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ABSTRACT 
This study investigates the photo-induced C–X borylation reaction of aryl halides by forming a halogen-bonding 

complex. The method employs 2-naphthol as a halogen-bonding acceptor and proceeds under mild conditions 

without a photoredox catalyst under 420 nm blue light irradiation. The method is highly chemoselective, broadly 

functional group tolerant, and provides concise access to corresponding boronate esters. Mechanistic studies reveal 

that forming the halogen-bonding complex between aryl halide and naphthol acts as an electron donor-acceptor 

complex to furnish aryl radicals through photo-induced electron transfer. 

 

INTRODUCTION 
Visible light-mediated photoexcitation of small molecules has been used for various useful reactions to specific 

reactivity derived from electrically excited open-shell chemical species.1 On the contrary, direct photochemical 

activation of small molecules requires strong energy such as ultraviolet light. Moreover, indirect methods via 

activation of expensive transition metal-based photocatalysts with visible light response are frequently used.2 

Photochemical reactions using electron donor-acceptor (EDA) complexes, a new type of non-covalent bonding 

proposed by Mulliken, have recently attracted much attention as an alternative methodology to photocatalysis.3 

EDA complexes are formed by the coordination between two molecules, such as electron donors and electron 

acceptors. In many cases, the energy of this transition is in the visible light region, and one electron is transferred 

from the electron donor to the electron acceptor, leading to a reactive open-shell intermediate (Figure 1a).4 Various 

aggregation modes of EDA complexes are reported, and p-p interactions and hydrogen bonds are frequently used 

in the organic photochemistry, but recently n-s interactions such as halogen-bonding interactions have been 

attracting attention.5 
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Halogen-bonding interactions compared with other intermolecular non-covalent interactions such as hydrogen 

bonding possess an advantage: the halogen-bond interaction has a greater directionality mainly, due to which, the 

positive electrostatic potential region, σ-hole, is located at the center of the C-X axis, resulting in a nearly linear 

structure with an angle of 160° to 180°.6 Moreover, since the photochemical activation of EDA complex through 

halogen-bonding interaction is the aggregation between the organic halide and the electron donor, selective 

activation of the organic halide and generation of radical carbon species only by fragmentation of the anion radical 

species generated are potentially possible. (Figure 1b).5 

 

 

Figure 1. (a) Classical EDA complex theory. (b) A halogen-bonding strategy to produce C-centered radical species. 

PET: photo-induced electron transfer.  

 

Arylboronic esters have been recognized as useful reagents and building blocks in contemporary synthetic organic 

chemistry due to many catalytic C–C bond formations, such as Suzuki-Miyaura cross-coupling.7 The classical 

method for the preparation of aryl boronates is the reaction using pyropholic lithium reagents (RLi) or Grignard 

reagents (RMgX) with boron-based electrophiles (Scheme 1a).8 On the contrary, the transition-metal-catalyzed 

borylation reaction as an alternative approach to constructing C(sp2)–B bond has been developed from haloarenes 

and aromatic hydrocarbons as the corresponding boronic acids/esters.9–15 These are robust methodologies to produce 

organoboron compounds. However, they require expensive transition metal catalysts and high temperatures. Hence, 

there has been much interest in developing alternative methods using photoreaction in recent years.16 For example, 

the “UV light” induced borylation of haloarenes using quaternary aryl ammonium salts under transition metal-free 

conditions was reported by Li et al.17 and Larionov et al.18 Moreover, Jiao and coworkers reported a noble 

organocatalytic reaction for the borylation of unactivated aryl chlorides by photoactivation of in situ-generated SED 

(single electron donor) complex.19 The key to this photo-induced borylation is the formation of aryl radicals. 
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Therefore, we estimated that developing a simple and rapid methodology for generating aryl radicals would lead to 

novel photo-induced borylation. 

We have recently developed the use of an in situ-generated halogen-bonding complex to enable the photo-induced 

transformation of olefins via ATRA reactions.20 Therefore, inspired by the methods, we started to challenge the 

development of the direct borylation of aryl halides using halogen-bonding interaction (Scheme 1b). Herein, we 

report a photochemical C–X bond borylation reaction using novel aryl radical generation strategy through the 

halogen-bonding EDA complex.  

 

 
Scheme 1. (a) Traditional borylation tachnology. (b) This work: photo-induced C–X borylation mediated by 

halogen-bonding complex. 

 

RESULTS AND DISCUSSION 
To validate our proposal, we studied the radical borylation reaction of haloarenes 1. Present experiments were 

conducted in acetonitrile (MeCN) using commercially available bis (pinacolato) diboron 2a as a cheap and stable 

boron source. Our overarching goal was to define a strategy that permits the predictable and mild activation of 

substrates that would be inert to other practical approaches, including photoredox catalysis. Therefore, 4-

iodoanisole 1a, which is difficult to activate by photocatalysis reductively, was selected as the precursor of aryl 

radicals.21 After carefully screening the conditions, it was found that the optimal reaction conditions include the use 

of a 3 W 420 nm LED as the light source, MeCN as the solvent, and performing the reaction at room temperature 

under Ar atmosphere to furnish the desired borylation product 4a in 92% yield (Table 1, entry 1).22 According to 

the base screening results, we found that NaOH and KOH were also an efficient base for the photochemical C–I 

borylation reaction (entry 1 vs. entries 2–5). Other solvents, such as THF, MeOH, and DMF, were proved inferior 

(entries 6–8). Control experiments revealed the essential role of K2CO3, 2-NpOH, and photoirradiation on the 

observed reactivity (entries 9–11). The desired borylated product 4a was formed when the reaction was under an 

oxygen atmosphere, albeit in a slightly low yield (entry 12). Finally, when a catalytic amount of 2-NpOH was 

employed, the borylation reaction proceeded catalytically, albeit the yield of the desired product decreased (entry 

13). 
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Table 1. Optimization study for C–I borylation reaction of 1aa. 

 
Entry Changed from standard conditions Yield (%) 

1 - 95(92) 

2 Na2CO3 instead of K2CO3 10 

3 Cs2CO3 instead of K2CO3 87 

4 NaOH instead of K2CO3 94 

5 KOH instead of K2CO3 93 

6 THF instead of MeCN 10 

7 MeOH instead of MeCN 29 

8 DMF instead of MeCN 50 

9 w/o K2CO3 3 

10 w/o 2-NpOH (3a) 10 

11 dark or dark at 50 ºC trace 

12 under O2 64 

13 3a (0.1 equiv) 64 
a Yield was determined by 1H NMR analysis of crude reaction mixture using 1,1,2,2 tetrachloroethane as an internal 

standard. The number in parenthesis is isolated yield. 

 
Further, we explored the scope of the photo-induced borylation using optimized reaction conditions (Figure 2). 

Iodoarenes with electron-donating substituents, regardless of the substitution pattern, were converted to the 

corresponding arylboronic esters in moderate to excellent yields (4a-g). Moreover, a scale-up experiment was also 

conducted to furnish corresponding boronate (4a) ester in 81% yield. The sterically hindered substrates 1h and 1i 

reacted well to give arylboronate 4h and 4i in moderate yields. Naturally, the unsubstituted haloarene 1j reacted 

sufficiently to obtain the desired product 4j. Additionally, we have shown that bromoarene 2j can also be adapted 

using a strong base, albeit in moderate boronate ester yield (KOtBu). Borylation of halogenated iodoarenes bearing 

fluoro (4k), chloro (4l), bromo (4m), and iodo (4n) groups was also demonstrated. Fluorine substituents with weak 

ability as halogen-bonding donors gave the corresponding borylated products in good yields, but for chlorine-, 

bromine-, and iodine-substituted substrates, undesired diborylation reactions proceeded, and the yields significantly 

decreased. Unfortunately, although haloarenes with strong electron-deficient substituents, such as CF3 groups (4u 

and 4v) are known to be good halogen-bonding donors, the borylation reaction did not proceed properly under 
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optimal reaction conditions. Furthermore, aryl halides with carbonyls (4q-t), such as ketones, aldehydes, esters, and 

cyanides, which are unstable under basic conditions, gave the desired borylated products (5q-t) without 

decomposition in any case under the reaction conditions.19 It should be noted that the borylation reaction proceeded 

smoothly even with relatively inert bromoarenes. Interestingly, in the case of 4-halo benzaldehyde (4s), the reaction 

proceeds without adding phenol as a halogen-bonding acceptor, suggesting that the C–X bond’s direct hemolysis 

may proceed a different pathway for this substrate.23 Substrates with protected or unprotected hydroxyl or amino 

groups could be converted smoothly to the corresponding borylation products (4u–4ai). Although these substrates 

(1u–1ai) may interfere with the halogen-bond formation, they were used in this reaction without yield loss. The fact 

that unprotected phenols and anilines can be directly converted to boronates suggests that the reaction is highly 

valuable. Excellent yields were obtained for the biphenyl and naphthyl substrate (4aj–4al). The halogen-bonding 

interaction initiated the borylation reaction of aromatic halide, promoted by phenol 2, provided a range of borylated 

heteroarenes in moderate to excellent yield (4am–4au). Additionally, the borylated substrate (B(pin); 1av and 

B(dan); 1aw) also applied to the present borylation; the C–I bond was converted to C–B bond in 92% for 4av and 

60% for 4aw, respectively. 

Further experiments demonstrated that this method is compatible with the functionalization of biorelevant 

compounds. It allowed the late-stage introduction of boronate ester into menthol-derived aryl iodide (1ax) and 

protected glucose-derived aryl iodide (1ay) in a single step. Finally, we applied our strategy to perform other boron 

sources, such as bis (neopentyl glycolato) diboron (2b) and bis (hexylene glycolato) diboron (2c). This 

transformation, using other boron sources, afforded the corresponding borylated product (5a and 5b) in excellent 

yield. However, the use of tetrahydroxydiboron resulted in no reaction, which is suspected to be due to the acid-

base reaction between diboron and the base proceeded. 



6 

 

 
Figure 2. Substrate scope for C–I borylation reaction. Reaction conditions: 1, 2, or 3 (0.1 mmol, 1.0 equiv), 

diboron reagents (3.0 equiv), K2CO3 (3.0 equiv), 2-NpOH (1.0 equiv) in 1.0 mL of MeCN, irradiated under 420 nm 

LED at room temperature for 20 h. Yields of isolated products are reported. a 1-NpOH (1.0 equiv) was used instead 

of 2-NpOH. b KOtBu (1.0 equiv) was used instead of K2CO3. 
c 2,6-Cl2-C6H3OH (1.0 equiv) was used instead of 2-
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NpOH. d Without 2-NpOH. e After column chromatography, the deprotected product was isolated.24 f 4-Ph-C6H4OH 

(1.0 equiv) was used instead of 2-NpOH. 

 

Several controlled experiments were carried out (Scheme 3). We hypothesize that the aryl radicals are generated 

by forming EDA complexes and irreversible fragmentation through PET, as shown in Scheme 3a. First, the effect 

of phenolic hydroxyl groups was investigated (Scheme 3b). The reaction using preformed potassium naphthoxide 

gave the corresponding boronate (4a). In contrast, the reaction did not proceed when corresponding methyl-

protected naphthol was used. This is indicated that the phenoxide formed from phenol with base in the reaction 

mixture may have promoted the reaction. We also discovered that 2-NpOK was used instead of 2-NpOH in MeCN, 

showing a significant redshift to the visible region when preformed. The shoulder peak was observed at 

approximately 420–450 nm (Scheme 3b, blue line vs. gray line). The addition of iodobenzene did not affect their 

UV absorption (Scheme 3b, orange line). Moreover, we observed the formation of a 1:1 complex between 2-

naphtoxide and 1a with a binding constant (Ka) of 0.99 M−1 in DMSO-d6 using a 1H NMR titration method and 

Job’s plot analysis (Scheme 3c, See ESI, Figure S1–4). Since these results are similar to the previous results5e and 

are sufficient to rule out the formation of EDA complexes by p-p* interaction or n-p* interaction, such as the 

independent reporting by Miyake and Melchior,25,26 we hypothesize that the formation of EDA complexes by 

halogen-bonding interactions is the key to initiating the reaction. 

We performed several controlled experiments to determine aryl radical generation through PET after forming EDA 

complexes through halogen-bonding interaction (Scheme 3d). When the reaction using 2-iodo-allylphenol 1az was 

used as a substrate, borylation reaction proceeded after radical cyclization reaction to furnish 4az in 39% yield 

(Scheme 3d, eq. 1). Moreover, methyl 2-iodobenzoate 1ba to the reaction resulted in no desired product formation 

and gave the C–C and C–O forming cyclic product 6 in 11% yield (Scheme 3d, eq. 2). This byproduct is thought to 

be formed by a similar pathway as that using hypervalent iodine compounds by Miyake.25 Therefore, the aryl radical 

intermediate formed after PET reacts with the phenoxy radical to form a C–C bond. The byproduct can be obtained 

by rearrangement and removal of water.27 When the reaction was subjected to the optimized condition with the 

addition of radical scavengers, such as TEMPO, the desired product formation was significantly suppressed; instead, 

the formation of TEMPO adducts of aryl radicals 7a was obtained (Scheme 3d, eq. 3).28 At the same time, 7b is 

formed by the reaction of TEMPO with the acetonitrile radical generated by the hydrogen atom abstraction from 

acetonitrile by the phenoxy radical generated in situ.29 
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Scheme 3. Controlled experiments. (a) A plausible mechanism for aryl radical generation step. (b) The reaction 

employs potassium 2-naphtoxide and 2-MeO-Np and UV/Vis spectrum. (c) Investigation of binding stoichiometry 

and association constant. (d) Intermolecular and intramolecular radical trapping experiments. a Isolated yield. 

 

Based on the previously reported results and our experimental evidence, the possible reaction pathway for 

geeeranting the aryl radical is shown in Scheme 4.5e,25,30,31. The reaction was initiated by photoexcitation of the 

halogen-bonding complex A to produce the excited state B under irradiation of 420 nm LED. The photoexcitation 

of B undergoes ET to an aryl halide, producing an aryl radical anion C and phenoxy radical. After the fragmentation 

of C, the generated aryl radical D reacts with the in situ formed borate E to produce an arylboronate 4 and boryl 

radical anion F.31 The radical anion F can also be viewed as an anionic based stabilized boryl radical. Finally, F is 

oxidized by the phenoxy radical to form the borate G. 

I

O

acceptor

donor
I O

I
O

I

O

BET

PET

π-π interaction halogen-bonding
interaction

EDA-complex

or

aryl radical
generation

+ I-

IMeO

1a

420 nm LEDB2(pin)2

3.0 equiv

BMeO
O

O
Me

Me
Me

Me4a
Additive:             2-NpOK  (3b-K)

I

1az

420 nm LED
K2CO3 (3.0 equiv)

2-NpOH (1.0 equiv)
MeCN (1.0 mL)

Ar, r.t., 20 h
0.1 mmol 3.0 equiv

4az
39 %

O O

B
O

O Me
Me

Me
Me

I

1ba

420 nm LED
K2CO3 (3.0 equiv)

2-NpOH (1.0 equiv)
MeCN (1.0 mL)

Ar, r.t., 20 h
0.1 mmol 3.0 equiv

CO2Me O
O

6
11%

detected by 1H NMR

MeCN (1.0 mL)
Ar, r.t., 20 h2a

  2-NpOMe, K2CO3

; 52% yield
; trace

2a

2a

b. Effect of phenol moiety

d. Radical trraping experiment

1q

3.0 equiv

4q
MeCN (1.0 mL)

Ar, r.t., 20 h
2a

420 nm LED
K2CO3 (3.0 equiv)
TEMPO (3.0 equiv)
2-NpOH (1.0 equiv)

21%
NMR yield

N
Me
MeMe

Me

OAr

N
Me
MeMe

Me

O

7a 7b

CN

28%
NMR yield

(1)

(2)

(3)

a. Plausible mechanism for aryl radical generation

1a

KO

3b-K

Ka = 0.99 M-1

I O

1:1 complex formed

c. Binding stoichiometry and
 association constant

0

1

2

300 350 400 450

Ar-I
2-NpOH
2-NpOK

Ar-I + 2-NpOK

wavelength (nm)

ab
so

rb
an

ce
 (a

. u
.) 

36%
Ar = 4-MeO2CC6H4



9 

 

 

 
Scheme 4. Plausible reaction mechanism for photo-induced borylation reaction aryl halide.  

 

CONCLUSION 
In summary, the photo-induced borylation of aryl halides promoted by phenol derivatives via halogen bonding was 

investigated. The borylation of aryl halides with B2(pin)2 afforded various products in moderate to good yields when 

irradiated at 420 nm. The photoactivated borylation from our study revealed that an EDA complex between aryl 

halides and phenoxides was a crucial intermediate in the subsequent charge separation processes that led to the 

formation of aryl radical. Furthermore, this is the first reported example of a methodology using phenol as an 

acceptor for the halogen-bond. Further efforts are focused on extending this new methodology to other classes of 

compounds for photocatalysis, including inactive aryl halides or alkyl halides. 
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