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Abstract 

The problem associated with the zero-point energy (ZPE) leak in classical trajectory 

calculations is well known. Since ZPE is a manifestation of the quantum uncertainty principle, 

there are no restrictions on energy during the classical propagation of nuclei. This 

phenomenon can lead to unphysical results, such as forming products without the ZPE in the 

internal vibrational degrees of freedom (DOFs). The ZPE leakage also permits reactions 

below the quantum threshold for the reaction. We have developed a new Hessian-free method, 

inspired by the Lowe-Andersen thermostat model, to prevent energy dipping below a 

threshold in the local-pair (LP) vibrational DOFs. The idea is to pump the leaked energy to 

the corresponding local vibrational mode, taken from the other vibrational DOFs. We have 

applied the new correction protocol on the ab initio ground-state molecular dynamics 

simulation of the water dimer (H20)2, which dissociates due to unphysical ZPE spilling from 

the high-frequency OH modes. The LP-ZPE method has been able to prevent the ZPE spilling 

of the OH stretching modes by pumping back the leaked energy into the corresponding modes 

while this energy is taken from the other modes of the dimer itself, keeping the system as a 

microcanonical ensemble. 

 

  

mailto:saikat.mukherjee@univ-amu.fr
mailto:mario.barbatti@univ-amu.fr


2 
 

I. Introduction  

Zero-point energy (ZPE) is a consequence of the quantum uncertainty principle, and 

thereby, an inherent error creeps into the propagation of classical trajectories in mixed 

quantum-classical (MQC) methods by neglecting it. The classical nuclear motion 

approximation permits reactions below the quantum threshold of energy leading to unphysical 

results where products can be formed with less energy than ZPE in the internal vibration 

degrees of freedom. The problem becomes serious if the ZPE flows out of several modes and 

pumps into a specific weak bond to make it unphysically hot. This ZPE leakage phenomenon 

is well discussed in the literature,1–6 and few strategies have been designed to reinforce ZPE 

maintenance during quasi-classical trajectories (QCT). 

Independently, Bowman et al.7 and Miller & Hase8,9 proposed a method to constrain 

the ZPE spilling by time reversal of the momentum of any normal mode undergoing ZPE 

leakage. In other words, they imposed a hard-wall sphere in the phase space, inside of which 

the energy is less than the ZPE of the corresponding normal mode. Whenever a mode loses 

energy and the resultant trajectory tends to enter the hard-wall sphere, it is forced to bounce 

back. This protocol can be done by monitoring the normal harmonic modes at each timestep 

and reversing the sign of the momentum of the particular mode, which drops its energy below 

the corresponding ZPE. However, this treatment is valid only when the system is not far from 

the well-defined equilibrium region. The same algorithm should be applied at any arbitrary 

nuclear configuration outside the equilibrium region on the instantaneous normal modes. 

However, the method has some apparent shortcomings as the impulsive kicks produce 

discontinuous linear momenta and vibrational phase of the altered mode. 

Lim et al. modified10 the hard-sphere model by a rigid but inelastic wall sphere, where 

the trajectory is repelled from entering the quantum forbidden zone and is made to “skid” 

along the ZPE orbit. This prescription, namely, trajectory projection onto ZPE orbit (TRAPZ), 

was achieved by applying a non-Newtonian force in holonomic constraints dynamics, which 

showed that each corrected mode’s momentum and vibrational phase are continuous. TRAPZ 

method was used to study the dissociation of the Al3 cluster and found a highly vibrationally 

excited molecular fragment of Al2
11. The overestimation can be rationalized because each 

mode has to conserve its ZPE even if all the other modes have energy much higher than their 

ZPE. mTRAPZ12 is a softened version of TRAPZ, where the linear momenta transformation is 
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only performed when the total instantaneous vibrational energy drops below the total local 

ZPE. In other words, now the checking of ZPE leaking is carried out not for individual modes 

but for the total local vibrational energy of the system to prevent excess adding of vibrational 

energy at the expense of translational energy.  

Varandas modified the Bowman-Hase-Miller approach of constraining ZPE in quasi-

classical trajectory calculations by compensating the amount of energy leak of a bound 

vibrational mode from the remaining modes of the molecular system.13 The protocol is the 

following: At each time step, the local normal mode coordinates (instantaneous normal 

modes) are determined, and the amount of energy leak for each vibrational mode is 

calculated. This leaked energy will be given to the local normal mode, withdrawn from the 

energy pool constructed by the sum of energy in the remaining vibrational modes.  

Keeping in mind that the intermode coupling terms in a multimode Hamiltonian 

govern the energy transfer between the modes, Xie et al. proposed14 a method of annihilating 

mode coupling by introducing a smooth switching function when the energy of the 

corresponding mode drops below the ZPE. In principle, this method can be applied to the on-

the-fly dynamics of a general polyatomic system. However, it has not yet been tested in this 

context. 

In the past decade, the quantum thermal bath (QTB) model15 was introduced to 

quantify the ZPE leakage in molecular simulations using colored-noise Langevin dynamics. 

In this framework, temporal prevention of the ZPE leakage could also be achieved by 

increasing the damping coefficient value, but the simulation's accuracy will be questionable. 

Recently, an adaptive QTB model (adQTB) has been proposed16,17 to suppress the ZPE 

leakage phenomenon, where quantum fluctuation-dissipation criterion is actively enforced by 

adjusting the system-bath coupling parameter all along the simulation. In other words, instead 

of a constant coupling, an “on-the-fly” tuned frequency-dependent coupling parameter is used 

to construct the Langevin equation of motion. As a result, each vibrational mode of the system 

is thermalized at an effective temperature that includes the appropriate ZPE, and thereby, the 

dynamics always accounts for the quantum ZPE effect. 

A different approach18 was taken to conserve the total ZPE throughout a trajectory by 

constructing an effective potential by adding an estimate of harmonic ZPE at an arbitrary 

nuclear configuration to the Born-Oppenheimer (BO) molecular potential energy surface 

(PES). Thus, an effective ZPE-corrected PES was constructed for the H2CO molecule, and 
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QCT simulations on this modified PES yielded good product state distributions for the 

roaming reaction.  

Apart from the above discussed “active” ZPE constraint models, few “passive” 

techniques have been suggested to overcome the ZPE leaking problem in classical trajectory 

calculations.19–22 These methods do not alter the dynamics but discard unphysical trajectories 

from the statistics that either form products with less than their ZPE or form products where 

the sum of the product vibrational energies is less than the total product ZPE. 

All “active” ZPE constraint models discussed above (except adQTB) are based on 

calculating instantaneous normal modes and Hessians. Because the dynamics of realistic 

molecules is usually based on on-the-fly calculation of electronic quantities and potential 

energy surfaces are not pre-computed, to require knowing the Hessian during the propagation 

becomes an insurmountable hurdle even for medium sized-molecules. Moreover, we miss a 

method that could also be adapted to mixed-quantum classical methodologies based on Born-

Oppenheimer molecular dynamics (BOMD), like surface hopping.23 Thus, the conclusion of 

Guo et al.5 that no satisfactory solution to the infamous ZPE spilling problem in classical 

dynamics has been found to date remains somewhat true 25 years later. Novel techniques 

devoided of Hessian calculations, tailored to on-the-fly dynamics, and generally adaptable to 

different dynamics algorithms must be developed if we aim for long timescale simulation.24 

In this article, we take the first steps to close this methodological gap. We present a 

new Hessian free method for correcting the ZPE leakage in a molecule during classical or 

MQC dynamics in Section 2. Named Local-Pair (LP) ZPE correction, it is applied on the 

water dimer (H20)2 system, where the dimer dissociates due to unphysical ZPE spilling from 

the high-frequency OH modes. The computational details are given in Section 3. We discuss 

the results obtained from unconstrained and constrained trajectory simulations in Section 4. 

Finally, we conclude about the outlook of the method in Section 5.    

II. Theory  

The LP-ZPE correction method is a collisional model inspired by the Lowe-Andersen 

thermostat.25 It monitors the local vibration of hydride modes (AH), where A is any atom 

without losing any generality. When the kinetic energy of such vibration drops below the 

zero-point energy of the AH mode, the kinetic energy difference is added to the AH bond. To 

compensate, the excess energy is removed from an energy pool constructed by the other 

atoms of the molecule. In contrast with the thermostat model, the energy is taken from the 
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molecule itself, and the velocity change conserves the total energy, keeping the system as a 

microcanonical ensemble. The workflow can be described as follows:  

(1) The atom pairs of the molecule are classified into two groups: (a) The high frequency 

modes built from the atom pairs, mainly prone to ZPE leakage (such as hydride bonds), 

are named as AH bonds. These AH bonds will be monitored for ZPE leakage, and if 

necessary, energy will be added to them. (b) All the other atom pairs, not necessarily 

bonded, are named BC pairs. These atom pairs will donate energy to the energy pool from 

where energy will be pumped to the leaked bond.  

(2) The average parallel component of the A and H velocities to the kinetic energy for each 

AH bond is calculated at the beginning of the dynamics over time .  
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(4) If the mean kinetic energy drops below a pre-defined critical threshold value ,   
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the leaked energy is added to the AH bond in terms of the velocities of A and H atoms as  
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(5) The same amount of pumped energy is removed from each of the BC atom pairs (not 

containing an H atom) by adjusting the velocities of B and C atoms as  
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The term BCf is a weight factor, which determines how much energy is taken from the 

corresponding BC atom pair among all the B C atom pairs to construct the energy pool. 

There is some methodological freedom to choose this function. In this first application of 

the LP-ZPE method, it is defined as 
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(6) A problematic situation may arise when there is no sufficient kinetic energy available in a 

BC atom pair, i.e.  
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then, the velocities of that particular BC pair are not changed. In that case, the weight 

factor BCf is recomputed, excluding the BC pair with imaginary component and the same 

amount of pumped energy ( ) is removed from the other BC pairs to maintain the 

energy conservation.  
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where the sum excludes the BC pair with imaginary components.  
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Following this prescription, the LP-ZPE correction poses a minimum impact on the 

dynamics, as we will discuss. The total energy, total linear momentum, and the angular 

momentum of the center of mass are perfectly conserved, as we show in the Appendices. 

The main advantage of the LP-ZPE correction over most other approaches is that it 

does not require the computation of Hessian matrices because the ZPE leakage is monitored 

for local AH pairs, not normal modes. We can justify using local AH stretching vibrations as 

the basis for applying ZPE corrections by noticing that the high-frequency normal modes can 

be well described in terms of local fragment modes.26 For instance, Huix-Rottlant and Ferré26 

showed that the high-frequency normal modes of benzene are combinations of single internal 

local oscillators (the local oscillator matrix appears as a Huckel-like structure), where each 

local stretching oscillator couples only to the nearest neighbor with a fixed coupling value. 

Thus, the eigenvectors of such a local oscillator matrix lead to a spectrum that closely 

matches the six highest normal modes of benzene, obtained by the full Hessian-matrix 

diagonalization.  

III.  Computational Details  

As reviewed by Bowman et al., the absence of ZPE in classical MD simulations 

involving water can be severely erroneous.27 With this motivation, we applied our LP-ZPE 

correction method to prevent the ZPE leakage in BOMD of the water dimer system. We have 

employed MP2/aug-cc-pVDZ level of theory in this work for ground-state optimization of the 

dimer, normal mode analysis at the optimized ground state geometry, and ground-state 

BOMD. The dimer dissociation energy obtained in this work is 0.225 eV (Table 1), which is 

much larger than the ZPE (0.012 eV) of the stretching mode (the harmonic frequency is 189 

cm-1; see Table S1), causing dissociation of the water dimer. So, any dissociation of the dimer 

during the classical dynamics should occur only due to the unrealistic ZPE leakage from the 

high-frequency OH stretching modes.  
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Table 1. Geometric properties (Angstrom, degree) and dissociation energy (eV) of 

water dimer in this present calculation are compared with previously reported results. 

 Present result  

MP2/aug-cc-pVDZ 

Previous theoretical results Previous expt. results28 

aCCSD(T)-

F12b/CBS29 

bCCSD(T)(FU

LL)/IO27530 

R(O1O4) 2.90758 2.91278 2.912 2.976 (+0.0000, -0.030) 

R(O1H2) 0.96617 0.95902 0.9583  

R(O4H5) 0.97249 0.96464 0.9639  

R(O4H6) 0.96427 0.95744 0.9569  

θ(H2O1H3) 104.136 104.892 104.87  

θ(H5O4H6) 104.450 104.801 104.83  

  7.402 5.703 5.5 6 ± 20 

  113.506 123.379 124.4 123 ± 10 

cDissociation 

energy ( eD ) 

0.225 0.216 0.2177 d0.236 ± 0.03 

aCCSD(T)-F12b/CBS extrapolation scheme with the aug-cc-pVQZ/aug-cc-pV5Z basis sets. 

bCCSD(T)(FULL)/IO275 (IO275: interaction optimized basis set with 275 basis functions for the H2O dimer. O: 

7s5p5d3f2g1h; Hd: 2s4p1d, H: 2s3p, BF: 3s3p2d1f).  

cDe is the total bond energy (BSSE corrected) from the bottom of the well.  

dReference31. De was estimated by adding the ZPE calculated at the HF/4-21G level. 

 

We have sampled 100 initial conditions from correlated quantum-harmonic oscillator 

distribution such that the total energy of the system lies within the energy window of ZPE ± 

0.1 eV (see details in the Supporting Information (SI)). Figure S1 depicts the distribution of 

the total energy of the selected 100 initial conditions out of a total of 500 sampled points. 

Ground-state classical trajectory simulations are carried out with the 100 initial conditions by 

a homegrown newly written Newton-X suit of codes32,33 (Newton-X NS) in two ways: (a) 

without any constrain or ZPE leakage correction and (b) applying the LP-ZPE correction in 

the dynamics. In both cases, classical trajectories are propagated via Newtonian equations of 

motion up to 20 ps with the velocity-Verlet algorithm with a timestep of 0.5 fs. The forces 

acting on the nuclei are proportional to the gradient of the ground state BO potential energy 

surface, where the latter is calculated on the fly by MP2/aug-cc-pVDZ theory using 

Turbomole (version 7.3) suite of quantum chemistry programs.34,35   

In the LP-ZPE correction scheme on water dimer, we identified the four OH bonds as 

the local AH pairs, and all the other 11 atom pairs (even not bonded) are considered BC atom 
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pairs. Hence, the four local AH pairs are (O1-H2), (O1-H3), (O4-H5), (O4-H6), and the eleven 

BC atom pairs are (O1-O4), (O1-H5), (O1-H6), (H2-H3), (H2-O4), (H2-H5), (H2-H6), (H3-O4), 

(H3-H5), (H3-H6), (H5-H6) as shown in Figure 1. Since non-bonded atom pairs are considered 

in the BC pair ensemble, energy is pumped from all types of vibrations (and not only 

stretching modes) into the leaked modes.  

 

Figure 1. The equilibrium structure of the water dimer. 

We have chosen the three parameters needed to set up this model as (a) time period for 

averaging the parallel component of the kinetic energy of AH bond, 10 =  fs, (b) At each 

10ct = fs, checking of ZPE leakage is invoked, and (c) 0.001 = a.u. is taken as the maximum 

allowed deviation of the mean kinetic energy at the correction time from the reference value 

obtained at the beginning of the dynamics (Eq. (2)).  

A judicial and careful parameter setting is needed to apply LP-ZPE correction scheme. 

The time period for averaging the parallel component of the kinetic energy of AH bond ( ) 

should allow the OH stretching to complete a few oscillations, and the energy can deliver a 

reasonable estimate of the ZPE value of the local vibration mode. It can be decently assumed 

that there should not be much ZPE leakage at the beginning of the dynamics. The parameter 

ct —Also controlling the correction time during the dynamics—should not be too short. 

Otherwise, unnecessary corrections could hamper the inherent dynamics. On the other hand, if 

ct  is too long, it would lose the essence of the correction. The last parameter, ,  a pre-defined 

threshold value, defines how much kinetic energy loss permissible in the local AH bonds from 

the corresponding reference ZPE value. Again, a very low threshold would force the method 

to interfere much with the inherent dynamics, and a high value does not allow the correction 

to occur. This work allowed ~10% energy loss from the corresponding ZPE value of the high-

frequency AH bonds. Although more tests concerning the parameters will be carried out in the 
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future, we expect a moderate set of parameters chosen in this work is adequate to demonstrate 

the workability of the LP-ZPE corrections in classical trajectory calculation.  

To validate our ground state classical dynamics, we have simulated the power spectra 

from the classical trajectories by Fourier transform the velocity autocorrelation function using 

TRAVIS software,36,37 

 ( ) ( )( ) ,i tP m t e dt


   −= + r r   (11) 

where m is the reduced mass of the oscillator and r is the velocity vector.  

We have codified the LP-ZPE correction scheme in a Fortran 2008 written module, 

which can be interfaced readily with any classical trajectory propagator. The LP-ZPE 

correction code mainly requires the nuclear geometries to determine the AH bond and BC 

atom pairs, and velocities to add and remove energies from AH bond and BC atom pairs, 

respectively, at the correction timestep. The code is distributed freely with this article. 

IV.  Results and Discussion 

Water dimer, a prototypical hydrogen-bonded complex, has been serving as a classic 

testbed for benchmarking the electronic structure methods for more than twenty years, not 

only because of its small size but also its fundamental physical properties and important role 

in atmospheric chemistry. The interested readers are referred to the detailed chronological 

reviews of experimental38 and theoretical39 studies on water dimer by Mukhopadhyay et al. 

Since a detailed discussion40–42 on the electronic structure calculation of water dimer is 

outside the scope of this article, we limit ourselves by comparing only the geometry, 

harmonic normal mode frequencies, and the dissociation energy of our optimized cluster with 

previously reported theoretical and experimental findings (Table 1 and Table S1). As 

expected, compared to the sophisticated electronic structure methods with high basis sets, our 

results obtained by MP2/aug-cc-pVDZ level of theory are not the best estimates42 but fall 

within the margin of errors. Hence, we can safely proceed with the present level of theory and 

apply our LP-ZPE correction during the propagation of the classical trajectories.  

Figure 2 shows the distance between the oxygen atoms of the monomers as a function 

of time for the 100 classical trajectories in grey lines for both types of dynamics, with and 

without the LP-ZPE correction. The monomeric distances are averaged over the 100 

trajectories in both cases and shown in solid black lines. It is evident that if we do not prevent 

the ZPE leakage from the AH bonds (in this case, the fast OH stretching modes), the dimer 
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starts to dissociate rapidly after 4 ps. The same phenomenon was reported27 previously by 

Bowman and his group. Applying our LP-ZPE correction scheme, most of the trajectories do 

not dissociate up to the end of the simulation, 20 ps. It can be argued that those few 

trajectories still showing large distances between the monomers even after applying the LP-

ZPE correction, undergoing energy leakage occurred from modes other than stretching, such 

as bending, wagging, shearing type of motions.  

 

Figure 2. The distances between the two oxygen atoms of the monomers as a function of 

time (grey lines) for the trajectories without ZPE correction are shown in panel (a). The same 

quantity is shown in panel (b) for trajectories starting from the same initial conditions but with 

LP-ZPE correction. The thick back lines represent the averaged distances between the two 

monomers (O1-O4) in both cases. 

The radial distribution functions (RDFs) of the two oxygen atoms in Figure 3 also 

show that dissociation of the dimer prevails in the trajectories calculated without applying any 

ZPE correction. Since the O-O distance of water dimer in equilibrium is 2.91 Angstrom, the 

RDFs peak around 3 Angstrom in both the cases. The RDF obtained from the trajectories 

without ZPE correction (blue curve) leaves a long tail in higher O—O distances implying 
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dissociation of the trajectories, whereas the RDF for ZPE corrected trajectories ends within 6 

Angstrom.  

Figure 4 shows the averaged power spectrum over 100 trajectories with the LP-ZPE 

correction scheme. The frequencies obtained from the power spectra calculated from ground-

state BOMD trajectories lie within the acceptable range of the scaled43 normal mode 

frequencies of water dimer molecule calculated in this work, thereby validating our LP-ZPE 

correction protocol on classical trajectory simulation. A peak around 3200 cm-1 is seen in the 

power spectrum, which does not correspond to any normal mode frequencies of the water 

dimer. It approximately matches the frequency of the hydroxyl cation (OH+), whose 

experimental value in solid Argon matrix is 2979.6 cm-1, and the scaled value calculated by 

MP2/6-31++G(d,p) level of theory is 3110 cm-1.44 This peak may indicate some residual 

artifact from the LP-ZPE correction.  

 

Figure 3. The radial distribution functions (RDFs) of O1—O4 atoms in water dimer 

calculated from trajectories with (red) and without (blue) the LP-ZPE correction. Each RDF is 

normalized such that the area under each curve is unity. 
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Figure 4. The power spectra are calculated using Eq. (11) and averaged over 100 

classical trajectories with the LP-ZPE correction scheme. The grey dashed lines correspond to 

the scaled normal mode frequencies of the water dimer calculated in this present work. A 

scaling factor of 1.0999 is used for the low-frequency normal modes (< 1000 cm-1) and 

0.9604 for the high-frequency modes.43 

V. Conclusion and Outlook  

We have developed a new protocol for preventing ZPE leakage in classical trajectory 

simulations. The method, named local-pair (LP) ZPE correction, works by monitoring the 

ZPE of local pairs of atoms vibrating at high frequency. Whenever this local ZPE drops below 

a pre-defined threshold, an energy pool with contributions from all other atom pairs donates 

the leaked energy back to the local hot pair. The LP-ZPE method is built to have minimum 

interference in the dynamics. In particular, total energy, linear momentum, and angular 

momentum of the center of the mass are explicitly conserved. The LP-ZPE correction does 

not require Hessian calculations during dynamics, leading to a significant gain in long-

timescale dynamics than most other ZPE corrections schemes. Moreover, it can be integrated 

with any BO-based molecular dynamics scheme.  

The LP-ZPE method was tested on the water dimer system, which is well-known for 

showing artificial dissociation during ab initio BOMD due to ZPE leakage. If no correction is 

applied, the energy of the OH stretching modes fall below the corresponding ZPE, and the 

leaked energy is transferred unrealistically to the O1-O4 stretching mode causing dissociation 

of the dimer. The LP-ZPE method has been able to prevent the ZPE spilling of the OH 

stretching modes by pumping back the leaked energy into the corresponding modes while this 



14 
 

energy is taken from the other modes of the dimer itself, keeping the system as a 

microcanonical ensemble.    

Bowman et al. also applied the hard-wall sphere model to avoid ZPE leak in molecular 

dynamics on the water dimer system27 simulating 100 trajectories with a timestep of 0.0484 

fs, and the correction was invoked at every 0.242 fs. We have also achieved similar results by 

applying our proposed method to prevent ZPE leak in classical trajectories with a much 

longer timestep of 0.5 fs, and the correction is invoked at every 10 fs. Moreover, it is a 

Hessian-free method making the simulation computationally more effective.    

In the Hase-Miller approach8 of correcting ZPE leak by calculating instantaneous 

normal modes at each correction time step, the frequencies may appear imaginary. One needs 

to exclude these modes with imaginary frequencies from the ZPE constrain. In a similar 

context, in the present method, a BC atom pair may not have enough kinetic energy to donate, 

resulting in imaginary terms in Eq. (7). In that case, we ignore the particular pair and try to 

redistribute the energy in the other BC pairs. If no BC pair is ready to donate energy for 

constructing the pool from where the energy can be pumped to the leaked modes, we do not 

change the velocities at that time step, i.e., do not apply the correction and proceed further, 

hoping that the correction will be applied at the next correction time step ( ct ).  

A Fortran 2008 written module enabling the LP-ZPE correction scheme is distributed 

freely with this article. This module can be interfaced readily with any trajectory propagator 

to prevent the ZPE leakage in classical trajectory-guided dynamics.   
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Appendix A. Conservation of total energy  

In the LP-ZPE correction scheme, the exact amount of energy given to an AH bond is 

removed from a pool of BC atom pairs. Thus, the total energy remains conserved. Although 

this conservation trivially follows from classical mechanics of a system of particles, here, we 

explicitly derive the corresponding equations.  

In Eq. (5),  is the amount of energy added to an AH bond. The new relative kinetic 

energy of the AH bond  
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The center-of-mass kinetic energy is  

 

( )
( )

( )

( )
( )

2

2

2

1

2

1
ˆ ˆ

2

1
.

2

new new new

old old

old old old

cm H H A A

H A

AH AH
H H AH AH A A AH AH

H A H A

H H A A cm

H A

K m m
m m

m m
m m m m

m m K
m m

 

= +
+

    
= +  + −      +     

= + =
+

v v

v u v u

v v

 (13) 



16 
 

Now, Eqs. (6-8) removes the same amount of energy from the BC atom pairs to conserve 

the total energy in the system. The contribution of each BC pair to construct the energy pool 

is proportional to the kinetic energy already present in the corresponding atom pair.  

To show the conservation of energy explicitly, first, we consider a subsystem of H-A-

B arrangement in Figure 5. In this simplified triatomic system, the energy is added to the AH 

bond and removed from the AB atom pair. Hence atom A is corrected twice. Since the 

corrections do not change the coordinate, only velocities, it is sufficient to inspect the kinetic 

energies only.  

Initially, the three atoms with masses , ,H A Bm m m  have velocities 
, ,old old oldH A Bν ν ν and the 

kinetic energy of the subsystem is 

 
2 2 21 1 1

.
2 2 2old old oldold H H A A B BK m v m v m v= + +  (14) 

  

Figure 5. Atom arrangments in the subsystem H-A-B.  

First, we add an amount  of energy to the AH bond.  
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where 

 ( ) ( )
1/2

2 2
.

old old old oldAH H A H A
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v v v v
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

  
 = − + − −  

  
 (16) 

For a two-body system under a central force, the kinetic energy can be written as a summation 

of the kinetic energy of the center-of-mass and the kinetic energy around the center-of-mass 

of the system.  
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v v
v v   (17) 

 

Accordingly, the kinetic energy in the AH bond after correction  
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Using Eqs. (13) and (14), we obtain 

 
( )1

.
oldnew

AHAH
K K = +  (19) 

Since the velocity of atom B is not changed yet, the total kinetic energy is  

 
(1) .new oldK K = +  (20) 

Thereafter in the second correction step, we remove energy from the AB atom pair by the 

usual protocol: 
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where  
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 ( )( ) ( )( )
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1 1

2
old oldnew new

AB B BA A
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
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 (22) 

 

Since B atom is not corrected in the first step, 
( )1

.
oldnew

BB
=v v The energy is taken only from 

AB atom pair so that the weight factor ABf should be unity. 

 

Finally, the kinetic energy after this correction is 

 
(2) (1) .new new oldK K K= − =  (23) 

It is important to note that even the double correction of energy on atom A does not destroy 

energy conservation.  

In practice, instead of a single AB atom pair, the energy is pumped from several BC 

atom pairs. In that case, after applying the correction to the first pair, the total kinetic energy 

is  
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 (24) 

Appendix B. Conservation of linear and angular momentum  

The total momentum and the total angular momentum of the H-A-B subsystem (Figure 

5) before the correction are  

 .
old old oldold H H A A B Bm m m= + +p v v v  (25) 

 .
old old oldold H H A A B B=  +  + L r p r p r p  (26) 

After adding energy to the AH bond, we can use Eq. (16) to verify the total momentum 

remains constant as:  
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and the angular momentum also does not change 
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Similarly, Eq. (22) can be used to check the constancy of total momentum after correcting the 

AB atom pair as: 
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The angular momentum also remains the same after the second correction of AB atom pair 
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The formulation can be trivially extended to the general case of several BC atom pairs, like in 

the case of energy 

 
( 1) .new N old+ =p p  (31)  
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Supporting information 

We have sampled 500 initial conditions from correlated quantum-harmonic oscillator 

distribution and thereafter, selected only 100 initial conditions for ground state BOMD 

simulations such that the total energy of the system lies within the energy window of ZPE ± 

0.1 eV. Hence, the trajectories are initialized with the total energies close to the ZPE of the 

system, neither too hot nor very cold initial conditions are considered.  

 

Figure S1: The total energies for 500 initial conditions sampled from the correlated quantum 

harmonic oscillator distribution (red histograms). The blue histograms show the energy 

distribution for the selected 100 initial conditions such that the total energy lies within the 

energy range of ZPE ± 0.1 eV. The black dashed line marks the ZPE value of the water dimer 

obtained in this present calculation by MP2/aug-cc-pVDZ level of theory. 
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Table S2: Vibrational frequencies (cm-1) of water dimer are calculated in this 

present work and compared with previous studies.   

 Present result 

MP2/aug-cc-

pVDZ  

Previous theoretical 

result45 

CCSD(T)/TZ2P(f,d) 

+ dif 

Previous expt. results46–48 

ν1 139  131 - 

ν2 155 154 (155) 

ν3 162 158 - 

ν4 189 191 (243) 

ν5 372 369 (320) 

ν6 652 640 (520) 

ν7 1625 1661 1653 (1600) 

ν8 1641 1686 1669 (1618)  

ν9 3705 3750 3718 (3548) 

ν10 3798 3827 3797 (3626) 

ν11 3908 3914 3881 (3698) 

ν12 3927 3934 3899 (3714) 

 


