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Dept. Qúımica-F́ısica i Anaĺıtica, Universitat Jaume I

January 5, 2022

This is a lecture notes for undergraduate students. We try to tackle the single valuedness of spatial and double valuedness

of spin functions. Also, we adress the need of spinors to accommodate spin functions with some parallelism to the need of

axial vectors (or antisymmetric traceless tensors) to accommodate angular momentum. Finally, we revisit the Dirac and

Weyl tricks on the non-equivalence of a 2π and a 4π rotation related the topology of rotation and unitary groups.

1 Introduction

The requirement that wave function in non-relativistic quantum mechanics must be single valued is
sometimes assumed as a postulate (see e.g. McWeeny[1]). However, since the wave function Ψ is not an
observable by itself but by the square of its modulus |Ψ|2, it seems sensible to require single valuedness
to |Ψ|2 instead.

As a matter of fact, the boundary conditions in periodic systems’ band calculation come from the as-
sumption that the crystal is invariant under translations, i.e., that there is no observable difference if an
electron is located at x or at x+a, with a being the cell constant. Therefore, we set |Ψ(x)|2 = |Ψ(x+a)|2
and it follows Ψ(x+a) = ei φΨ(x), i.e., the wave function at x and x+a are identical up to a phase. Then,
we solve the Schrödinger equation for every phase ei φ, φ ∈ [−π, π]. The plot of the obtained energies vs.
φ is a set of continuous energy bands separated by forbidden gaps originated from Bragg diffraction at
2a = nλ, n = 1, 2, . . . with λ being DeBroglie wavelength of the electron.

In a similar way, when a particle is freely traveling in a radius R ring, its position fully fixed by an
angle θ, a full rotation from θ up to θ+ 2π brings the system to a new angle without observable changes.
Then, we may say that, similar to the periodic crystal where x is equivalent to x + a, also in the ring
θ should be equivalent to θ + 2π. Then, it follows |Ψ(θ)|2 = |Ψ(θ + 2π)|2, i.e., Ψ(θ + 2π) = ei φΨ(θ),
and we would proceed to solve the Schrödinger equation for every phase {ei φ, φ ∈ [−π, π]}. As a result,
an energy continuum would be reached instead of the well-known quantification of the angular momentum.

What is the difference between both cases? Locally, the particle feels equivalent environments on the
straight line R and on the ring S1. As a matter of fact, a unit radius S1 circle can be thought as the
[0, 2π] interval in R with the interval extremes identified and the whole real line rolled up (see figure), so
that translations on the line are identified with rotations along this circumference.
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However, if we see the R line and the S1 ring embedded in R2 we observe global differences. For example,
we can define circumference’s interior and exterior, while cannot do it for the line. It provides S1 and R
with different topology. Other differences arise if we consider an infinite ribbon with thickness instead of
just a straight line and a small cylinder instead of a ring: the ribbon is simply connected while the cylinder
is doubly connected. Furthermore, should we consider the ring and the periodic crystal embedded in R3

we find that ring positions θ and θ+ 2π label the same point of R3 while x i x+ a on the periodic line do
not. Deep differences between rotations and translations derive from the fact that paths on a plane are
commutative while are not on a sphere. Translation commutativity originates on the commutation of any
two components of the linear momentum (which are generators of translation) while non-commutativity
of rotations is a consequence of the non-commutativity of angular momentum components (rotation’s
generators).

In short, x and x+a are equivalent but not the same point, so we say |Ψ(x)|2 = |Ψ(x+a)|2. On the other
hand, θ and θ+ 2π are actually the same point and so, in order to avoid having a multivalued functions,
we say Ψ(θ+ 2π) = Ψ(θ). A question arises: Is single valuedness an additional postulate of quantum me-
chanics or is it a consequence of formalism itself? A second question emerges: what about spin functions?

Within non-relativistic quantum mechanics without spin, the use of ladder operators, defined from the
angular momentum commutation relations, leads to integer or semi-integer values for the angular mo-
mentum quantum number `. The analytic calculation of eigenfunctions for integer values of ` yields
the spherical harmonics which are single valued functions of the particle position. Fractional quantum
numbers leads the wave function to change its sign under a 2π rotation of the axial angle φ, i.e., is a
double-valued function. As we will see later, spherical harmonics with fractional values of ` have unde-
sirable properties and, in fact, do not constitute any basis set for the three-dimensional rotations SO(3)
symmetry group representations. As Merzbacher reminds,[2] Pauli suggested replacing the postulate of
single valuedness by the requirement that functions must build basis for the symmetry group representa-
tions (see appendix). A similar reasoning can be found in Le Bellac.[3] On the other hand, Riess claims
that it is not necessary to impose the single valuedness character on non-relativistic wave functions with-
out spin, because he showed[4] it derives from the elliptic character[5] of the Schrödinger equation. At
any rate, as Merzbacher points out,[2] the single valuedness condition is deeply rooted in the foundations
of quantum mechanics and it is not unreasonable, as McWeeny does,[1] to simplify the discussion and
include it as an additional postulate.

These considerations do not affect spin functions, for they are not a function of spatial coordinates.
Therefore, we must tackle the meaning of the sentence it requires a double rotation (4π) to return to the
initial position. It suggests the spin as living on a Möbius strip embedded in R3. In fact, Ho and Morgan
[6] show that the orbital angular momentum can assume half-integer values in Kaluza-Klein’s multiply
connected topological space (that suggests an identification with spin).

2 Spin

Stern and Gerlach’s experiment tells us that electron has an intrinsic angular momentum, we call it
spin S, with modulus 3

4~
2 and two possible orientations Sz = ± 1

2~. The angular momentum eigenvalue
equations in spherical coordinates,

L̂zY`,m(θ, φ) = −i~ ∂

∂φ
Y`,m(θ, φ) = m~Y`,m(θ, φ) (1a)

L̂2Y`,m(θ, φ) = −~2
[

1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
Y`,m(θ, φ) = `(`+ 1)~2Y`,m(θ, φ) (1b)

has Ψ = N sin1/2 θ eiφ/2 as a solution. Certainly, by injecting it into eq. (1a) we get m = 1
2 while in (1b)
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it yields ` = 1
2 . Namely, Ψ is the spherical harmonic Y 1

2 ,
1
2
.

We can determine Y 1
2 ,−

1
2

by applying the ladder down operator L̂− = L̂x− iL̂y on the above function.[7]

In spherical coordinates this operator reads[8] L̂− = ~ e−iφ
(
− ∂
∂θ + i cot θ ∂

∂φ

)
, and applied to Y 1

2 ,
1
2

yields

Ψ2 = e−iφ/2 cot θ
√

sin θ, which is not an allowed wavefunction (as it goes to infinity at θ = 0 and θ = π),
instead of yielding Ψ2 = N sin1/2 θe−iφ/2, which is free from singularities and fulfills eqs. (1) for ` = 1

2 ,
m = − 1

2 .

Another solution of the equations (1) is Y 3
2 ,

1
2

= sin1/2 θ cos θeiφ/2, as can be easily checked. However,

when calculating 〈Y 3
2 ,

1
2
|L̂x|Y 1

2 ,
1
2
〉 it results non-zero. It means that L̂x mixes states with different quan-

tum number `, and therefore means that L̂x and L̂2 do not commute with these functions.

On the other hand, the above θ, φ variables should correspond to non-spatial but internal electron coor-
dinates. Otherwise, we would employ the same operator for orbital and spin angular momentum which
yields contradictory results, as for example that [L̂x, Ŝy] is non-zero as it must be.

In addition, the misbehavior of spherical harmonics with fractional ` excludes the possibility that L̂i and
Ŝi have the same shape but with different and independent coordinates. Therefore, in order to build
up the formalism of spin functions we must start from solid evidences: the angular momentum modulus

is 3
4~

2 and the Sz components ± 1
2~. As a result, we have a two-dimensional {α, β} basis set of Ŝ2, Ŝz

eigenfunctions corresponding to s = 1
2 ,ms = ± 1

2 . At this stage, we do not know their analytic expression

so we just represent them by the orthogonal column vectors α ≡
(

1
0

)
and β ≡

(
0
1

)
, that we assume

normalized (〈α|α〉 = 〈β|β〉 = 1, 〈α|β〉 = 0). Any other normalized spin state,

(
a
b

)
with |a|2 + |b|2 = 1, is

a linear combination of this basis.

Neither we know the form of the spin operators, but we can easily write the Ŝz matrix representation in
this basis: it must be diagonal with the eigenvalues as diagonal elements:

Sz =
~
2

(
1 0
0 −1

)
≡ ~

2
σz (2)

Next, we can use ladder operators, Ŝ±|s,ms〉 =
√
s(s+ 1)−ms(ms ± 1) ~ |s,ms ± 1〉 to find out that

Ŝ+α = Ŝ−β = 0, Ŝ+β = α, Ŝ−α = β. Then, the ladder operators matrix representation should be:

S+ = ~
(

0 1
0 0

)
S− = ~

(
0 0
1 0

)
(3)

Finally,

Sx =
1

2
(S+ + S−) =

~
2

(
0 1
1 0

)
≡ ~

2
σx Sy =

1

2i
(S+ − S−) =

~
2

(
0 −i
i 0

)
≡ ~

2
σy (4)

It is straightforward to check the (correct) commutation of these matrices, e.g. [Sx,Sy] = i~ Sz.

A characteristic feature of Y 1
2 ,

1
2

= N sin1/2 θeiφ/2 is its double-valuedness character, i.e., Y 1
2 ,

1
2
(θ, φ) 6=

Y 1
2 ,

1
2
(θ, φ + 2π) (and therefore the need of two complete turns to recover the starting point). We won-

der if this is a feature of these misbehaving functions or if the spin functions must actually be multivalued.

In ordinary space rotations of functions are generated by the angular momentum: Ru(θ) = ei
θ
~ L·u. How-

ever, orbital angular momentum does not act on the spin functions. Therefore, it is to be expected that
rotations of spin functions will be generated by the spin angular momentum. We write each component:
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Rz(θ) = ei
θ
~ Sz = ei

θ
2 σz ; amb σz =

(
1 0
0 −1

)
Rx(θ) = ei

θ
~ Sx = ei

θ
2 σx ; amb σx =

(
0 1
1 0

)
Ry(θ) = ei

θ
~ Sy = ei

θ
2 σy ; amb σy =

(
0 −i
i 0

) (5)

Half angles in the rotation operators, which come from the fractional value of the spin quantum number
s = 1

2 , require a 4π rotation to recover the identity matrix. In this sense, spin functions, hereafter spinors,
must rotate 4π to recover the original position. The spinor is like a vector on a Möbius strip, where you
have to roll the tape twice to return to the initial position.

3 Spinors

Mass and electric charge are scalar, i.e., they are invariant under rotations. Linear momentum is not, but
is transformed by rotations in a characteristic way we call vectorial. We say that linear momentum is a
three coordinates’ vector. Quadrupole moment or inertia tensor transformations under rotations requires
a generalization of vector’s concept. We say they are second-order tensors and are represented by a six-
independent coordinates symmetric 3 × 3 matrix. The angular momentum or magnetic field, which we
usually represent as a three-coordinates vectors, behave under rotations like the linear momentum and
in this sense they look like a vector, but are transformed differently under reflections. And they are said
to be axial vectors, which is a way of hiding its three-independent-coordinates antisymmetric zero-trace
tensor character.1 In order to accommodate e.g. the electric octupole moment or other physical quanti-
ties like it, we can define higher range tensors. In short, mass is a zero-range tensor, linear momentum
is a 1-rank tensor, moment of inertia a 2-rank tensor, and so on. The spin functions, though, do not
fit the tensor definition. We should generalize tensors to accommodate spin. Something similar to what
happens to the magnetic field happens to the spinors: they look in various ways like vectors, but behaves
differently under rotations. Next we will generalize the concept of vector to accommodates spin and will
refer it to as 1-rank spinor or just spinor. Once defined 1-rank spinors, we define higher rank spinors in
a way similar to that defining higher rank tensors from vectors (or 1-rank tensor).

We can visualize an spinor (see figure) as the positional state of a rotating symmetric top: angles θ and
φ determine the rotation axis, the vector length r along this axis is set to the rotation speed, α is the
rotation angle, and a sign must be supplied to represent the rotation sense. Therefore, disregarding for
the time being the sign which we will consider positive unless otherwise is said, we can represent an spinor
by 4 real numbers.2

1The reflection plane σxy , which we may represent by the matrix σxy =

1 0 0
0 1 0
0 0 −1

, acts on a R3 vector by changing

the sign of its third coordinate. Therefore, if we represent the magnetic field with a R3 vector and apply σxy on it we get a

wrong result. But if we represent it by the antisymmetric tensor B =

 0 z y
−z 0 x
−y −x 0

, the corresponding transformation,

B′ = σtxy Bσxy = B, behaves as it must.
2In fact, an equivalent way of defining spinors is to consider them as four-dimensional objects in space-time that undergo

Lorentz transformations.[9]
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Alternatively, since we have represented the α, β spin functions by two-row column arrays, we can repre-
sent the spinor by two complex numbers z1 = r1 e

i θ1 , z2 = r2 e
i θ2 . From them we can extract four real

numbers as follows:

p1 = |z1|2 + |z1|2 = r21 + r22

p2 = |z1|2 − |z1|2 = r21 − r22
p3 = z1z

∗
2 + z∗1z2 = r1r2

(
ei(θ1−θ2) + e−i(θ1−θ2)

)
= r1r22 cos ∆θ

p4 = i(z1z
∗
2 − z∗1z2) = i r1r2

(
ei(θ1−θ2) − e−i(θ1−θ2)

)
= r1r2(−2) sin ∆θ

We can identify these real numbers with the module and the components of the vector r that describes the
rotation axis and speed if we write r1 =

√
r cos θ2 and r2 =

√
r sin θ

2 . Then, it follows that p1 = r21 +r22 = r

and p2 = r21 − r22 = r(cos2 θ2 − sin2 θ
2 ) = r cos θ = rz. Also, r1r2 = r sin θ

2 cos θ2 = 1
2r sin θ. Therefore, we

may identify p3 = r1r22 cos ∆θ = r sin θ cos ∆θ with rx and p4 = r1r2(−2) sin ∆θ = r sin θ(− sin ∆θ) with
ry if ∆θ = −φ, and to this we set θ1 = −α+φ2 and θ2 = α−φ

2 .

With these identifications we can write z1 =
√
r cos θ2e

−i(α+φ)/2 and z2 =
√
r sin θ

2e
−i(α−φ)/2 and represent

the spinor by means of the following complex vector:

|s〉 =
√
re−iα/2

(
cos θ2 e

−iφ/2

sin θ
2 e

iφ/2

)
(6)

In particular, r = 1, α = 0, θ = 0, φ = 0 yield the

(
1
0

)
spinor , while r = 1, α = 0, θ = π, φ = 0 yield

(
0
1

)
.

The r-vector coordinates rx, ry, rz can also be calculated from |s〉 with the help of Pauli’s matrices as
follows:

rx = 〈s|σx|s〉 ry = 〈s|σy|s〉 rz = 〈s|σz|s〉 (7)

Let’s check rx (ry ,rx can be checked in a similar way):

rx =
√
reiα/2

(
cos θ2e

iφ/2 sin θ
2e
−iφ/2)(0 1

1 0

)√
re−iα/2

(
cos θ2e

−iφ/2

sin θ
2e
iφ/2

)
= r

(
cos θ2e

iφ/2 sin θ
2e
−iφ/2)( sin θ

2e
iφ/2

cos θ2e
−iφ/2

)
= r cos

θ

2
sin

θ

2

(
eiφ + e−iφ

)
= r sin θ cosφ.
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4 Spinors’ transformations

Since we represent a spinor by a complex two-dimensional vector, the transformations that preserve the
length of this vector are the 2 × 2 unitary transformations of unit determinant (these matrices are the
elements of the so-called special unitary two-dimensional SU(2) Lie grup). Indeed, from the definition
of unitary matrix, U†U = UU† = 1, we can write U as the exponential of a hermitian matrix A (i.e.
A = A†). We have then U = eiA, U† = e−iA and so UU† = eiAe−iA = 1.

On the other hand, since UU† = 1, we have det(U)det(U†) = det(U)det(U)∗ = 1. Therefore, det(U) must
be a phase, i.e., a complex unit length number ei φ. Also, since the determinant of the exponential of a
matrix is equal to the exponential of the matrix trace, det(eA) = etr(A), a traceless hermitian matrix is
required to generate a unit determinant unitary matrix U = eiA.

We can always write a traceless hermitian matrix in the form:(
a b− i c

b+ i c −a

)
= a

(
1 0
0 −1

)
+ b

(
0 1
1 0

)
+ c

(
0 −i
i 0

)
= aσz + bσx + cσy (8)

where, again, σi are the Pauli’s matrices. Therefore Pauli’s matrices constitute the algebra of generators
of unit determinant unitary transformations in two dimensions SU(2) group: U = ei θ n·σ, with n ≡ |n〉
being the unit vector along

(
a b c

)†
and θ representing its length. By drawing a parallel with the

rotations in real three-dimensional spaces, which are generated by the angular momentum R(θ) = ei θ n·L,
we can see U as a rotation in a two-dimensional complex space.

4.1 Spinors and vectors rotations

In a previous section we have set the relationship between the spinor |s〉 =
√
re−iα/2

(
cos θ2 e

−iφ/2

sin θ
2 e

iφ/2

)
and

the polar vector r with cartesian coordinates (rx, ry, rz) (or spherical (r, θ, φ) coordinates). In particular,
we have seen that ri = 〈s|σi|s〉, eq. (7), and have just shown that unitary transformations can be written
as U = ei θ n·σ and, by analogy with vector rotations in R3, we define three components Ui = ei θσi with
i = x, y, z. Next, we will show how spinor transformations translate into transformations of the associated
R3 vector. To this end we recall here some identities that can be checked just by replacing symbols by
matrices and carrying out matrix products: σ2

z = σ2
x = σ2

y = 1. Then,

ei θσi =

∞∑
n=0

(i θ)n

n!
σni =

( ∞∑
0,2,4,...

(i θ)n

n!

)
1 +

( ∞∑
1,3,....

(i θ)n

n!

)
σi = cos θ 1 + i sin θ σi (9)

as the first bracket is cos θ Taylor’s expansion and the second that of sin θ times the imaginary number i.

Taking it into account, let’s consider the spinor transformation Uz: |s′〉 = Uz|s〉 = ei θσz |s〉. And now
let’s calculate, by components, the associated vector transformation |r′〉 = 〈s′|σ|s′〉:

z′ = 〈s′|σz|s′〉 = 〈s|e−i θσzσzei θσz |s〉 = 〈s|σze−i θσzei θσz |s〉 = 〈s|σz|s〉 = z

x′ = 〈s′|σx|s′〉 = 〈s|(cos θ 1− i sin θ σz)σx(cos θ 1 + i sin θ σz)|s〉

At this point we recall some additional identities (that can also be verified by replacing symbols by
matrices and carrying out matrix products): σxσy = i σz, σyσx = −i σz and cyclic permutations . Then,
σzσxσz = −σx, so:

x′ = 〈s|
(
cos2 θσx + sin2 θσzσxσz + i cos θ sin θσxσz − i sin θ cos θσzσx

)
|s〉

= 〈s|σx|s〉 (cos2 θ − sin2 θ) + 〈s|σy|s〉 2 sin θ cos θ = x cos 2θ + y sin 2θ
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In a similar way, y′ = −x sin 2θ + y cos 2θ.

We see then that an spinor θ rotation translates into a 2θ rotation of the associated vector. In other words,
a vector 2π rotation is equivalent to a π rotation of the spinor and, since Ui(θ) = ei θσi = cos θ 1+i sin θ σi,
then Ui(π) = −1, that means changing the spinor sign. It is needed a 4π rotation for the spinor to recover
the initial state.3

A consequence of the angle doubling in 3D rotations (SO(3) rotations group) with respect to complex
2D rotations (SU(2) unitary group) is that every two SU(2) elements correspond to a single SO(3)
element: the relationship SU(2) − SO(3) is homomorphic but it is not isomorphic. In other words,
spin functions form basis sets for SO(3) projective representations, by projective representation meaning
that the R3 = R1R2 matrix representation is D(R3) = εD(R1)D(R2) with ε 6= 1 (while in ordinary
representations, also called vector representations, ε = 1).

4.2 Higher rank spinors

First, we will briefly show how to build up a rank 2 tensor Txy from two |r1〉, |r2〉 rank 1 tensors (also
called polar vectors). We define Txy = |r1〉〈r2|. The corresponding matrix form is:

Txy =

x1y1
z1

(x2 y2 z2
)

=

x1x2 x1y2 x1z2
y1x2 y1y2 y1z2
z1x2 z1y2 z1z2

 (10)

Please note that should |r1〉 = |r2〉 then the resulting tensor is symmetric. From a general rank 2 tensor
we can extract a traceless symmetric, an anti-symmetric and an scalar tensors as follows:

T =

x1x2 x1y2 x1z2
y1x2 y1y2 y1z2
z1x2 z1y2 z1z2


=

1

3
Tr(T)1 +

1

2

 0 x1y2 − y1x2 x1z2 − z1x2
y1x2 − x1y2 0 y1z2 − z1y2
z1x2 − x1z2 z1y2 − y1z2 0


+

1

2

x1x2 + x2x1 − 2
3Tr(T) x1y2 + y1x2 x1z2 + z1x2

y1x2 + x1y2 y1y2 + y2y1 − 2
3Tr(T) y1z2 + z1y2

z1x2 + x1z2 z1y2 − y1z2 z1z2 + z2z1 − 2
3Tr(T)


=

1

3
Tr(T)1 +

 0 c b
−c 0 a
−b −a 0

+

D1 A B
A D2 C
B C D3

 (11)

with D1 +D2 +D3 = 0.

Now, let’s see how tensors transform. To this end, consider |r′〉 = M |r〉 the transformation of |r〉 by
M . The corresponding dual transformation is: 〈r′| = 〈r|M†, and then, the tensor transformation must
be: T ′xy = |r′〉〈r′| = M |r〉〈r|M† = MTxyM

†. Thus, while the coordinate transformation of a vector is
computed as: x′y′

z′

 = (M)

xy
z


3Please note that instead of Uj(θ) = ei

θ
2
σj we can write the equivalent Uj(θ) = ei θŜj equation, then, the relationship

between the rotations generated by the orbital and spin angular momentum is complete.
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that of a tensor is calculated as follows:x′1x′2 x′1y
′
2 x′1z

′
2

y′1x
′
2 y′1y

′
2 y′1z

′
2

z′1x
′
2 z′1y

′
2 z′1z

′
2

 = (M)

x1x2 x1y2 x1z2
y1x2 y1y2 y1z2
z1x2 z1y2 z1z2

(M†) .
In a similar way, let |s〉 =

(
z1
z2

)
and |s′〉 = U |s〉 be an arbitrary spinor and its U transformation. We can

build up a hermitian spinor by means the exterior product |s〉〈s| =
(
z1
z2

)(
z∗1 z∗2

)
=

(
|z1|2 z1z

∗
2

z∗1z2 |z2|2
)

. Its

coordinate transformation must be: |s′〉〈s′| = U |s〉〈s|U†.

As |z1|2, |z2|2 ∈ R and (z∗1z2)∗ = z1z
∗
2 , we can write |z1|2 = t+z, |z2|2 = t−z, z∗1z2 = x−iy, z1z

∗
2 = x+iy,

with x, y, z, t ∈ R, so that:

|s〉〈s| =
(
t+ z x− iy
x+ iy t− z

)
= t1 + xσx + yσy + zσz

We see then that a rank 2 hermitian spinor can be represented by a 2D hermitian matrix, not necessarily
traceless (it will be traceless for t = 0), which in turn can always be expressed in terms of the identity
matrix and the Pauli matrices (only in terms of Pauli’s matrices if it is traceless).

5 The experiment

A 2π rotation changes the sign of the spin function. However, wave functions’ phases are not directly
observable. The only way to detect them is to look at interference pattern of a rotated and a non-rotated
state.

Then, we split a beam of neutrons (spin 1/2) and we guide the two branches of the beam along equivalent
paths, except that one of the branches crosses a region where a uniform magnetic field is applied. Then,
strategically placed mirrors converge the two branches at the same point on a screen to record the
interference pattern.
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Associated with the spin angular momentum |S〉, neutrons have a dipole magnetic moment |µs〉 = β|S〉,
with β = e

m . The magnetic field produces a torque M on this dipole that rotates the spin |S〉 within
the plane defined by the field |B〉 and the vector itself |S〉, thus generating an increase d|S〉 of the spin

angular momentum perpendicularly to this plane: M = |µs〉 × |B〉 = d|S〉
dt . Then, d|S〉

dt = β|S〉 × |B〉.

As can be seen in the figure, d|S〉 = |S| sin θdφ|u〉, where |u〉 is a unit vector along d|S〉. Then,
|S| sin θ dφdt = β|S||B| sin θ → ω ≡ dφ

dt = βB, with ω the precession angular speed.

Neutrons crossing the field will change the spin phase. Should we call τ = 2π
ω to the precession period

then, the phase change period will be twice this period τf = 4π
ω . Therefore, if neutrons take a time T to

cross the magnetic field, the phase captured by the spin function will be ei ωT/2.

The field strength |B|, i.e., the precession velocity ω, modulates the interference pattern. We can cal-
culate the difference of fields that produce two consecutive maximums in the interference pattern. For
example, a maximum at B = ω = 0 will be followed by another at ω = 4π. In 1975, two research groups
experimentally confirm this theoretical prediction.[10, 11]

We can now better understand the sentence in Le Bellac’s book[3] (p. 234) saying that the actual identity
rotation of an object in relation to its surroundings is not 2π but 4π. The non-equivalence of 2π and 4π
rotations can be displayed by rotating an object attached to an end of a ribbon with the other extreme
fixed (Dirac’s belt). As we rotate the object by an angle 2π we produce a twist in the ribbon that there
is no way to undo without further rotating the object. An additional 2π rotation (up to 4π) produces
an extra twist. However, if we move the object towards the fixed extreme of the ribbon and pass it
underneath without rotations from right to left and then stretch the ribbon, the knot fades away and we
return to the original position (see e.g. Staley[12]). The non-equivalence of 2π and 4π rotations is related
to the two-fold connection of the SO(3) group (while its covering group, SU(2) is simply connected).

5.1 SU(2) and SO(3) connection

5.1.1 SU(2) connection

SU(2) elements are 2× 2 unitary unimodular matrices U =

(
z1 −z∗2
z2 z∗1

)
:

UU† =

(
z1 −z∗2
z2 z∗1

)(
z∗1 −z∗2
−z2 z1

)
=

(
|z1|2 + |z2|2 z1z

∗
2 − z∗2z1

z2z
∗
1 − z∗1z2 |z1|2 + |z2|2

)
=

(
1 0
0 1

)

detU = |z1|2 + |z2|2 = 1

Should we write z1 = x1 + ix2, z2 = x3 + ix4 then the |z1|2 + |z2|2 = 1 condition translates into:
x21 + x22 + x23 + x24 = 1. This is the equation defining a unit radius S3 sphere embedded in R4. Then, we
can set a differentiable isomorphism SU(2) ↔ S3 ⊂ R4. Since spheres are simply connected so must be
SU(2).

5.1.2 SO(3) is doubly connected

Any rotation can be defined by a vector of length equal to the angle of rotation and direction (θ, φ)
that of the rotation axis: Rn(ψ) = R(ψ, θ, φ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. Since R−n(ψ) = Rn(ψ) we can
circumscribe ψ: 0 ≤ ψ ≤ π.

We can represent the parameters of any rotation R by the points of a radius π sphere, with the redun-
dancy that two antipodal points (i.e., two points on the surface that are the two extremes of a diameter)
are the same point, as the rotations π and −π about any axis are the same rotation.[13] This antipodal

9



identification leads the images of two rotations R1 and R2 in the parameter space to join by two non-
equivalent paths (see figure).

Path (b) cannot be continuously deformed into path (a), because if we displace x on the surface, x’
automatically rush to get the antipodal position, so they never can melt yielding path (a). Additionally,
should we move x from the surface, then x’ disappears and the path breaks into two separate paths.

Also, starting from a zero rotation (central point of the sphere) and rotating 2π about e.g. the vertical
axis (we start from the center, go to the north pole, jump to the south pole and return to the center) the
path cannot be continuously deformed and finally melt into a single point at the sphere center .... but a
4π rotation does allow it! (see figure).

Let’s come back to the Dirac’ belt: a vector (or an object) is attached to the extreme of a ribbon, the
other extreme being fixed, and rotate the vector. Then, the ribbon accumulates rotations as twists. After
a 2π rotation the vector recover its original position but the ribbon remains twisted. If we do not allow
rotations on the ribbon extremes, i.e. do not allow rotations of the original and rotated vectors attached
to both ribbon extremes, there is no way to undo the intermediate rotations that keep the ribbon twisted.
On the other hand, after a 4π rotation there is a way to undo the intermediate rotations and smooth
the ribbon while forbidding rotations of the original and rotated vectors. This fact harmonizes with the
concept of rotation it in relation to the surroundings of Le Bellac’s book.[3]
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There is another trick, called the Weyl double cone, which even better exemplifies the concept of rotation
in relation to the surroundings. Weyl’s trick is akin to the rotation of a two coins: a coin rotates around
another alike that is kept fixed. We can see in the figure that two complete turns of the rotating coin are
needed to return to the starting point (when a coin makes a complete round on a straight line, its center
moves a distance 2πR, with R the coin radius and also the rotation radius, while the rotation radius is
2R –sum of the radii of the two coins– when a coin rotates around another. So, two rotations 2 × 2πR
are needed to advance the length 2π(2R)).

But attention, should we rotate a radius R coin about another having a radius 2R, then the rotation
radius is 3R, which means that only after three complete turns can we recover the original position. A
1.75R radius of the inner coin yields a 2.75R rotation radius so we need 4 full turns around the central
coin to return to the starting position (meanwhile the mobile coin rotates 11 times around its center).
Therefore, while the Dirac’s belt and Weyl’s cones are ingenious tricks, they should not be considered as
any proof of the spin functions’ properties.

6 Appendix: The set of wave functions must build basis for the
symmetry group representations

We include here an elementary argument supporting Pauli’s suggestion on the requirement that the set
of eigenfunctions should build basis for the symmetry group representations. To this end let Rk be any
transformation leaving invariant the Hamiltonian Ĥ: RkĤR

−1
k = Ĥ and Ψi, Ei and eigenfuction and the

associated eigenvalue. Let Φk = RkΨi. It is straightforward to show that Φk is an eigenfunction of Ĥ
associated to the same eigenvalue Ei:

ĤΦk = RkĤR
−1
k Φk = RkĤR

−1
k RkΨi = RkĤΨi = RkEiΨi = EiRkΨi = EiΦk

This holds for every Rk belonging the group of transformations G leaving invariant the Hamiltonian.
The set of degenerate eigenfunctions W = {Φk = RkΨi,∀k} expand a linear space stable under G, i.e.,
any Rk ∈ G acting upon a function of this space yields another function within this space, i.e. an Ĥ
eigenfuction associated to the eigenvalue Ei. We say then that W form a basis for a representation of
the group G. Is this an irreducible representation? The answer is yes. One can try to bring about
e.g. the contra-example of hydrogen atom and the rotation group in three dimensions O(3), where e.g.
the 2s orbital does not belong to the same irreducible representation than the three 2p orbitals while
being 2s and 2p degenerated. However, O(3) is not the group of transformations G leaving invariant the
Hamiltonian of the hydrogen atom but just the space or geometrical symmetry group of it. In addition to
the geometric transformations, the hydrogen atom Hamiltonian is also invariant under transformations
involving simultaneously coordinates and momenta. The set of all transformations leaving invariant the
hydrogen atom Hamiltonian form (or is isomorphic to) the hydrogen atom dynamical symmetry group
O(4).[13]
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