Kinetic Monte Carlo Modeling of Graphene Sheet
Growth During CVD

Hironori Kondof

"Harvard College, Harvard University
1954 Harvard Yard Mail Center, 1 Oxford Street, Cambridge, MA 02138
Author email: hironorikondo92@gmail.com

Abstract

Graphene is a material of key interest across several research fields.

Bulk

graphene synthesis, however, has long remained a challenge for larger-scale projects
and real-world manufacturability. This work seeks an improved understanding of
graphene sheet growth via computational modeling, with the objective of maxi-
mizing grain size. To this end, the kinetic Monte Carlo method is used to sim-
ulate chemical vapor deposition under various configurations of carbon flow and
graphene seeding. Ultimately, both quantitative and qualitative results are ob-
tained to shed light on graphene growth mechanisms, with insights into real-world
synthesis and future computational models.

Introduction and Background

In recent years, graphene has attracted
much attention within the research com-
munity. In addition to its mechanical ad-
vantages, the material has demonstrated
promising electrical properties when used
in photovoltaics,! hydrovoltaics,? transis-
tors,3 lithium-ion batteries,* and pressure-
retarded osmosis systems,” among other
applications. Bulk synthesis of graphene
hence becomes of high interest, both to re-
alize larger-scale research projects and to
enable real-world manufacturing.

One popular method of graphene syn-
thesis is via chemical vapor deposition
(CVD; see Appendix A for details) on cop-
per (Cu) subtrates,>*%7 which have been
found to yield more uniform monolayers

than other substrates.! The challenge, how-
ever, is in producing larger grain sizes via
CVD,"7 as this dictates the amount of us-
able, uniform graphene produced. Hence,
a better understanding of graphene sheet
growth is highly desired to expand the ma-
terial’s practical impact.®

To this end, this work computationally
models graphene sheet growth during CVD
on a Cu substrate, analyzing the effects of
“pre-seeding” (Fig. 1) and carbon flow
rate on grain size. At its most general, the
model focuses on four forms of movement
(henceforth “events”) within a pre-defined
hexagonal lattice: incoming carbon flow,
surface diffusion, carbon attachment, and
carbon detachment (Fig. 2). To simulate
these events, we follow a four-step process:

1) randomly seed carbon “atoms”, 2) count
the number of neighbors of each atom, 3)
apply the kinetic Monte Carlo (kMC)3?
method, and 4) repeat the cycle across sev-
eral iterations.

Figure 1. Comparison of pre-seeded (left)
and non-seeded (right) samples.

Figure 2. Schematic of all kMC' events. F
represents the flow rate of carbon atoms into
the CVD chamber, Eg; diffusion along the sub-
strate surface, Ea bond formation (i.e., at-
tachment), and Eqe bond breakage (i.e., de-
tachment). Adapted from Chen et al. 2020.%

We begin by randomly seeding carbon
“atoms” into a simulated CVD chamber,
modeled as a two-dimensional “box”. This
mimics the incoming flow of carbon, where
the number of seeded “atoms” at each iter-
ation corresponds to the physical flow rate.
From there, we count the number of neigh-
bors of each atom within the box, which
reveals the number of possible events (e.g.,
surface diffusion, forming one bond, form-
ing two bonds, etc.). From there, we can

apply kMC, which relates the energy of
each event to a corresponding probability
determined by the Boltzmann distribution.
Based on these probabilities, one particular
event is chosen for each atom, completing
one “iteration” of the simulation (details of
this calculation are expanded upon in Ap-
pendix B). The entire process is then re-
peated until the desired number of carbon
atoms has been introduced. Hence, we are
able to simulate the movement of individ-
ual atoms based on the energy required for
each event, which affects the probability of
said event occurring.

For our Cu substrate specifically, these
necessary energies are well-documented in
the existing literature. In particular, we use
values derived from first principles by Wu
et al. 2015.1° Critically, we make four ma-
jor approximations: 1) all edge diffusion is
disregarded; 2) all dimer movement is disre-
garded, making single-atom events the only
source of movement; 3) the event energies
are proportional to the number of bonds
being formed or broken, independent of the
domain geometry; and 4) the graphene is
strictly a monolayer, with the simulation
restricted to two dimensions and no “stack-
ing” of atoms permitted. Approximations
one through three are visualized below in
Figures 3 to 5, which are adapted from
Chen et al. 2020.8

Vo vV

v v Vv
v vy
v Vv vV
v v

Figure 3. A wisualization of edge diffusion,
wherein the carbon atom moves along the edge
of a graphene domain in a single event. We
instead approximate this by breaking the bond
and forming a new one in two separate events.

& UU u v Vo
U% Vo VU

v U—'U e o
v Vo VU
¢ VO v VO

Figure 4. A wvisualization of dimer rotation.
This is not possible within our model; for such
a movement to occur, the dimer must break
apart, and the atoms must move independently
to form a new bond in the new position.

v UU U

U ‘..v’u
U&J U
U QU v VU
Vo © Vo ©

v VLV v Vv
ve v UU v
v

Figure 5. A wisualization of carbon atoms
binding to different domain geometries. From
first principles, these two events have different
energies, due to the differences in the surfaces
the atoms are attaching to. We approximate
these two events to be the same, based on the
fact that only one bond is forming.

To conduct our analysis, we imple-
mented the above procedure in MATLAB
R2021a with the following parameters:

e Chamber size: 100 by 100 pixels

1000 °C
18

e Chamber temperature:
(derived from existing literature

e Possible atom locations: 5000
in total (based on the pre-defined
hexagonal lattice)

e Initial configuration: Pre-seeded,

non-seeded (conducted identically
besides the presence or omission of a
pre-seed)

e Flow rate: 20, 21 22 23 24 25 26
27,28 2% atoms per iteration (10 total
variations of flow rate)

e Total number of atoms intro-
duced: 2048 (sc. the number of it-
erations for each flow rate was differ-
ent, and each “run”, or “cycle”, of the
simulation ended when 2048 atoms
were reached)

e Number of cycles per flow &
seeding variation: 500 (i.e., each
unique configuration was run 500 sep-
arate times; each run was comprised
of several iterations and ended when
2048 atoms were introduced)

These parameters made for 500 inde-
pendent runs x 10 different flow rates
x two different initial configurations, to-
talling 10,000 independent trials (see Ap-
pendix C for details on the MATLAB
implementation). With this information,
we can determine how flow rates affect
graphene grain size for both pre-seeded
and non-seeded cases. Quantitatively, this
was done by taking the arithmetic mean
of each result across all 500 of its runs,
then plotting the changes in grain sizes and
grain counts (i.e., the number of individ-
ual graphene grains). For qualitative anal-
ysis, we converted the runs into images of
graphene lattices for visualization. Finally,
we abstracted the findings from both anal-
yses to the overall grain size distributions,
providing a better big-picture view of the
simulation results.

Results and Discussion

300

n

o

(=]
T

n

o

=3
T

Non-seeded
Pre-seeded
Control (initial seed only)

o

o

o
T

Max. grain size (number of atoms)
>
o

o
o

0
20 2! 22 22 2t 2% 28 2 28 20
Flow rate (atoms per iteration; log base 2 scale)

Figure 6. Mean mazximum grain size by car-
bon flow rate, with a control (the atom count
of the initial seed).

820

~ ~ ~ ~ @

n PN @ @ o

o o =] o o
T T

N\

Number of individual domains
S
o

Non-seeded |
Pre-seeded

fo2d

@

=3
T

D

@

=]
T

=)
B
o

2! L L A A L L
Flow rate (atoms per iteration; log base 2 scale)

N
=]

Figure 7. Mean grain count (number of indi-
vidual grains) by carbon flow rate.

We begin with our quantitative results.
Figures 6 and 7 show how mean maximum
grain size and mean grain count vary by
flow rate, respectively (reprinted larger in
Appendix D). These results shed light into
the mechanisms at play during graphene
sheet growth.

For Fig. 6, we observe that the pre-
seeded samples have consistently higher

grain sizes than the non-seeded samples. In
particular, the trends in the two clearly di-
verge: the pre-seeded samples are shown
to increase and then decrease in grain size,
while the non-seeded ones strictly decrease.
Hence, in seeking larger graphene sheets,
seeding is essential to 1) producing larger
grains and 2) enabling significant increases
in growth by controlling the flow rate.

We observe, however, that the pre-
seeded samples do not always result in
graphene growth. In particular, our first
measured instance of growth was at a flow
rate of 23 atoms /iteration; every sample be-
low this flow rate resulted in sheet shrink-
age. A potential explanation for this phe-
nomenon is that, due to the higher num-
ber of iterations necessitated by the lower
flow rates, the atoms in the initial sheet are
given more opportunities to diffuse away,
leading to an overall decrease in grain size.

We also note that, for the pre-seeded
samples, grain size does not strictly in-
crease with flow rate. Instead, there is a
local maximum at 2° atoms/iteration, af-
ter which the grain size gradually tapers
off. This phenomenon may again be ex-
plained by diffusion; instead of the sheet
fragmenting however, the now lower num-
ber of iterations are not granting newly-
seeded atoms enough opportunity to dif-
fuse towards the sheet and bind to it. In
essence, the graphene sheet becomes sur-
rounded by loose carbon atoms that have
not diffused and gathered into concrete
grains.

This finding is supported by Fig. 7,
wherein the number of grains increases
with flow rate for both the pre-seeded and
non-seeded cases. Hence, our notion that
the number of loose atoms increases with
flow rate is supported, as the total num-
ber of seeded atoms is consistent (i.e.,

2048), but the number of grains is increas-
ing. As a note, we can also observe that
the pre-seeded configurations have much
fewer grains than the non-seeded ones,
which aligns with what Fig. 6 has in-
dicated about maximum grain sizes (sc.

for the pre-seeded samples, there are more
atoms within a single grain and hence fewer
“loose” atoms).

All of these observations and explana-
tions are reflected in our qualitative analy-
sis, summarized below in Figures 8 to 13:

Figure 8. Non-seeded run with o flow rate of Figure 9. Non-seeded run with a flow rate of

8 atoms/iteration after one iteration.

8 atoms/iteration after 256 iterations.

Figure 10.
8 atoms/iteration after one iteration.

Pre-seeded run with a flow rate of Figure 11.

Pre-seeded run with a flow rate of
8 atoms/iteration after 256 iterations.

Figure 12. Pre-seeded run with a flow rate of Figure 13. Pre-seeded run with a flow rate of

32 atoms/iteration after 6 iterations.

512 atoms/iteration after 4 iterations.

These visualizations support the two over-
arching notions from our quantitative anal-
ysis:

1. Pre-seeding is instrumental to de-
veloping larger graphene grains, as
the lack of a pre-seed creates smaller
grains (Fig. 6) and scattered carbon
atoms (Fig. 7). For instance, we
see how a pre-seeded sample yields
a denser congregation of atoms to-
wards the middle (Fig. 11), whereas
a non-seeded sample becomes sparse
and fragmented (Fig. 9), despite the
same flow conditions in both cases.

2. Diffusion (which is related to flow
rate) controls the interplay between
sheet fragmentation and growth (Fig.
6). We observe that, at a low flow
rate, an initially rectangular pre-seed
(Fig. 10) becomes more sparse (Fig.

. @ D!
2 2
02 02
o [©)
5 10° 5 10°
<} <}
z z !
0 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)
L L@
2 2
02 B 02
@] [©)
5 10° 5 10°
=} S
z z
0 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)
. @ L. |
2 2
B2 B2
(O] O]
G 10° G 10°
<] <]
z z
0 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)
, @ , ®
2 2
B2 B2
(O]]
G 10° G 10°
<] <]
z z
0 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)
.0 . 0
2 2
8402 802
[©] <]
5 10° G 10°
<] <]
z n z
0 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)

Figure 14. Histogram of mean non-seeded
grain size distribution, for flow rates of (a) 2V,
(b) 2!, (c) 22, (d) 22, (e) 2%, (£) 2, (g) 2°, (h)
27, (i) 28, (j) 2° atoms per iteration.

11), indicating an outward diffusion
of atoms. If we increase the flow rate,
this outward diffusion is reduced and
the sheet ends up larger (Fig. 12);
increase the flow rate too much, how-
ever, and the product ends up look-
ing remarkably similar to the pre-seed
(Fig. 13). In essence, the atoms are
not given opportunities to flow to-
wards the largest grain and cause it to
grow. Hence, a delicate balance must
be struck, wherein atoms are given
opportunities to bind to the grain but
not diffuse outward by too much.

Hence, our observations are consistent
between both the quantitative and the
qualitative results. To further extend these
findings, we can abstract them to their ef-
fects on the overall distribution of grain
sizes (reprinted larger in Appendix D):

(a)

No. of Grains
S 3
>
No. of Grains
s 3
>
|

0 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)
d)

No. of Grains
SR=)
>
(E
No. of Grains
> 3
2

") 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)

(e) f)

10°

No. of Grains
s 3
2

No. of Grains
>
R

o] 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)
h
2 @ ‘ p (h) ‘
- I = I
T .2 T 12
I5] 10 1 I 10 1
5 10° | 5 10° |
5 | 5 |
2 " Lo 2 . | o,
o] 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)

M

=

)

o. of Grains
==
>
No. of Grains
==
2

0 100 200 300 400 0 100 200 300 400
Grain size (number of atoms) Grain size (number of atoms)
Figure 15. Histogram of mean pre-seeded
grain size distribution. Dashed lines indicate
initial pre-seed size. Refer to Fig. 14 for the
respective flow rates of the subplots.

Here, we have two key observations, which
are taken in parallel to our previous two
points:

1. The pre-seeded samples form a dis-
tinct “bump” in their distributions at
higher grain sizes (Fig. 15). This
is a reflection of our previous notion
that pre-seeding is essential to creat-
ing larger-grain graphene sheets.

2. Higher flow rates cause horizontal
compressions in the distributions,
making for sharper, cleaner peaks
(Fig. 14, 15). For the pre-seeded
samples, lower flow rates do not
yield distinguishable/sharp “bumps”
in the higher-grain-size region (Fig.
15). These both reveal the role of dif-
fusion, as previously described:

The horizontal compressions sug-
gest that higher flow rates create
less room for variability in the grain
size distribution. This in turn sug-
gests that fewer opportunities (i.e.,
iterations) are provided for atom
movement, hence yielding a more
fragmented product characterized by
more small-size grains. Previously,
we observed the same phenomenon in
Fig. 7, 13.

The formation of the high-grain-
size “bump” at high flow rates sug-
gests that, at low flow rates, even the
presence of a seed results in smaller
final grains. This implies that the
initial seeds fragment and disperse
during the CVD process, a symptom
of too much atom movement (i.e.,
too many iterations that permit too
much outward diffusion). We previ-
ously observed the same phenomenon
in Fig. 6, 11.

Hence, we observe that our quantitative
and qualitative conclusions are reflected
within the overall distributions of grain
sizes. We thus have three distinct perspec-
tives from which the same major findings
can be derived, strengthening the overall
case for our core notions.

Conclusion and Outlook

We have thus determined that pre-seeding
is instrumental to grain growth, and flow
rate controls the interplay between frag-
mentation (i.e., outward diffusion) and
binding (i.e., inward diffusion and bond
formation). Critically, we saw that lower
flow rates create more opportunity for dif-
fusion, leading to sparser products; higher
flow rates, meanwhile, limit the amount of
change from the initial seed, hence making
for a less productive process. A balance be-
tween the two must be struck to maximize
grain size, as depicted in Fig. 6. These
findings are supported by both quantita-
tive and qualitative analyses, and they are
reflected in the overall grain size distribu-
tions of our samples.

The approximations of our model lead
to limitations that should be addressed in
future works. In particular, all samples
show a high number of individual grains
(Fig. 7), most of which are very small (Fig.
14, 15). As this trait is not entirely consis-
tent with the existing literature,® the omis-
sions of dimer movement and edge diffusion
may be limiting the ability of the carbon
atoms to congregate and form larger, uni-
form sheets. Future models should attempt
to incorporate these kMC events, but im-
plementation will be more involved.

In addition, while this work addressed
CVD on Cu films specifically, its core struc-
ture can be adapted to other graphene
synthesis methods. These include CVD

on other metal films, non-monolayer pro-
cesses, and other technologies such as
Molecular Beam Epitaxy. Hence, in short,
the conclusions herein yield insight into
not only the mechanisms of graphene sheet
growth, but also expandability to other
synthesis processes and more thorough
models of atom movement.

Acknowledgements

The author thanks Alvin Hsu, Liu Group,
Harvard University Department of Chem-
istry and Chemical Biology (CCB) for
advising this work. The author also
thanks Senior Preceptor Lu Wang, Profes-
sor Kang-Kuen Ni of Harvard CCB and
members of the PS 10 teaching staff for
their guidance and supervision.

References

(1) Zhang, Y.; Zhang, L.; Zhou, C. Re-
view of Chemical Vapor Deposition of
Graphene and Related Applications.
Acc. Chem. Res. 2013, 46, 2329-2339,
DOI: 10.1021/ar300203n.

Zhang, Z.; Li, X.; Yin, J.; Xu, Y.; Fei,
W.; Xue, M.; Wang, Q.; Zhou, J.; Guo,
W. Emerging hydrovoltaic technology.
Nature Nanotech 2018, 13, 1109-1119,
DOI: 10.1038/s41565-018-0228-6.

Li, X.; Cai, W.; An, J.; Kim, S.; Nah,
J.; Yang, D.; Piner, R.; Velamakanni,
A.; Jung, I.; Tutuc, E.; Banerjee, S. K.;
Colombo, L.; Ruoff, R. S. Large-Area
Synthesis of High-Quality and Uniform
Graphene Films on Copper Foils. Sci-
ence 2009, 324, 1312-1314, DOI: 10.
1126/science.1171245.

Kucinskis, G.; Bajars, G.; Kleperis, J.
Graphene in lithium ion battery cath-
ode materials: A review. Journal of
Power Sources 2013, 240, 66-79, DOL:
10.1016/j.jpowsour.2013.03.160.

(10)

Jia, Z.; Wang, B.; Song, S.; Fan, Y. Blue
energy: Current technologies for sus-
tainable power generation from water
salinity gradient. Renewable and Sus-
tainable Energy Reviews 2014, 31, 91—
100, DOT: 10.1016/j.rser.2013.11.049.

Xu, S.; Zhang, L.; Wang, B.; Ruoff,
R. S. Chemical vapor deposition of
graphene on thin-metal films. Cell Re-
ports Physical Science 2021, 2, 100372,
DOI: 10.1016/j.xcrp.2021.100372.

Gao, L.; Guest, J. R.; Guisinger, N. P.
Epitaxial Graphene on Cu(111). Nano
Lett. 2010, 10, 3512-3516, DOL: 10.
1021 /nl1016706.

Chen, S.; Gao, J.; Srinivasan, B. M.;
Zhang, G.; Sorkin, V.; Hariharaputran,
R.; Zhang, Y.-W. An all-atom kinetic
Monte Carlo model for chemical vapor
deposition growth of graphene on Cu(1
1 1) substrate. 2020, 32, 155401, DOLI:
10.1088/1361-648X /ab62bf.

Voter, A. F. In Radiation Effects in
Solids, ed. by Sickafus, K. E.; Kotomin,
E. A.; Uberuaga, B. P., Springer, Dor-
drecht: 2007, pp 1-23, DOL: 10.1007/
978-1-4020-5295-8_1.

Wu, P.; Zhang, Y.; Cui, P.; Li, Z.; Yang,
J.; Zhang, Z. Carbon Dimers as the
Dominant Feeding Species in Epitax-
ial Growth and Morphological Phase
Transition of Graphene on Different Cu
Substrates. Phys. Rev. Lett. 2015, 114,
216102, DOL: 10.1103 /PhysRevLett.
114.216102.

A CVD Fundamentals

This work assumes a basic understanding of
the CVD process; the purpose of this sec-
tion is to fill in the fundamentals necessary
to understand the computation model. For
a more detailed look at CVD synthesis of
graphene on metal film substrates, please
refer to Zhang et al. 2013.1

At its most basic, CVD graphene syn-
thesis is comprised of three elements:

1. A gaseous carbon source (e.g., CHy)
2. A heated chamber (typically tubular)
3. A substrate

The carbon source is introduced into
the chamber at a certain rate, described in
our model as the “flow rate”. In the heat of
the chamber, the gas decomposes to yield
pure carbon, which deposits onto the sub-
strate. A graphene sheet can thus begin to
form.

The purpose of the substrate is to pro-
vide a surface onto which the carbon can
attach. It also behaves as a catalyst to
lower the energy barrier of graphene for-
mation, along with dictating the deposition
mechanism.! Within our model, this mani-
fested as the discretization of the chamber
(sc. by pre-defining a hexagonal lattice),
as well as the specific event energies used
within the kMC portion.

Though elementary, this information is
sufficient to understand our model. It is by
no means exhaustive in terms of graphene
synthesis, and it certainly does not cover all
forms and applications of CVD. Instead, it
merely serves to contextualize the method-
ology of this work.

B Kinetic Monte Carlo

Previously, this work outlined the core
tenets of the kinetic Monte Carlo method.
The purpose of this section is to elaborate
in further detail the specific mechanisms of
kMC®? as it relates to our model.

The basis of kMC lies in energy. Car-
bon atoms interacting with the Cu sub-
strate and with each other require energy;
different interactions, or “events”, require
different amounts of energy, which can be
derived from first principles.!°

kMC begins by relating each event 7 to
a given rate k;, related to the event’s energy
FE; via the Boltzmann distribution
E;
ka),
wherein v is the frequency of atomic vibra-
tion (here 1.0x 10 s7! as per existing liter-
ature®), k; is the Boltzmann constant, and
T is the chamber temperature (here chosen
to be 1000 °C, again as per existing litera-
ture!®). The sum of all possible rates for a
given atom at a given iteration is denoted
by ktot-

These rates are used to weight a ran-
dom number generator, such that the gen-
erator selects events with probabilities cor-
responding to the events’ rates. To do so,
we take the rates ki,...,ky of all possi-
ble events 1,..., M for a given atom and
stack them end-to-end in an array, of which
we can then take the cumulative sum (sc.
the first entry is kq, the second is ki + ko,
and the A" is ky + ... + k). By draw-
ing a random number r, we can select the
first event h at which the partial sum is
less than or equal to ki (i.e., h is the
greatest element of {1,..., M} for which
(k1 + ...+ kn) < rkip). This event h is
chosen to occur, and the algorithm selects
events with the correct probabilities as de-
termined by the Boltzmann distribution.

ki = vexp(—

This algorithm is visualized below in
Fig. 16. Note that, in our model, we de-
termined the possible events 1,..., M of
each atom at each iteration by counting its
neighboring atoms, along with each of their
respective neighbors (see Appendix C).

[k,] ky
ky+k;
I'Ez_ ky+katks
|3 | -
s = =
kL kTOT
@ (b)

Figure 16.
(a) Possible events are assigned rates corre-
sponding to their probabilities, here depicted
as length. A random number r is drawn,
and kiot is the total sum of the rates (i.e.,
ki +...4+kn). (b) Comparing rkiet to the cu-
mulative sums “weights” the random number
generator to select events with the correct prob-
abilities. Adapted from Voter 2007.°

Visualization of the kMC' process.

Now, we have covered the fundamentals
of how kMC selects events. There is a sec-
ondary portion that assigns time lengths to
each event, again related to a weighted ran-
dom number generator. For the purposes of
this work, however, comparing across atom
counts instead of time yielded more con-
crete insights, as doing so provides more
standardization with which to understand
grain sizes. Hence, this time-selection algo-
rithm has been omitted, but there is some
relevance to our model, as the total simula-
tion time is related to the number of itera-
tions as discussed herein. For details about
this time algorithm, refer to Voter 2007°
and Chen et al. 2020.8

C MATLAB Code

This section contains the MATLAB
R2021a code that runs the simulations.
It is a brief, reference-only outline of the
model and by no means a complete expo-
sition to its workings.

The code consists of two main elements:
a live script that processes all 10,000 runs
and gathers information about them, along
with a function stored in a standard script
that handles each individual run (which
consists of several iterations). The rough
breakdown is as follows:

e Live script

1. Initialize the variables

2. Track the indices of adjacent lat-
tice points (i.e., neighboring po-
sitions)

3. Define a vector to map the lat-
tice to a single-column vector

4. Run 500 non-seeded cycles of
the simulation (by calling the
function)

5. Gather pixel clusters per cycle
6. Sort the information into arrays

7. Repeat steps 4-6 for pre-seeded
samples

8. Gather information from the ini-
tial pre-seed (as a control)

9. Export the workspace variables
e Function

1. Gather the input variables & de-
fine the physical constants
Randomly seed atoms
Count neighbors for each atom

Run the kMC algorithm
Output the final CVD “box”

A

We begin by showing the live script, fol-
lowed directly by the function:

10

clear all

%generate CVD substrate
S = zeros(1e2,182);

%generate hexagonal lattice

5(2:181,1:1e8) = repmat([1 1 @ @;8 @ 1 1], 58, 25);
5{:,181)=5(:,1);

S(:,1) = 8;

¥create array with indices of lattice pts; the map_n is the location in S
map = find{5==1);

%inversemap_n, where n is a location in S, is a location in G
inversemap = zeros(max{map),1);
for ind = 1:5e88
inversemap{map{ind)) = ind;
end

%create contact lattice (tracking indices of adjacent lattice pts)
C = zeros(5e88,1,3);
i=8;
for indclm = 2:181
for indrow = 2:181
if s{indrow,indclm)==1
i = i+1;
SSub=zeros(102,182);
SSub{(indrow-1): {(indrow+1), (indclm-1):(indclm+1)) = S{{indrow-1):{indrow+1),{indclm-1):(indclm+1));
Ssub{indrow,indclm)=8;
loc = inversemap(SSub==1);
locraw = padarray(loc,3-length{loc),8, ‘post');
C(i,1, :)=permute{locraw,[3 2 1]);
end
end
end

%create blank graphene sheet for non-seeded samples
G = zeros(56e8,1);

%create blank graphene sheet for pre-seeded samples
GS = zeros(5e88,1);

%generate pre-seed
SSub=zeros({182,182);
SSub(40:6@,40:60)=S(40:60,40:60);
GS(inversemap(SSub==1)) = 1;

%define paramters for the simulation

vari = [1 2 4 8 16 32 64 128 256 512;2848 1824 512 256 128 64 32 16 8 4];
numlt = 5@8;

numVari = length{vari);

%allocate memory for necessary simulation variables
avGmax = zeros(1l,numVari);

avGnum = zeros(1l,numVari);

histList = zeros(l,numVari);

avGmaxS = zeros(l,numVari);

avGnums = zeros(l,numVari);

histListS = zeros(1,numVari);

Figure 17. Code for setting up the live script workspace, including defining the heragonal
lattice, tracking adjacent lattice points, allocating memory for variables, defining simulation
parameters, etc.

11

for int = 1:numVari
%extract flow and iterations information
flow = vari(1,int);
iterations = vari(2,int);

%create variable to track list of grain sizes for current configuration
pixellist = [];

%run 588 cycles of the same configuration
for int2 = 1:numlt

%run simulation

im = runSim(iterations,flow,G,C,map);

%extract information about connected atoms
CC = bwconncomp(im);
numPixels = cellfun(@numel,CC.PixelIdxList);

%record list of grain sizes
pixellList = [pixellList,numPixels];

%record maximum grain size and grain count

avGmax(int) = avGmax(int) + max(numPixels);

avGnum(int) = avGnum(int) + CC.NumObjects;
end

%define variables

pixellist = pixellist';
histLength = size(histlist,1);
pixelLength = length(pixellist);

%make sure lengths match
if histLength < pixellength

histList = padarray(histList,pixellength-histlLength,®, "'post');
else

pixellList = padarray(pixellist,histlLength-pixellLength,®, 'post');
end

%store information into histList
histList(:,int) = pixellist;

%update progress
disp("Tested unseeded vari

+ int + " of " + numVari)

end

%take averages of grain sizes and counts
av@max = avGmax/numIt;
av@num = avGnum/numIt;

Figure 18. Code for running 500 non-seeded cycles of the simulation and gathering the rele-
vant information about them for quantitative analysis.

12

for int = 1l:numVari
%extract flow and iterations information
flow = vari(l,int);
iterations = vari(2,int);

%create variable to track list of grain sizes for current configuration
pixellist = [];

%run 508 cycles of the same configuration
for int2 = 1:numlt

%run simulation

im = runSim(iterations,flow,GS,C,map);

%extract information about connected atoms
CC = bwconncomp(im);
numPixels = cellfun(@numel,CC.PixelldxlList);

%record list of grain sizes
pixelList = [pixellist,numPixels];

%record maximum grain size and grain count

avGmaxS({int) = avGmaxS({int) + max(numPixels);

avGnumS(int) = avGnumS(int) + CC.NumObjects;
end

%define variables

pixellist = pixellist';
histLength = size(histlListS,1);
pixellength = length(pixellist);

%make sure lengths match
if histlLength < pixellLength

histlListS = padarray(histlListS,pixellength-histLength,®@, 'post');
else

pixelList = padarray(pixellist,histlLength-pixellLength,@, "'post');
end

%store information into histList
histlListS(:,int) = pixellist;

%update progress
disp("Tested seeded vari

+ int + " of " + numVari)

end

%take averages of grain sizes and counts
avGmaxS = avGmaxS/numlt;
avGnumS = avGnumS/numIt;

Figure 19. Code for running 500 pre-seeded cycles of the simulation and gathering the relevant
information about them for quantitative analysis.

13

%run same process for an empty chamber with only the seed (control)
im = zeros(102,102);

im(map(GS==1)) = 1;

CC = bwconncomp(im);

numPixels = cellfun(@numel,CC.PixelIdxList);

disp(max(numPixels))

disp(CC.NumObjects)

Figure 20. Code for extracting relevant information from the initial pre-seed (as a control,
used in Fig. 6, 15).

%export variables
save("500_run_2Power.mat")

Figure 21. Code for exporting all workspace variables, such that they can be stored and used
to make figures without re-running the live script.

This concludes the live script. Next is the function that runs each cycle:

%define the code for a single run as a function

function im = runSim(it,f1,GIn,CIn,mapIn)
%gather input materials
map = mapIn;
iterations = it;

flow = f1;
GS = GIn;
C = CIn;

%define physical constants

v = 1el2; %Hz, atomic vibration

kb = 8.617e-5; %eV/K

kbT = kb*1273; ¥%temperature in K derived from literature
E=[0© 0.9 2.3;8.5 8.25 8.5]; %energies of various events

%create loop for running the iterations
for indit = 1:iterations

%determine available seeding locations
availablemap=find(GS5==0);

#seeding process

seed = randi(length(availablemap),1,flow); %generate 18 seed locations
Gloc = availablemap(seed);
GS(Gloc) = 1; %create a carbon atom at each seed location in the graphene

Figure 22. Code for extracting function inputs, defining physical constants, beginning the
iterations, and seeding new carbon atoms.

14

%now begin checking neighbors to get energies and rates
indices = find(GS==1)"; %only execute for occupied locations
for indG = indices

%define neighbor containers
NState = C(indG,1,:); %keeps track of locations of unoccupied neighbors
NMaster = repmat(3,50800,1); %keeps track of number of occupied neighbors

%begin counting neighbors
for indz = 1:3
NLoc = C(indG,1,indz);
if NLoc ~= @ Xexecute if neighbor exists
if GS(NLoc) == 1 %execute if neighbor occupied
NState(indz) = @; %remove neighbor index from NState
else Z%execute if neighbor unoccupied
NMaster(indG) = NMaster(indG)-1; %free up one neighbor
end
end
end

%count neighbors of each neighbor (same process as before)
imN = C(indG,1,:);
imN(imN==8) = []; %remove null entries (e.g., at sheet edges)
imN = permute(imN,[2 3 17);
for indG2 = imN
for indz = 1:3
NLoc = C(indG2,1,indz);
if NLoc ~= B %execute if neighbor exists
if GS(NLoc) == @ %execute if neighbor unoccupied
NMaster(indG2) = NMaster(indG2)-1; %free up one neighbor
end
end
end
end

Figure 23. Code that checks for the neighbors of each existing atom, along with each of the
neighbor’s neighbors. These are later used to run the kMC.

15

%begin kMC atom movement

currentN = NMaster(indG); %find locations to move to

if currentN < 3 %execute only if the particle can move
baselineEn = E(1, currentN+1); %determine energy to brezk bonds
R = zeros(1,3);

%generate rates for each event
for indz = 1:3
NLoc = NState(indz);
if NLoc ~= @ %execute only for possible positions
neighborN = NMaster(NLoc); %retrieve number of neighbors for that neighbor
En = baselineEn + E(2,neighborN); %add energy of diffusion/bond formation
R(indz) = v*exp(-En/(kbT)); %calculate rate of moving to that position
end
end

%now select an event to execute

%randomize the list, as it was previously sorted
i = randperm(length(R));
sortR = R(1);

%create the cumulative sum
cumR = cumsum(sortR);

%select an event

Ul = randn(); %draw random number

Rpos = find(cumR<=Ul*cumR(3),1, 'last'); %get position at
%which the condition is met

if isempty(Rpos)==0 %catch cases where nothing happens

%find which location the event corresponds to
newState = find(R==sortR(Rpos));

newStatel = randi(length(newState));

newState = NState(newState(newStateU));

%catch any potential errors (used for debugging; no final purpose)
if newState > @
GS(indG) = @; %remove current atom
GS(newState) = 1; %move atom to new position
end
end
end

Figure 24. Code that runs the complete kMC movement algorithm, from determining event
rates, to selecting an event to execute, to executing said event (as explained in Appendiz B).

end
end

%output the final CVD chamber
im = zeros(102,102);

im(map(GS==1)) = 1;
end

Figure 25. Code that ends open ifs/for loops and outputs the final result for the live script.

16

D Reprinted Figures (Select Plots Only)

300 T T T T T T
250 1 Ve .
=] S
© /
S 200 4 |
E .'/
0 /
g / Non-seeded
£ 150 ¢ / Pre-seeded R
ﬁ / Control (initial seed only)
/

‘» /
= J.f
‘w 100 - i §
o s
x -
s

50 - §

O 1 L 1 1 1 1 L 1
20 2 22 28 2v 28 28 o 28 28

Flow rate (atoms per iteration; log base 2 scale)

Figure 6. Mean mazimum grain size by carbon flow rate, with a control (the atom count of
the initial seed) (reprinted from page 4).

820 . | I I I I
800 - /// _
’/,/’
w 780 - //// _
< //
m -
E //
. - 7
-8 ///
Tg
g 740+ :
.2 __ /,,/
T ,’
£ 720 r /// 7
| ~
| ,///
é 700 - ’//// |
| ~ -~ N d d
Z 680 - - -
’/ Pre-seeded
660 - _
i | | I L L L L L
20 21 22 23 o4 2° 26 27 ” iy

Flow rate (atoms per iteration; log base 2 scale)

Figure 7. Mean grain count (number of individual grains) by carbon flow rate (reprinted from
page 4).

17

(@)

w (. T T w T T
£ i=
£ 102] £ 102 1
5 10 5 10
5 10° 1 510]
o) c
pd L : : : pd : :
0 100 200 300 400 100 300 400
Grain size (humber of atoms) Grain size (number of atoms)
(c)
w w
£ i=
£ 102 : & 102 1
5 10 b 10
5 10° 1 510 1
o) c
pd T : : : pd : :
0 100 200 300 400 100 300 400
Grain size (number of atoms) Grain size (number of atoms)
W (e.) T T W T T
= £
£ 102 . £ 102 :
B 10 ® 10
5 100 1 5 10° 1
[} =}
=z - - : - = : :
0 100 200 300 400 100 300 400
Grain size (number of atoms) Grain size (number of atoms)
. @ . : @ . .
= £
£ 102 . £ 102 1
) 10 ® 10
‘5 10° 1 5 10° 1
[} =}
z T : : : =z : :
0 100 200 300 400 100 300 400
Grain size (humber of atoms) Grain size (number of atoms)
o U . . 2
= =
£ 102 . £ 102 1
5 10 5 10
‘5 10° 1 5 10° 1
[} G
= 1 L 1 L 1 = L L
0 100 200 300 400 100 200 300 400
Grain size (humber of atoms) Grain size (number of atoms)

Figure 14. Histogram of mean non-seeded grain size distribution, for flow rates of (a) 2°, (b)
21 (c) 22, (d) 23, (e) 2%, () 2%, (g) 25, (h) 27, (i) 28, (j) 2% atoms per iteration (reprinted
from page 6).

18

g ! g !
T .2 | T L2 |
= 10 | S 10 |
2 ! 2 !
© 10 [c 10 |
o) ! c !
s | . . = el | . .
100 300 400 100 200 300 400
Grain size number of atoms) Grain size (number of atoms)
g ! g !
T 2 | T L2 |
2 ! 2 !
o 10 [o 10 |
o) ' c '
pd pd
100 100
Grain size (number of atoms} Grain size (number of atoms)
g ! 2 !
£ | i= |
© 102 © 102
=10 | =10 |
2 0 | 2 0 |
o 10 [o 10 [
[} ! =} !
=z =
100 100
Grain size (number of atoms) Grain size (number of atoms)
(9)
g ! g !
‘® 12 ' T 102 '
) 10 : ® 10 :
S 0 Y= 0
o 10 [o 10 [
; | ; |
g 11 . I.|u L . g L “u .
0 100 200 300 400 100 O 300 400
Grain size (humber of atoms) Grain size (number of atoms)
(i)
g ! g !
T 12 ! B a2 !
o) 10 : ® 10 :
‘5 10° | 5 10° |
; | ; |
2 L I L ul 1 L g L L“I I
0 100 200 300 400 100 200 300 400
Grain size (humber of atoms) Grain size (number of atoms)

Figure 15. Histogram of mean pre-seeded grain size distribution, for flow rates of (a) 29, (b)
21 (c) 22, (d) 23, (e) 24, (f) 2%, (g) 2°, (h) 27, (i) 2%, (j) 22 atoms per iteration. Dashed lines
indicate initial pre-seed size (reprinted from page 6).

19

