
1 

 

Visualizing the Avogadro Number 
 
Jesus Vicente de Julián-Ortiz* 
Departament de Química Física, Facultat de Farmàcia, Universitat de València, Av V. 
Andrés Estellés 0, 46100 Burjassot, València, Spain, jejuor@uv.es 
 
Lionello Pogliani 
Departament de Química Física, Facultat de Farmàcia, Universitat de València, Av V. 
Andrés Estellés 0, 46100 Burjassot, València, Spain, lionello.pogliani@uv.es 
 
Emili Besalú 
Institut de Química Computacional i Catàlisi, Universitat de Girona, C/Maria Aurelia 
Capmany, 69, 17003 Girona, Spain; emili.besalu@udg.edu 
 
 
 
Abstract 

Background 

On the occasion of the redefinition of the Avogadro constant in May 2019, a brief 

history and some didactic reflections on its magnitude are presented. 

Purpose 

Some analogies are reviewed and others are suggested to help visualize the extent of its 

magnitude, and their usefulness is assessed.  

Design/Method 

These analogies are set in the teaching context of the first and second courses of the 

degrees in several scientific and technic disciplines. Their effectiveness is discussed for 

the first time on the basis of a questionnaire filled by the corresponding students. 

Results 

The suggestions for educating and learning are that the most helpful models, following 

the opinion of the students, are those related to more substantial items, for example, 

neurons, individuals, planets, above analogies on geometric constructions. 

Conclusions 

Challenging current thought, pictorial descriptions are not all the times so advantageous. 
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1 INTRODUCTION 

1.1 On analogies in science 

Analog learning involves transferring familiar ideas on one topic to another related 

topic when both share the same underlying conceptual structure (Sidney & Thompson 

2019). Analogies are key tools in science understanding (Shapiro 1985). Thus, the 

importance of knowing how to build successful analogies to illustrate elusive concepts 

has been highlighted in various publications from many different points of view. 

However, the potential of analogies as a teaching tool has not always been fully 

exploited (Treagust et al. 1989, Treagust 1993, Harrison 2001). 

A non-exhaustive literature review of research on analogies is presented here. 

Examples of classic studies could be that of Levinson and Carpenter (1974), who 

investigated analogical reasoning in individuals aged 9 to 15 years and proposed a 

strategy to develop this ability, and Gentner (1983) who has presented the theoretical 

analysis of analogy that underlies most research on analogical learning: the structure-

mapping theory. This framework describes how the meaning of the analogy is derived 

from the meanings of its parts, and the rules followed by mapping knowledge from a 

base domain to a target domain. More recently, Thiele & Treagust (1991) have explored 

the potential of analogies in teaching chemistry, their definition, types and uses. Glynn 

(1991) has exemplified the use of analogies by the scientists and has given guidelines 

for teaching with analogies. Sutton (1993) has placed analogy and metaphor within the 

broader context of figurative language, studied its evolution in the development of new 

scientific ideas, and traced the relationship between this type of expression and the 

direct description of phenomena. Treagust (1993) has proposed the model FAR (Focus, 

Action, Reflection) to guide the analogy teaching approach. Ruef (1998) has presented a 

program to develop critical thinking skills with the invention of analogies by the 

students. Markman & Moreau (2001) have discussed the role of the analogies in 

decision making. Coll et al. (2005) have reviewed the previous literature on analogies 

and underlined their relevance and motivational potential. They have delved into aspects 

such as criticism of the scope and limitations of the student’s own analogies and those 

of others, and explored the social interaction through the group’s work. Aubusson et al. 

(2006) have reviewed the principles and use of analogies and metaphors in educational 

research. Goswami (2007) has extensively reviewed the studies on the development of 
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analogical reasoning from early childhood to learn about the world. She reveals its 

pervasiveness in all creative activity, including artistic expression, problem solving, and 

analogies in science. Glynn (2008) has deeply studied the analogy in teaching strategies 

and its various steps, noting that it basically consists of comparing a topic with which 

the students are already familiar, with the new topic to be introduced. Raviolo & Garritz 

(2009) have reviewed and analyzed the use of analogies in the teaching of chemical 

equilibrium. Mair et al. (2009) have systematically reviewed the literature on non-trivial 

problem solving by experts based on analogy and have highlighted that analogical 

reasoning plays an important role in problem solving and that this skill is what 

characterizes an expert. Bellocchi (2009) has reviewed and discussed the usefulness and 

limitations of analogies in science. Gentner (2010) has analyzed the development of 

cognition in children on the basis of the analogical ability and the possession of a 

symbol system, that are mutually supportive. Etzion & Ferraro (2010) have studied the 

role of analogies in argumentative reasoning, applied to institutional change in the 

framework of public organizations. Petrucci (2011) has proposed building bridges 

between science and humanities through scientific visual analogies for cross-

disciplinary teaching and research. Klahr & Chen (2011) have given a discussion of 

analogical transfer in general, as appropriate to school contexts. Day & Goldstone 

(2012) have reviewed and articulated different visions of knowlegde transference that 

motivates our conceptualization of the implicit analogy. Mozzer & Justi (2013) have 

studied and analyzed how chemistry teachers apply their analogical reasonings and 

ellaborate analogies. Vendetti et al. (2015) have provided an overview of analog 

reasoning studies that could be applied to classroom learning and they also present an 

explicit analogical support case. English (2013), and Sidney & Thompson (2019) have 

reviewed the research on analogies in the field of mathematics. 

The documents analyzed implicitly affirm that the knowledge of nature is different 

from the analogies used to transmit it. But perhaps this knowledge is just another deeper 

analogy since it is based on models, and these can evolve as scientific knowledge 

expands. In the authors' opinion, analogies are not only the way knowledge is 

transmitted, but even the way the brain processes knowledge. This raises the 

philosophical question of what we can know about nature. It seems clear that things are 

learned through our perception. So can we understand the reality of what things are 

without representing them internally by analogies? 
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1.2 About Avogadro's number 

Attempts to visualize the magnitude of the Avogadro constant has been a direct 

subject of didactic journals (Cervellati et al. 1982, Goh et al. 1994, Pekdağ and Azizoğlu 

2013). The concept of mole, as well as the amount of substance are central for the 

definition of the Avogadro constant, even if they are not always clearly understood and 

need further clarification (Schmidt 1997, Giunta 2015, Davis 2015, Rees et al. 2018, 

Mweshi et al. 2019) 

During 2017, the measurements made to calculate a more precise value for the 

Avogadro constant set its value to 6.022140758(62)·1023 mol−1. On May, 20 2019 took 

effect the redefinition of SI units for this constant, designated with the symbol NA, and 

its value is fixed to exactly 6.02214076·1023 mol−1. The Avogadro number, instead, is a 

dimensionless quantity, and has the same numerical value of the Avogadro constant 

(Wikipedia contributors 2020a). Actually, the revised 2019 definition of mole breaks 

the link to the kilogram by making a mole a specific number of entities of the substance 

in question: the mole, symbol mol, is the SI unit of amount of substance. One mole 

contains exactly 6.02214076·1023 entities. 

Moreover, Avogadro’s law, sometimes called hypothesis (Nernst 1904, Chang 

1994), states that at constant pressure and temperature the volume of an ideal gas is 

directly proportional to the number of atoms or molecules regardless of the nature of the 

gas, i.e., V = kn (k = proportionality constant). Thus, in a reaction between two gases we 

have: V1 : V2 = n1 : n2. 

This study presents a brief story of the Avogadro number, then reviews some 

analogies and their types to reach understanding of its magnitude, propose new ones, 

and performs a survey among university students to gain insight into their degree of 

perception of the different types of analogies, for the first time. 

 

1.3 A little bit of History  

Lorenzo Romano Amedeo Avogadro di Quarenga e di Cerreto (1776-1856), born in 

Turin, became Doctor of Law in 1796 and, in 1806 he taught physics in a college in his 

home-town, where he afterwards became professor of mathematical physics. He was 

removed from his chair in 1822 soon after the European turmoil against absolutist 

regimes that reached Turin in 1821. He was restored to it in 1835, but he continued to 
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be little known in Italy and still less abroad. His important study appeared in French in 

1811 and in 1814, and passed completely unnoticed. Stanislao Cannizzaro (1826-1910) 

rediscovered it (and used it to state that the hydrogen molecule was composed of two 

atoms) and made it known at the Karlsruhe meeting in December, 1860. Cannizzaro had 

already published his 46 page letter Sunto di un corso di filosofia chimica (Summary of 

a course in chemical philosophy) in 1858 in Nuovo Cimento (Cannizzaro 1858). This 

rediscovery allowed Cannizzaro to derive a clear definition for the concept of molecule 

and the calculation of more precise atomic and molecular weights. Lothar Meyer (1830-

1895), chemistry professor at the University of Tübingen (1876–1895), had attended the 

Karlsruhe Congress and made the Avogadro’s law one of the basis of his Modernen 

Theorien der Chemie, published in 1864 (Meyer 1864, Partington 1989). Thus, finally, 

in 1864, Avogadro’s studies reached the international scientific community. 

The French physicist Jean Baptiste Perrin made the first determination of the 

number of molecules contained in one mole of gas under normal conditions by several 

methods and, in 1909, proposed naming this constant after Avogadro (Jensen 2007). A 

detailed description of all this advent can be found in Morselli 1984. 

2 BACKGROUNG 

2.1 Literature review 

Thomson and Opfer (2010) have studied the numerical cognition in children and 

have concluded that it is more difficult as the order of magnitude increases. After our 

experience in teaching, we have arrived to the conclusion that the students are not aware 

of the magnitude of a unit followed by 23 zeroes. With this purpose in mind, we devised 

a set of concrete examples to visualize the concept of mole. These activities were 

presented to students of the first and second courses in chemistry, Environmental 

Sciences, Biotechnology, and Biology of the Universities of Girona and Valencia, and 

the results are presented at the end of this paper. 

We should point out that ‘mole’ pertains to the same category of nouns as ‘pair’, 

‘trio’ and ‘dozen’, that is, collective numerals, that specify a concrete grouping of 

entities. In our case, due to language abuse and for short, we say ‘one mole of water’, 

where we should say ‘one mole of water molecules’. In fact, we use it correctly when 

say ‘one mole of photons’ or ‘of electrons’. 

A brief revision of the analogies found in previous literature is here presented: 

https://www.britannica.com/topic/University-of-Tubingen
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Poskozim et al. (1986) reviewed the former literature and collected a series of 

analogies, classified in six main groups, with the goal to give an idea of the utter 

immensity of the Avogadro’s number. These groups are based, respectively, on objects, 

counting, people, water, money, and computing. The analogies do not equal the ones 

presented in the present paper, even if they have a similar structure and intent. Notice 

that Poskozim et al. do not give any introductory historical information about the 

Avogadro number. The authors argue that when these analogies use numbers of lesser 

magnitude, they are more meaningful. The classification of analogies presented in that 

paper can be very useful and are adopted in the present paper, and probably they are not 

only based on different topics, but also on different degrees of abstraction, as we shall 

see later on. 

After this review, other works of the same type have appeared, and they are here 

glossed. The work of van Lubeck (1989) lays out three analogies of ‘objects’ type: one 

related to ants (one mole would occupy 1000 Earths), other related to 0.3 mm (0.012 in) 

sand grains (one mole would fill a cube of 30 km side with 3·1019 kg weight, or 2 m 

deep in the Sahara Desert), and one about finance (in one second, the interest of $ 1 

mole, would render $200,000 for each one of 5 billion people). 

Diemente (1998) has also explored the topic of the sand grains of the Sahara 

Desert, where the grains are 1/100 of an inch on edge. He has also proposed the one-

mole times volume increase of a 6-inch ball, that would equal the Earth size, and has 

also studied the arraying of atoms in one, two and three dimensions. This subject that 

will be covered in this article as well. 

Uthe (2002) has presented an analogy of ‘counting’ type. According to this, one 

mole of seconds is over four million times the age of the earth and over a million times 

the age of the universe. 

For additional information, the reader can refer to Furió et al. (2002). This work 

reviews the difficulties in learning the concepts of amount of substance and mole, as 

well as the didactic strategies to overcome these, including published examples of 

analogies for the Avogadro number. 

We can begin our exploration by considering some other huge numbers to gain 

insight in these magnitudes, such as the grains of sand in our planet, or the number of 

stars in the observable universe. Planet Earth contains around 7.5·1018 grains of sand 

and even if it is said (Krulwich 2012) that this is a big figure, it is less than the 
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Avogadro number. Following the European Space Agency (2019), there are something 

like 1011 to 1012 stars in our Galaxy, and there are something like 1011 or 1012 galaxies, 

and that means something like 1022 to 1024 stars in the Universe. This is only a rough 

number, as not all galaxies are identical, just like on a beach the depth of sand at 

different sites is not the same. It is remarkable that Archimedes (288-212 BCE) in his 

work entitled The Sand-Reckoner calculated the total number of grains of sand the 

universe could contain (Harrison 2000). He first estimated the volume of his known 

universe, using a grain of sand as his unit of volume, and he found that the universe had 

a volume of 1063 grains of sand. Remarkably, this volume of sand had a mass equal to 

our present estimates of the mass of the observable universe (National Solar 

Observatory 2001), which is about 6·1051 kg. Let us assume that we are dealing with 

quartz grains, then each weighs ∼ 1.1·10-2 g (Sepp 2011). Dividing this result by the 

mass of a nucleon (1.6726·10-24 g) we have that each grain of sand contains 7·1021 

nucleons, and that means ≈ 1063+22 = 1085 nucleons in the observable Archimedean 

universe. The actual number of atoms in our observable universe is estimated to be in 

between 1078 and 1082 atoms (Villanueva 2018). 

2.2 Imagining the magnitude of one mole 

Going back to the concept of mole, let us visualize the dimensions of a thread, of a 

surface, and of a cube that are made of NA consecutive atoms each with diameter 10-8 

cm. Actually, dimensionality plays a key role in this example. In passing to two, and 

then to three dimensions we notice a drastic reduction of the "size", that seem to be 

rather counterintuitive. A simple calculation for a unidimensional thread gives a length 

of 6.022·1010 km (1 km = 0.6214 miles). As a first comparison, the furthest distance 

Earth-Pluto is about 7.5·109 km (when the two bodies are on the opposite sides of the 

Sun). Note that the distance Earth-Sun is only about 1.5·108 km and the next star near to 

Earth is Proxima Centauri, at 4·1013 km (or 4.24 light-years). If we build a square with 

NA consecutive atoms with diameter 10-8 cm placed in a rectangular fashion (i.e., not 

dense packing) one gets a square with a 77.6-meter side (6023 m2 equivalent to 1.2 

soccer fields of 100×50 m2). If we build a cube with the previously described NA atoms, 

placing them in a cubic arrangement (again a non-compact disposition), the cube will be 

of 0.84 cm side! This dimension gives a human-scale entity that all of us could 

manipulate. 
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Another image to visualize the concept of mole can be constituted by a prism of 

square base of 100 km (62.14 miles) of side and height of 60 km (37.28 miles). That 

structure would contain 6·1023 cubic millimeters. Think that 100 km is the average 

width of Jutland Peninsula in Europe, and nearly the distance from Washington, DC to 

Hagerstown, Maryland. Sixty km is instead, the height of the mesosphere, where the 

main part of the meteorites that enter the atmosphere are burned, a height that only 

rockets can reach. In any case, the fact that the entire global structure and their elements 

are impossible to visualize simultaneously is worth thinking about. Now, let us suppose 

a building similar to the Atomium in Brussels (the monument representing a unit cell of 

iron but magnified about 1.65·1011 times), but containing one mole of spheres instead of 

just nine. The diameter of each sphere is 18.0 m and the length of the cube edge tubes is 

29.0 m (Pinto 2012). Thus, in an edge you find the center of one sphere with a radius of 

47 m. The edges will contain as many spheres as the cubic root of the Avogadro 

number, so the length of the edge should be 8.45·107·47 m ≅ 4·106 km ≅ 2.5·106 miles. 

Keep in mind that the diameter of the Sun is 1.4·106 km (8.7·105 miles). 

The following example concerns the ancient Indian legend about the discovery of 

the game of chess and the request of its inventor that is related to a geometric 

progression of rice or wheat grains (Wikipedia contributors 2020b): 1, 2, 4, 8, ... The 

number of grains in the last square is 263 = 9,223,372,036,854,775,808 and the needed 

ones to fill the entire chessboard is 264-1 = 18,446,744,073,709,551,615, i.e., a 32646-th 

of the number of Avogadro. If the process to fill one single chessboard needs an 

impressive number of grains, in order to reach the NA quantity one needs to fill 32646 

boards! This tells us that we would need a bigger chessboard (i.e., with more squares) in 

order to apply the constructive process for a single chessboard and reach NA. The 

number of chess table squares to advance in order to reach the NA is 1+log2NA= 1+ 

78.99 ≈ 80, that is, we need a 9×9 board, or a Sudoku grid, and one single square will 

remain empty. The sum of the grains collected in the first n successive squares is 2n-1, 

so the number of Avogadro grains fill, according to the series, the first 79 squares. As 

single chess table is not enough, we can try to change the legend a little and consider a 

new constructive progression having a ratio of 3. In this case the series of grains put in 

each square is 1, 3, 9, 27, ... So, Avogadro’s number is reached in box number 1+log3NA 

= 50.84 ≈ 51. As the sum of the first n terms of this progression is given by (3n-1)/2, and 

the NA grains are used when filling also the 51-th square. 
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The last image turns around people on Earth. The Earth surface is approximately 

(r(Earth) = 6370 km = 3960 miles) 510,100,000 km2 = 5.101·108 km2 = 5.101·1014 m2. 

If a person occupies 1/4 of m2, we need "several" layers of people in order to fit NA 

humans. We do not take now into account that increasing the height of this human 

mountain will, at least theoretically, lead for more room for people at each layer (we are 

filling a spherical surface, not a flat one). Within a plane model, that is, a planar surface 

with the same area than our planet, the number of needed layers is impressive: 

295,138,208. Taking as mean height of a person 1.70 m, this gives a block of people of 

501,735 km (311,764 miles) high, i.e., humans would have by far surpassed the Moon 

[d(Earth-Moon) = 384,400 km = 238,900 miles]. A more accurate estimation could be 

obtained considering that each layer of humans provides a new floor (above their heads) 

with increased spherical area. In this case, 19,449,493 layers are needed, resulting in an 

Earth with a spherical shell with a height of 33,064 km (20,545 miles) above the Earth 

floor, roughly a tenth of the Earth-Moon distance. 

Finally, as a curiosity, we can estimate how many years would be needed to reach a 

population of NA persons with the present growth rate (Wikipedia contributors 2020c). 

The following equation can be deduced:                                     

7.7·109 (1 + 0.0114)t = 6.022·1023                                         

The result is rather amazing, t = 2822 years, not a lot of time. Now, a similar calculation 

could be considered in relation to the US national debt. Current debt is about 20 trillion 

dollars. This value is uncertain and very variable depending on the source of 

information, but this is not so relevant related to our goal to obtain an approximation of 

the year the nation will reach the NA debt in dollars. Estimating a constant growth rate of 

1% (2020), the equation is now  

                                    20·1012 (1 + 0.01)t = 6.022·1023                           

The result is even more astonishing: t = 2425 years. 

 

3 METHODS 

3.1 Participants 

The study was conducted at the Universities of Girona and Valencia, Spain. Ethical 

authorization, when needed, was received from the management of the two universities 

to carry out the study. Students were fully informed about the study and that the 

anonymous interview data was to be recorded and analyzed. 
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At the University of Girona, the questionnaire was presented to 92 students of the first 

course of the Degrees in Chemistry, Environmental Sciences, Biotechnology, and 

Biology, and students of the second course of the Degree in Chemistry. At the 

University of Valencia, it was released to 41 students of Degree in Chemistry, in the 

context of the first course curriculum ‘Informatics for Chemistry’, and the second 

course matter ‘Physical Chemistry Laboratory I”. Male/female ratio was 42/58 for 

Girona and 37/63 for Valencia. The two universities are public and the rest of 

demographic data for their respective students are very close. Only 5 % of students had 

completed pre-university studies abroad, and the same percent of them worked 

sporadically for three months or less. Regarding the parents of the students, 40% had 

higher education, 57% had studied primary education only and 2% had no education. 

The difference between fathers and mothers was not great: the relation fathers/mothers 

for the three previous levels was, respectively, 39/41, 56/56, 5/0. The students were 18-

20 years old and with adequate scientific background. Their participation in the study 

was optional and anonymous. 

 

3.2 Questionnaire 

     One analogy was chosen among the ones presented in this study and four from the 

bibliography. The criterion followed for their selection was the maximum diversity 

according to the groups proposed by Poskozim et al. (1986), excepting the computer-

related topic. This was set apart due to the fact that the technological evolution tends to 

make these analogies readily obsolete. 

 

The question was formulated as: 

Rate the following analogies from 5 to 1 according to their usefulness to make you 

understand the magnitude of Avogadro's number (5, very useful; 1, not useful): 

 

1- A square base prism of 100 km side and 60 km high would approximately contain an 

Avogadro number of cubic millimeters. 

2- For 1.9 · 1016 years a human would have to count a grain of sand per second to match 

Avogadro's number. This number is more than four million times the age of the earth 

(4.6 billion years) and more than one million times the age of the universe (about 14 

billion years). 
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3- Assuming that the Earth has 7 billion people and that each person has 10 billion 

neurons, on 8,600 planets with the population of the Earth there would be an Avogadro 

number of neurons. 

4- There are approximately two Avogadro numbers of milliliters of water on Earth. 

5- Suppose we have a Avogadro number of euros. The bank offers an annual interest of 

5%. If we divide the interest received in one second among the entire population on 

earth (7 billion), each individual will get about 140,000 euros. 

 

The five analogies can be sketched as 1: Objects, 2: Counting, 3: People, 4: Water, 5: 

Money. Table 1 shows them with their respective references. 

 

Table 1 Analogies included in the questionnaire 

Analogy # Type Phrasing Reference 
1 Objects A square base prism of 100 km side and 60 km 

high would approximately contain an Avogadro 
number of cubic millimeters. 

This paper 

2 Counting For 1.9 · 1016 years a human would have to 
count a grain of sand per second to match 
Avogadro's number. This number is more 
than four million times the age of the earth 
(4.6 billion years) and more than one 
million times the age of the universe (about 
14 billion years). 

Uthe 2002 

3 People Assuming that the Earth has 7 billion people 
and that each person has 10 billion neurons, 
on 8,600 planets with the population of the 
Earth there would be an Avogadro number of 
neurons. 

Poskozim et al. 1986 

4 Water There are approximately two Avogadro 
numbers of milliliters of water on Earth. 

Poskozim et al. 1986 

5 Money Suppose we have an Avogadro number of 
euros. The bank offers an annual interest of 
5%. If we divide the interest received in one 
second among the entire population on earth (7 
billion), each individual will get about 140,000 
euros. 

van Lubeck 1989 

 

4 RESULT AND DISCUSSION 

Figure 1 shows the results independently obtained by the students of the two 

Universities. The high similarity between the two graphs reveals the significance of the 
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outcome. Despite the fact that the analogies’ scores are numerical, they can be also 

understood as being levels. In this case all the Chi-squared significance tests performed 

among the tables of results gave very low p-values. This means that there are significant 

differences between the analogies and their levels. The complete data and their statistics 

are included in the supplementary material. 

Curiously, it seems that the most rated analogies correspond to the most familiar 

concepts, and the less rated with the most abstract ones. Thus, it seems advisable when 

teaching NA to use analogies related to people or countable entities, rather than those 

related to sizes of geometrical figures or high finance. 

With respect to the previous literature, Skorstad et al. (1987), Faries & Reiser 

(1988) and Sidney & Thompson (2019) have related the usefulness of analogies on the 

close connection, between analogy and target. In our case, this principle does not apply 

since all the analogies studied related to NA in the same way, that is, through the 

representation of quantity. 

Duit (1991) has classified analogies into different groups including verbal, pictorial, 

personal, bridging and multiple. Treagust (1991) has concluded that the first three types 

are the most useful for educational purposes. Personal analogies approximate abstract 

concepts to student’s real-world circumstances, and this type seems to best define the 

highest-scoring analogy in this study. 

Shapiro (1985) has emphasized the importance of visualizations in scientific 

analogies, and Thiele & Treagust (1991) have studied the usefulness of analogies in 

secondary chemistry teaching. They concluded that, since one of the main emphases of 

using analogies in chemistry education is to make abstract concepts more easily grasped 

by the underperforming student, the use of a diagram or image to present the analog is 

considered more advantageous. In pictorial analogies, an image of a familiar real-life 

situation is central to the analogy. A pictorial analogy should prevent the student from 

mentally creating attributes not present in the explained concept and also avoid the need 

for long prose to describe the analog. However, in our study, the most pictorial 

representation, the giant prism of analogy #1 was the less rated. A pictorial 

representation should increase the likelihood that the analogue is familiar to the learner 

(Duit 1990), and this is not the case here. This could be due to the fact that this visual 

representation, in our case, is so huge that students cannot assimilate it. 
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Tobin (2006) has concluded that metaphors are useful if they are consistent with 

socially shared views in one field. Previously, Tenney & Gentner (1985) had 

emphasized that greater familiarity with the base domain of an analogy improved the 

usefulness of the analogy. In line with this, Dagher (1995) has reviewed studies on the 

effectiveness of analogies and synthesized their findings. She has also proposed 

teaching strategies in the application and evaluation of analogies. Her conclusion is that 

the familiarity of the source domain and its accessibility or lower complexity than the 

target one, determines the usefulness of the analogy. This could be in accordance with 

the results obtained in this study regarding the familiarity of the concepts involved. 

People are more familiar than numbers or water, and these, more familiar than geometry 

or finance. 
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Figure 1. Distribution of the answers to the questionnaire. Upper: University of Girona. 

Lower: University of Valencia. 

 

4 CONCLUSIONS 

When handling large numbers, it is always worth trying to visualize them as 

analogies, as it helps to get a more accurate idea of their meaning. Throughout the 

present paper, we have reviewed the topic and have tried to give an idea of how great 

NA is with a series of concrete examples. Imagining these magnitudes gives us a more 

accurate idea of what huge numbers of the Avogadro’s order mean. Our paper evaluates 

students' perceptions of analogies for Avogadro number. The implications for teaching 

and learning are that the most useful examples, following the opinion of the students, 

are those related to more tangible objects such as neurons, people, planets, above the 

analogies about geometric constructions. Thus, in contrast current thinking, pictorial 

representations are not always so convenient. They are useful whether increase the 

familiarity of the target. 

To sum up, regarding the analogies for Avogadro number: 

a) The best analogies are those that imply familiar concepts. Thus, personal analogies 

approximate abstract concepts to student’s real-world circumstances, in line with the 

highest-scoring analogy in this study. 
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5

10

15

20

25

30

35

40

Rated as 5
Rated as 4
Rated as 3
Rated as 2
Rated as 1
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b) The principle of connection analogy-target does not apply since all the analogies 

studied illustrate the representation of a quantity. 

c) Pictorial representations based on geometric objects are not good. 

 

 

SUPPLEMENTARY MATERIAL 

The original questionnaire and spreadsheets with their complete data and results. 
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