acid side 

chains are replaced by methyl groups.  Residues and backbone atoms involved into forming a net 

of hydrogen bonds with water molecules in the channel are described in more details. Positions 

of water molecules are taken from the X-ray data structure. Five water molecules in the T2 

channel are included in the model: three ones on the way to the exit from the channel (including 

ligand W2) and two ones linking the W2 ligand and Asp 78 connected to His 402 by a non-

covalent bond (His 402, in return, coordinates one of the T3 copper ions). The last aspartic acid 

was assumed to play an important role as a proton acceptor in the scheme of oxygen reduction in 

TNC discussed earlier (Jones and Solomon, 2015). In our QM study we consider just a transfer 

of a proton in the T2 channel from outside. We compare energy of two states: the second water 

molecule from the W2 ligand (OH
-
) is a hydroxonium cation (H3O

+
) versus two H2O molecules 

as these two ligands. In other words, we consider a proton transfer along the T2 channel to the 

hydroxyl ion as ligand W2 in the reduced state of TNC. Now the starting position of W2(I) is 

taken from coordinates interpreted for the reduced TNC (pdb entry 6RGP, Fig. 1b) and ligand 

W3 is treated as a water molecule (Fig. 5). One more water molecule next to W3 is also included 

in the model. 

    There were performed geometry optimizations without any spatial constraints for oxygen 

ligand W2 for both states of its protonation (OH
-
 and H2O). As follows from those optimizations, 

the shift of oxygen atom from its X-ray-determined position towards Cu(I) ion T2 is negligible 

(0.02 Å), whereas the hydroxyl ion appeared notably closer to the T2 ion (shift of 0.32 Å), which 

is beyond statistical uncertainty of the structure solution from X-ray data. Thus, these results of 

optimizations are in accordance with interpretation of oxygen ligand W2 as H2O. 

     Results of calculations TPSSh/6-31G
**

 also suggest in favor of a water molecule at position 

W2(I) for the reduced state of TNC. Indeed, a proton transfer from the third oxygen ligand in the 

T2 channel to hydroxyl ion at position W2(I) is energetically quite favorable (46.8 kcal/mol). 

Results of energy DFT calculations are given in Table 3. It should be noted that replacement of a 

water molecule as ligand W3 by a hydroxyl ion only increases this difference in favor of H2O as 

the W2 ligand since a hydroxyl ion attracts the transferred proton.  
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Table 3. DFT-calculated energy differences for states with different protonation of oxygen 

ligand W2 and neighboring oxygen ligands at proton transfer shown in Fig. 5. 

 

             - E = E2 – E1, kcal/mol 

                          2 

       state 

              1   

(H3O
+
,H2O,OH

-
) (H2O,H3O

+
,OH

-
) (H2O,H2O,H2O) 

(H3O
+
,H2O,OH

-
)             -          -5.3        -46.8 

(H2O,H3O
+
,OH

-
)          -        -41.5 

(H2O,H2O,H2O)                - 

 

 

3.5. Protonation of the W2 oxygen for the oxidized state of TNC. 

     The model to estimate protonation of the W2 oxygen ligand in the oxidized state of TNC 

(Fig. 1a) is similar to one discussed in the previous section. The only difference is coordinates of 

TNC copper ions and oxygen ligands W1, W2 and W3 taken from the TNC oxidized state 

interpreted from X-ray data (pdb entry 6RGP). The model is shown in Fig. 6. Similar to section 

3.4, there were calculated energies of the system at a consequent transfer of a proton from the 

second water molecule in the T2 channel to a hydroxyl ion at position W2(II). As before, we 

describe the state as (W2+2,W2+1,W2), where W2+2 is the second oxygen ligand from oxygen 

ligand W2 and W2+1 is the oxygen ligand next to the W2 oxygen ligand in the T2 channel. 

Results of DFT calculations suggest in favor of a water molecule as the W2 oxygen ligand when 

the TNC is oxidized. The energy difference between states (H2O,H2O,H2O) and (H3O
+
,H2O,OH

-
) 

is -3.8 kcal/mol. Thus, the energy difference for proton transfer to a hydroxyl ion at position 

W2(II) through two water molecules along the T2 channel is low but still negative. 
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Figure 6. DFT calculations model chosen for a proton transfer along the water molecules chain 

of the T2 channel to OH
-
 at position W2(II) in the oxidized state of TNC. Oxygen ligands H3O

+
, 

H2O, and OH
-
 (W2) correspond to the proton transfer chain (marked by the green arrow), other 

two oxygen ligands are water molecules (all positions from pdb entry 6RGP). Coordinating and 

covalent bonds are shown as solid lines. See text for further details. 

 

 

 

4. Discussion and conclusions 

 

    The present work is a development of the study of molecular oxygen reduction in laccases 

(Polyakov et al., 2017; Polyakov et al., 2019). The previous exploration was entirely based on 

X-ray mono-crystal serial data with increasing absorbed radiation dose at subatomic resolution. 

Those studies allowed the process of molecular oxygen reduction in TNC to be traced and there 

were determined the TNC structures in its two stable states (NI and reduced states, Fig. 1). In the 

present work the protonation of laccase’s oxygen ligands in these two stable states is estimated 

via QM DFT calculations. For the NI state it is shown that oxygen ligand W1 should be a 

hydroxyl ion, oxygen ligand W2 should be a water molecule, and the preferable form of oxygen 

ligand W3 should be a water molecule as well, although from the QM calculations it appears to 

be a hydroxyl ion (see below). For hydroxyl ion at position W1 there are two distinct states that 
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differ by location of its hydrogen atom in respect of the three copper ions plane. It was found that 

the energies of these two states are close to each other (the difference of ~ 6 kcal/mol). A 

particular study revealed the energy barrier at the W1 oxygen ligand protonation which was 

found about 20 kcal/mol. For the reduced state of the TNC, oxygen ligand W2 and W3 should be 

water molecules.  

    In the present study for QM calculations, coordinates of non-hydrogen atoms were taken from 

X-ray data solved at subatomic resolution. This allowed us not to perform molecular mechanics 

optimization and QM optimization for a relatively large system which might bring additional 

errors. Also, it allowed us to restrain the study by a small number of models without studying 

various possible placements of the TNC atoms for different states of oxidation as was needed in 

previous researches (Rulisek et al., 2005).  

   The QM calculations included TNC’s adjacent environment in gas phase. Such an approach is 

possible due to the fact that the TNC is immersed into hydrophobic core of the laccase 

macromolecule. An impact of protein’s distant atoms was neglected. Only impact of the mean 

electric field created in TNC area by the charges of the macromolecule’s outer parts can be taken 

into account. But this contribution cannot be high, because a few Angstroms move of a unit 

charge is only considered. At least it should be much less than a change of the electrostatic 

potential of a field created by nearby present three copper ions, hydroxyl ions and a couple of 

charged groups in the channels.   

     In the QM calculations only transfers of a proton from neighboring water molecules to 

oxygen ligand (W1, W2 and W3) are considered as the crucial contribution into an estimation of 

unknown protonation of the ligands. Indeed, the true energy of protonation of the oxygen ligands 

should be calculated with inclusion of proton migration along the entire channels from the bulk 

to the TNC oxygen ligands. Such a QM task is beyond our reach. But we do not need to solve 

this problem. For both channels water molecules form a continuous chain connected by 

hydrogen bonds. It means that proton can be transferred between neighboring water molecules 

easily. For channel T3 we just know that protons are transferred along the channel, as they are 

required for the reaction of the molecular oxygen reduction in the TNC. The main contributor of 

the protonation of ligands W2 or W3 is expected to be the last moves of protons in the strong 

repulsive field of the TNC copper cations that has been considered in the present models. 

     At this point, it should be mentioned that even if the errors of the full proton transfer count up 

to several kT, the conclusions of this protonation study would not be changed. The occupancies 

of protonated ligands appears as NHOH/NOH = (NHOH
B
 / NOH

B
) exp(-EP/kT), where NHOH

B
 and 

NOH
B
 are numbers of water molecules and hydroxyl ions in the bulk solvent outside the protein 

and EP is the thermodynamically averaged work of proton transfer from the bulk to the 
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protonated ligand. Assuming the biggest part of this work as the change of the system energy 

studied in models considered, we obtain for protonation of, e.g., W3 in the oxidized state of TNC 

(section 3.2) that exp(-EP/kT) will be 2.5•10
-5

 at T = 298K (that corresponds to EP = 6.3 

kcal/mol). On the other hand, even at pH = 7, the multiplier NHOH
B
 / NOH

B
 is 10

7
 and it will be 

higher in acidic environment where fungal laccases function. Therefore, even in this case one 

should expect rather a water molecule as ligand W3 than a hydroxyl ion there. In all other cases 

of ligands W2 and W3 studied we should find water molecules at these places. 

   The reported results are in accordance with the scheme of the molecular oxygen reduction 

discussed (Polyakov et al., 2017). That scheme was entirely deduced from interpretation of serial 

X-ray data. In the present work we have confirmed the suggested in the scheme protonation of 

oxygen ligands W1, W2, and W3 in the NI and reduced state of the TNC determined from X-ray 

data. Finding the preferable form of the W2 ligand as a water molecule for the oxidized NI state 

confirms the scheme (Polyakov et al., 2017) and contradicts to the previously discussed scheme 

(Jones and Solomon, 2015). Anyhow, the intermediate and short-living PI state and the cleavage 

of the peroxide covalent bond require further QM studies. 
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