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ABSTRACT 

Here, four machine-learning models were employed to predict the redox potentials of phenazine 

derivatives in DME using DFT. A small dataset of 189 phenazine derivatives having only one 

type of functional group per molecule (20 unique groups) was used for the training. Models were 

validated on the external test-set containing new functional groups and diverse molecular 

structures and achieved reasonable accuracies (R2 > 0.57). Despite being trained on the 

molecules with a single type of functional group, models were able to predict the redox 

potentials of derivatives containing multiple and different types of functional groups with 

reasonable accuracy (R2 > 0.6). This type of performance for predicting redox potential from 

such a small and simple dataset of phenazine derivatives has never been reported before. Redox 

Flow Batteries (RFBs) are emerging as promising candidates for energy storage systems. 

However, new green and efficient materials are required for their widespread usage. We believe 

that the hybrid DFT-ML approach demonstrated in this report would help in accelerating the 

virtual screening of phenazine derivatives saving computational and experimental resources. 

This approach could potentially identify novel molecules for green energy storage systems such 

as RBF. 

Keywords: Machine learning, Redox potential, Energy storage  
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1. INTRODUCTION 

Today, ~85% of the world’s energy demand is being fulfilled by fossil fuels 1,2. The limited 

supply of fossil fuels and the ever-increasing population has raised concerns that we might run 

out of fossil fuels sooner than expected 1,3. Furthermore, electricity production from fossil fuels 

is one of the major factors responsible for greenhouse gas emissions 4. In this age, humanity 

faces two major challenges: of balancing increased energy demand while reducing the 

environmental impact associated with energy production. In the past decades, investments and 

research efforts in green technology have been increased to overcome these challenges 5. 

Significant progress has already been made to access renewable energy sources 6,7. Renewable 

energy sources, being intermittent, require efficient energy storage 4. Improvements in the energy 

storage technology would not only help in the adoption of renewable energy but also help in 

making efficient use of non-renewable energy sources. Historically, it has been more expensive 

to store energy than to expand energy generation for handling increased demand 8. Thus, grid 

systems employed today are likely to fail when additional energy cannot be generated during 

peak demand. The massive Texas Blackout in February, 2021 is an example of such a failure 9. It 

suggests that efficient energy storage technology is urgently required. Unfortunately, only 1.0% 

of the energy consumed worldwide can be stored with the energy storage technology accessible 

today 10. Furthermore, the contribution of electrochemical batteries to energy storage capacity is 

less than 2.0%, even though most of the devices we use every day include batteries 8,10. Li-ion 

batteries are widely used today due to their high energy density, high specific energy, long cycle 

life, and fast charge-discharge cycle 4,8,11. Unfortunately, Li-ion batteries suffer from high 

production costs, safety issues, and high environmental impact 2,12. Redox Flow Batteries (RBFs) 
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have the potential to overcome drawbacks of Li-ion batteries owing to their high storage 

capacity, independent control over storage capacity and power, fast responsiveness, ease of 

scaling, room temperature operation, cost-effectiveness, high round trip efficiency, safety, and 

negligible environmental impact 13–15. RBFs are increasingly being used as energy storage 

devices in renewable energy systems, thereby helping in the adoption of green energy 15,16. A 

schematic diagram of the typical redox flow battery is shown in Figure 1. RFB consists of two 

storage tanks containing cathode and anode redox-active species dissolved in an electrolyte 

solution. The electrolyte solution in the positive and negative compartments is termed catholyte 

and anolyte, respectively. These storage tanks are connected to an electrochemical cell (or 

current collector) via pumps. The electrochemical cell consists of porous electrodes separated by 

an ion-selective membrane. During operation, electrolytes containing redox-active species are 

pumped to the electrochemical cell, where redox-active species undergo oxidation or reduction 

depending on the charge/discharge cycle. Then, electrolytes are circulated back to their storage 

tanks 13,17. So far, transition metal-based redox flow batteries (such as vanadium, iron, and 

chromium) have found some commercial success. However, their widespread adoption has been 

limited mainly due to high production cost, toxicity, and cell component corrosion associated 

with the use of transition metal salts18,19. Therefore, redox flow batteries containing organic 

redox-active species are being heavily investigated due to their low production cost, access to a 

massive space of electroactive compounds, and low environmental impact 19,20. Many organic 

compounds such as quinones, viologens, flavins, thiazines, imides, and their derivatives have 

been investigated for redox-active species in both aqueous and non-aqueous RFBs 18,21,22. 

However, non-aqueous RFBs offer large operating voltage 21. Recently, phenazine derivatives 
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have been shown to be promising redox-active candidates in non-aqueous RFBs with high 

voltage and density. Therefore, phenazine derivatives are currently being investigated as 

candidates for novel redox-active species 18,23.  

These investigations remain primarily experimental. Unfortunately, the vast chemical space 

offered by organic compounds cannot be explored using experimental procedures. Quantum 

mechanical DFT computations have been used heavily in chemistry research due to high 

accuracy but are very slow and cannot screen millions of molecules in a reasonable amount of 

time. Therefore, a fast and reliable method to screen millions of compounds without 

compromising accuracy is required. In this regard, machine-learning algorithms have shown 

excellent predictive accuracies along with short development and prediction times 24–28. 

Therefore, machine learning models have been used extensively to screen millions of molecules 

in materials science and drug discovery 29–33. Machine learning models generally require a large 

amount of data for accurate predictions. When the quantity of data is limited, feature engineering 

is employed to generate the most informative features. These features are expected to capture the 

appropriate molecular information necessary to predict the target variable. Feature engineering 

requires domain knowledge, relying on having access to experts 34–36. In small datasets, DFT-

based or experimentally determined features have been used due to their high accuracy. 

However, some reports also explore simple features based on molecular structure 37–42.  
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In this work, we investigated four machine learning models to predict the redox potentials of 

phenazine derivatives in DME solvent (dimethoxyethane). The training dataset was obtained 

from the previously reported DFT study consisting of 189 phenazine derivatives with only one 

type of functional group per molecule (20 unique functional groups). Molecular features were 

computed from the optimized neutral structures using RDKit python library. Then, model 

 

Figure 1. Schematic diagram of a typical redox flow battery 
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performance was assessed on an external test-set compiled from the literature consisting of new 

functional groups, multiple functional groups, and diverse structures. Their redox potential was 

computed using the DFT. Next, the trained models were employed to predict the redox potentials 

of randomly generated phenazine derivatives with multiple functional groups. Then, we carried 

out feature importance analysis using Permutation Importance. Finally, we identified promising 

candidates for anode from the test-sets.   



8 

 

 

2. MATERIALS AND METHODS 

2.1 Computational details 

The Redox potential of phenazine derivatives was computed using the DFT workflow 

described in the paper by Mavrandonakis et al. 18. All DFT calculations (gas phase and DME 

solvent) were performed with the Gaussian 09 software 43. The term ‘Redox Potential’ in this 

report corresponds to the ‘Reduction Potential’ with respect to the unsubstituted phenazine 

molecule. 

2.2 Data Generation 

 Training-set and Internal test-test: These datasets were obtained from work reported 

by Mavrandonakis and co-workers 18. In the report, the redox potential of 189 

phenazine derivatives in DME were computed using DFT. These DFT redox potentials 

were used as a target variable in this work during training and testing. Twenty unique 

electron-withdrawing and electron-donating functional groups were present in the 

dataset (–N(CH3)2, –NH2, –OH, –OCH3, –P(CH3)2, –SCH3, –SH, –CH3, –C6H5, –

CH=CH2, –F, –Cl, –CHO, –COCH3, –CONH2, –COOCH3, –COOH, –CF3, –CN and –

NO2). It should be noted that phenazine derivatives in this dataset contain only one type 

of functional group per molecule. Optimized 3D structures of derivatives in neural and 

in anionic states were also provided. However, only neutral structures were used in this 

study. Unfortunately, not all compounds were supplied with their neutral structure, 

those compounds were modeled, and their optimized structure was added to the dataset. 

Next, 208 different types of features were generated using RDKit python library 44. The 
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list of all features is given in the Table S1 of supporting information. The features were 

scaled using the ‘StandardScaler’ class of the scikit-learn library45, which removes the 

mean and scales each feature to unit variance. Finally, the whole dataset was shuffled 

and split randomly into a training-set and test-set in an 8:2 ratio (151 samples in the 

training-set and 38 samples in the test-set). A few phenazine derivatives from the 

training-set/internal test-set are shown in Table 1. 

 

 External test-set: This dataset was compiled from different reports studying various 

properties of phenazine derivatives 46–50. Their redox potentials were computed using 

DFT and used as a target variable during testing. We gathered a total of 30 phenazine 

derivatives. Derivatives containing five or more substituted rings were removed. Also, 

derivatives having drastically different neural and anion structures were removed. In 

the end, the external test-set had 22 very diverse phenazine derivatives with multiple 

types of functional groups. Table 2 shows some of the structures from this dataset. It 

Table 1. Some representative structures from training-set/internal test-set 
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can be seen that this dataset contains unique and different structures from the training-

set. 

 

 Multiple functional groups dataset: This dataset was generated by randomly 

choosing the position and the type of functional group from this list - (–N(CH3)2, –

NH2, –OH, –OCH3, –P(CH3)2, –SH, –CH3, –C6H5, –CH=CH2, –F, –Cl, –CHO, –

COCH3, –CONH2, –COOCH3, –COOH, –CF3, –CN and –NO2). The phenazine 

derivatives with two and three functional groups and 20 molecules each were 

generated. Their redox potentials were computed using DFT and used as a target 

variable during testing. The term ‘Multiple’ refers to the derivatives with different 

types and more than one functional group in this report. A few representative structures 

from these datasets are shown in Table 3. 

Table 2. Some representative structures from external test-set 
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2.3 Machine-learning Models 

Following four machine-learning models were investigated in this study. These models were 

chosen due to their ability to generalize from small datasets. Models were implemented with the 

scikit-learn python library 45. Hyperparameters of the models were optimized using the 

‘GridSearchCV’ class of the scikit-learn library. 5-fold cross-validation with mean squared error 

(MSE) was used for the optimization. The grid of hyperparameters for each model is given the 

Table S2 of supporting information. 

 Automatic Relevance Determination Regression (ARDR): This is the probabilistic 

model related to the sparse Bayesian learning (SBL) framework. It assumes axis-

parallel, elliptical Gaussian distribution for each coefficient. The precision of each 

Gaussian distribution is drawn from the prior distribution (gamma distribution); 

therefore, it can lead to sparser coefficients. Thus, it is an effective tool to remove 

irrelevant features 51,52.  

Table 3. Some representative structures from multiple functional groups dataset 
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 Gaussian Process Regression (GP): It is the nonparametric Bayesian model. The 

nonparametric Bayesian model provides the probability distribution of parameters over 

all possible functions that fit the data. Thus, prior in a Gaussian process is specified on 

function space. Gaussian process prior is a multivariate normal distribution whose 

mean is obtained from the data, and covariance is specified using the kernel function. 

The hyperparameters of the kernel are optimized during the training 53,54. We used a 

combination of WhiteKernel and RBF kernel. WhiteKernel is used for specifying noise 

level and RBF kernel is a very popular kernel used in many algorithms. 

 Kernel ridge regression (KRR): It is the extension of ridge regression with kernel 

trick. In ridge regression, a linear model is leaned with the l2-norm regularization. 

Using the kernel trick, KRR learns a linear function in the high dimensional non-linear 

space without actually transforming the data 55. 

 Support Vector Regression (SVR): This model is the regression form of support 

vector machine (SVM), a popular algorithm for classification tasks. Analogous to 

SVM, SVR depends on the subset of training data and ignores the points whose 

prediction is close to their true value. Therefore, SVM also utilizes kernel trick and 

learns a hyperplane in the high dimensional space 56.  

2.4 Evaluation Metrics  

The following metrics were used to evaluate the model performance. In the formulas below, 𝑁 

denotes the number of data points, 𝑦�̂� denotes the predicted value of 𝑖-th sample and the 𝑦𝑖 

denotes the corresponding true value. 
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 Coefficient of Determination (R2):   

𝑅2 = 1 −  
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 

𝑤ℎ𝑒𝑟𝑒, �̅� =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
 

 Mean Squared Error (MSE): 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − �̂�)2𝑁

𝑖=1

𝑁
 

 Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁
𝑖=1

𝑁
 

The use of terms ‘Accuracy’ and ‘Performance’ in this report is contextual and refers to one or 

more metrics defined above. 

2.5 Feature Importance Analysis 

The feature importance analysis was performed using the technique known as Permutation 

Importance. In this technique, the values of the feature to be assessed are randomly shuffled 

(permuted). Then, prediction accuracy is computed on the shuffled dataset. Shuffling of feature 

values is equivalent to replacing the feature with noise, thereby removing its information from 

the dataset. Therefore, the model is expected to perform poorly on the shuffled dataset if the 

feature is important. The degree of importance depends on the amount of variation in the 

accuracy. This technique does not retrain the model; therefore, a trained model is required. The 

permutation importance was computed using ‘permutation_importance’ class of the Scikit-learn 

library and the training-set 57. This procedure was repeated 100 times to obtain reliable estimates. 

The feature importance scores were rescaled between 0 to 1. The mean and standard deviation of 
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the feature scores were reported. The mean feature score was used for the ranking of individual 

features. The terms ‘Feature’ and ‘Descriptor’ are used interchangeably in this report.   
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3. RESULTS AND DISCUSSION 

3.1 Test-set Performance 

We assessed the generalizability of the trained models (i.e., performance on the unseen data) 

using internal and external test-sets. Please refer to section 2 for the preparation of internal and 

external test-sets. As the internal test-set comes from the same source, it is very similar to the 

training-set and contains derivatives with only one type of functional group per molecule. 

Whereas external test-set is compiled from multiple sources, it has very diverse phenazine 

derivatives with different types of functional groups. It also contains functional groups and 

structures not present in the training-set (e.g., -NHPh, -Br, extended conjugation). Figure 2 

shows the performance on the internal test-set, and Figure 3 shows the performance on the 

external test-set. It can be seen that all models have excellent accuracy on internal test-set (R2 > 

0.97) and reasonable accuracy on external test-set. Gaussian Process Regression (GP) achieved 

the highest R2 of 0.77 on the external test set. After deep analysis in section 3.3, it was revealed 

that GP is not a stable model while relatively low performing models KRR (R2 = 0.58) and SVR 

(R2 = 0.66) are more stable. Therefore, one should be careful while using the high performing 

model, and stability of the model should also be considered. The values of performance metrics 

on internal and external tests are shown in Table 4. Such a performance on the external test-set is 

surprising as models were trained on the phenazine derivatives having only one type of 

functional group. These results show that machine learning models are capable of generalizing 

from a very small and simple dataset. 
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Figure 2. Plots showing machine learning predictions on internal test-set (y-axis) vs. DFT 

redox potentials (x-axis). Gray dash line corresponds to the perfect predictions. 

 

Table 4. Values of performance metrics on internal and external test-sets. Number were 

rounded upto two decimals 

 Internal test-set External test-set 

Model name R2 MSE MAE R2 MSE MAE 

ARDR 0.99 0.01 0.05 0.57 0.1 0.24 

GP 0.99 0 0.05 0.77 0.05 0.16 

KRR 0.99 0 0.05 0.58 0.1 0.23 

SVR 0.98 0.01 0.08 0.66 0.08 0.22 
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3.2 Prediction on Multiple Functional Groups 

Next, we assessed the model performance on the phenazine derivatives substituted with 

different types of functional groups per molecule. The dataset was generated randomly; please 

refer to section 2 for the generation of this dataset. Figure 4 and Figure 5 show the performance 

on the derivatives containing two and three different functional groups, respectively. It can be 

seen that the models performed reasonably well (R2 > 0.6) even though molecules used for the 

training had only one type of functional group. In particular, ARDR model achieved the highest 

performance of R2 = 0.7 and R2 = 0.6 on two and three functional group datasets, respectively. A 

deeper analysis of ARDR in section 3.3 suggests that ARDR is not a very reliable model. 

 
Figure 3. Plots showing machine learning predictions on external test-set (y-axis) vs. 

DFT redox potentials (x-axis). Gray dash line corresponds to the perfect predictions. 
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Although KRR and SVR have relatively low performance, they are more reliable. Therefore, one 

should be careful while using a high-performing model, and the model's reliability should also be 

considered. Nevertheless, these results again show the surprising generalization power of 

machine learning models. 

  

 

Figure 4. Plots showing machine learning predictions on two different functional groups 

dataset (y-axis) vs. DFT redox potentials (x-axis). Gray dash line corresponds to the 

perfect predictions. 
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Furthermore, we added these randomly generated 20 derivatives containing two different types 

of functional groups to the training-set and retrained the models on this new dataset of 171 

derivatives. The predictive performance of this combined dataset was assessed on the same 

dataset of 20 derivatives containing three different types of functional groups. The results of this 

analysis are shown in Figure 6. It can be seen that the model performance has improved 

significantly with the addition of more data in the training-set.  

 

Figure 5. Plots showing machine learning predictions on three different functional groups 

dataset (y-axis) vs. DFT redox potentials (x-axis). Gray dash line corresponds to the 

perfect predictions. 
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Figure 6. Plots showing machine learning predictions on three different functional groups 

dataset (y-axis) vs. DFT redox potentials (x-axis). The combined dataset (training-set + 

two different functional group dataset) was used for the training. Gray dash line 

corresponds to the perfect predictions. 
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3.3 Feature Importance Analysis 

We carried out feature importance analysis using Permutation Importance. Please refer to 

section 2 for the details on the technique. In order to understand how model performance 

changes with the number descriptors, we retrained the models on the subset of features and 

assessed their performance on the internal test-set. Top 50 features based on their permutation 

importance score were used. R2 was used as a performance metric. The result of this analysis is 

shown in Figure 7. It can be seen that most of the models show a jump in the R2 and have R2 > 

0.8 around the top 10 features. The unusual behavior of GP model is attributed to the instability 

of the model for a small number of features. The plots in  Figure 8 show the histograms of the 

top ten important features from each model. It is interesting to note that most of the features in 

ARDR have a very small weight as ARDR tries to prune the large number of irrelevant features 

leading to a sparse model 52,58. Six out of ten features - 'MaxAbsPartialCharge', 

'MinPartialCharge', 'NHOHCount', 'PEOE_VSA1', 'SMR_VSA6', 'fr_aniline' are common to all 

models. Other variations in the feature importance scores could be attributed to the difference in 

the internal structures of the models. Here, we discuss some of the common features from Figure 

8. 

 BCUT2D_MWLOW: This is the lowest eigenvalue of the connectivity matrix having 

atomic mass as diagonal elements. Off-diagonal elements depend on the bond order 59. 

BCUT2D descriptors have proven very effective for QSAR/QSPR studies due to their 

good discriminative power 60,61. Being dependent on the connectivity matrix and atomic 

mass, it contains information on molecular size and topology. 
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 MaxAbsPartialCharge:  This is the maximum value of the absolute Gasteiger partial 

charges present in the molecule. In 1980, Gasteiger and Marsili gave the procedure to 

calculate the partial charges in a molecule. That procedure is known as Partial 

Equalization of Orbital Electronegativities (PEOE). In this method, the charge is 

transferred between bonded atoms until equilibrium. The Gasteiger partial charges 

depend on connectivity and orbital electronegativity, thus capturing the electron-

donating and withdrawing power of the atoms 62. Electronegativity is essential 

information as electron-donating groups decrease the redox potential and electron-

withdrawing groups increase the redox potential 18. 

 MinPartialCharge: This is the minimum value of the Gasteiger partial charges present 

in the molecule. Please refer to the discussion of MaxAbsPartialCharge for the 

properties of Gasteiger partial charges. 

 PEOE_VSA1: This is the sum of the approximate accessible van der Waals surface 

area (i.e., VSA in Å2) of the atoms having partial charge in a specified range 63,64. The 

partial charges are computed using the PEOE method developed by Gasteiger and 

Marsili in 1980. Please refer to the discussion of MaxAbsPartialCharge for the PEOE 

method. Thus, this descriptor captures the information related to molecular size and the 

number of functional groups having partial charge in a specified range. 

 SMR_VSA6: This is the sum of the approximate accessible van der Waals surface area 

(i.e., VSA in Å2) of the atoms having molar refractivity in a specified range 63,64. The 

molar refractivity is computed using the model developed by Crippen in 1999 65. This 

descriptor contains information on molecular size and polarizability. 
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 NHOHCount: It is the number of N-H and O-H bonds present in the molecule. 

 fr_NH0: It is the number of tertiary amines present in the molecule. 

 fr_aniline: It is the number of anilines moieties present in the molecule.  

 

 

Figure 7. R2 vs. number of descriptors. R2 was computed using the internal test-set. 
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From the analysis in this section, we realized that there are some issues with the ARDR and 

GP which are outlined below. One should be very careful while using ARDR and GP models. 

 

 

Figure 8. Top ten features (y-axis) vs. mean feature importance score (x-axis). Feature 

importance scores were rescaled between 0 to 1. Error bars represents standard deviation 

from 100 repetitions. 
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 Issues with ARDR model: As ARDR is related to the sparse Bayesian learning (SBL) 

framework, it reduces the number of irrelevant features. Unfortunately, in this case, 

ARDR has put a lot of weight on only one feature, i.e., fr_NH0  (Figure 8). 

Surprisingly, ARDR also archives an accuracy of more than 0.95 R2 only with the two 

features (Figure 7). Although it has shown good performance on the dataset used in this 

work, it may not work for the broad chemical space. This type of behaviour reduces the 

reliability of the model.  

 Issues with GP model: From Figure 7, it can be seen that the model's accuracy 

decreases with more features, and at around ten features, there is a significant drop in 

the performance. We also encountered divided by zero errors in the kernel function 

during this analysis. This shows that GP is not a very stable model. 
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3.4 Identification of Promising Phenazine Derivatives for Anode 

In this section, we identify the top five promising candidates for anode using the trained 

machine learning models. Electron-donating molecules with negative redox potential are 

preferred candidates for the anode. As KRR and SVR are stable models, the predictions here are 

based on them. The values of redox potentials are averaged over 100 independent iterations of 

data splitting and model training. Table 5 lists the top five phenazine derivatives from the 

external test-set with the most negative redox potentials obtained from DFT and two machine 

learning models. 4 out of 5 predictions from KRR and SVR match with DFT predictions. The 

predictions for other test-sets are shown supporting information in Table S3-S5. 
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Table 5. Top five anode candidates predicted using DFT, KRR and SVR from the external test-test. SVR 

and KRR were trained on the phenazine derivatives containing single type of functional group per 

derivative. Mol ID, and redox potential predicted from DFT and ML models are shown below the 

respective candidates. Mol IDs were assigned to identify derivatives from the corresponding test-set. 

Derivatives are arranged in increasing order of redox potential. Redox potential is in the units of Volts. 

DFT 

 

Mol ID: 13 

DFT: -2.09 

 

Mol ID: 29 

DFT: -2.02 

 

Mol ID: 12 

DFT: -1.95 

 

Mol ID: 1 

DFT: -1.88 

 

Mol ID: 5 

DFT: -1.87 

KRR 

 

Mol ID: 5 

ML: -2.15 

DFT: -1.87 

 

Mol ID: 13 

ML: -2.03 

DFT: -2.09 

 

Mol ID: 12 

ML: -2.03 

DFT: -1.95 

 

Mol ID: 2 

ML: -1.96 

DFT: -1.53  

 

Mol ID: 29 

ML: -1.95 

DFT: -2.02 

SVR 

 

Mol ID: 13 

ML: -2.09 

DFT: -2.09 

 

Mol ID: 12 

ML: -2.07 

DFT: -1.95 

 

Mol ID: 29 

ML: -1.87 

DFT: -2.02 

 

Mol ID: 3 

ML: -1.86 

DFT: -1.52  

 

Mol ID: 1 

ML: -1.84 

DFT: -1.88 
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4. CONCLUSIONS 

In this study, we trained four machine learning models to predict the redox potentials of 

phenazine derivatives in DME solvent. Models were trained on a small dataset of 151 phenazine 

derivatives having only one type of functional group (20 unique functional groups). Trained 

models showed reasonable accuracy on internal and external test-sets containing a diverse set of 

phenazine derivatives. We also showed that despite being trained on derivatives with a single 

type of functional group, models were able to predict the redox potentials of the derivatives 

having multiple and different types of functional groups to a reasonable accuracy. A small 

addition of 20 derivatives in the training set significantly improves the accuracy.  Finally, we 

carried out a feature importance study and discussed their essential properties. Deeper analysis 

also showed that one shouldn’t rely only on the performance but also investigate the stability and 

reliability of the models before prediction. This study shows that it is possible to develop 

reasonably accurate machine learning models for a relatively complex quantity such as redox 

potential using a small and simple dataset.  

 

  



29 

 

 

ASSOCIATED CONTENT 

Supporting Information 

The Supporting Information is available free of charge and contains the following: 

Table with the list of all features, Table with the grid of parameters used during hyperparameter 

optimization. Tables containing the top five candidates for anode from the multiple functional 

group test-sets. 

AUTHOR INFORMATION 

Corresponding Authors 

Siddharth Ghule - Physical and Materials Chemistry Division, CSIR-National Chemical 

Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India;  Academy of 

Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; ORCID iD: 

https://orcid.org/0000-0003-0864-0777; Email: ss.ghule@ncl.res.in; Phone: +91-20-25903095 

Kavita Joshi - Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory 

(CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India;  Academy of Scientific and 

Innovative Research (AcSIR), Ghaziabad 201002, India; ORCID iD: https://orcid.org/0000-

0001-6079-4568 ;Email: k.joshi@ncl.res.in ; Phone: +91-20-25902476 

Kumar Vanka - Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory 

(CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India;  Academy of Scientific and 

Innovative Research (AcSIR), Ghaziabad 201002, India; ORCID iD: http://orcid.org/0000-0001-

7301-7573; Email: k.vanka@ncl.res.in; Phone: +91-20-25903095  

https://orcid.org/0000-0003-0864-0777
mailto:ss.ghule@ncl.res.in
https://orcid.org/0000-0001-6079-4568
https://orcid.org/0000-0001-6079-4568
mailto:k.joshi@ncl.res.in
http://orcid.org/0000-0001-7301-7573
http://orcid.org/0000-0001-7301-7573
mailto:k.vanka@ncl.res.in


30 

 

 

  

Authors 

Soumya Ranjan Dash - Physical and Materials Chemistry Division, CSIR-National Chemical 

Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India;  Academy of 

Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India 

Sayan Bagchi - Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory 

(CSIR-NCL), Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), 

Ghaziabad 201002, India 

Author Contributions 

SG and SD have carried out the research work and written the manuscript with the guidance and 

supervision of KV, KJ and SB. 

Notes 

The authors declare no competing financial interest. 

DATA AND CODE AVAILABILITY 

The MOL files of all phenazine derivatives and compiled DFT data are available at  

https://github.com/siddharth-ncl-work/ml_redox_potential-DATA.git.  

ACKNOWLEDGMENTS 

https://github.com/siddharth-ncl-work/ml_redox_potential-DATA.git


31 

 

 

K.V. is grateful to the Department of Science and Technology (DST) (EMR/2014/000013) for 

providing financial assistance. S.B. acknowledges SERB India (EMR/2016/000576). S.G. 

acknowledges Council of Scientific and Industrial Research (CSIR) for providing Research 

Fellowship. SD acknowledges CSIR-NCL (MLP101026) for providing a Fellowship. The 

support and the resources provided by ‘PARAM Brahma Facility’ under the National 

Supercomputing Mission, Government of India at the Indian Institute of Science Education and 

Research (IISER) Pune are gratefully acknowledged.  



32 

 

 

REFERENCES 

(1)  Shafiee, S.; Topal, E. When Will Fossil Fuel Reserves Be Diminished? Energy Policy 

2009, 37 (1), 181–189. https://doi.org/10.1016/j.enpol.2008.08.016. 

(2)  Dehghani-Sanij, A. R.; Tharumalingam, E.; Dusseault, M. B.; Fraser, R. Study of Energy 

Storage Systems and Environmental Challenges of Batteries. Renew. Sustain. Energy Rev. 

2019, 104 (January), 192–208. https://doi.org/10.1016/j.rser.2019.01.023. 

(3)  Höök, M.; Tang, X. Depletion of Fossil Fuels and Anthropogenic Climate Change-A 

Review. Energy Policy 2013, 52, 797–809. https://doi.org/10.1016/j.enpol.2012.10.046. 

(4)  Gür, T. M. Review of Electrical Energy Storage Technologies, Materials and Systems: 

Challenges and Prospects for Large-Scale Grid Storage. Energy Environ. Sci. 2018, 11 

(10), 2696–2767. https://doi.org/10.1039/c8ee01419a. 

(5)  Chu, W. S.; Chun, D. M.; Ahn, S. H. Research Advancement of Green Technologies. Int. 

J. Precis. Eng. Manuf. 2014, 15 (6), 973–977. https://doi.org/10.1007/s12541-014-0424-8. 

(6)  Balat, H. Green Power for a Sustainable Future. Energy Explor. Exploit. 2007, 25 (1), 1–

25. https://doi.org/10.1260/014459807781036403. 

(7)  Demirbas, A. Electrical Power Production Facilities from Green Energy Sources. Energy 

Sources, Part B Econ. Plan. Policy 2006, 1 (3), 291–301. 

https://doi.org/10.1080/15567240500400648. 

(8)  Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery 



33 

 

 

of Choices. Science (80-. ). 2011, 334 (6058), 928–935. 

https://doi.org/10.1126/science.1212741. 

(9)  Chung, E. What caused the deadly power outages in Texas and how Canada’s grid 

compares https://www.cbc.ca/news/technology/power-outages-texas-canada-1.5920833 

(accessed Mar 30, 2021). 

(10)  Larcher, D.; Tarascon, J. M. Towards Greener and More Sustainable Batteries for 

Electrical Energy Storage. Nat. Chem. 2015, 7 (1), 19–29. 

https://doi.org/10.1038/nchem.2085. 

(11)  Koohi-Fayegh, S.; Rosen, M. A. A Review of Energy Storage Types, Applications and 

Recent Developments. Journal of Energy Storage. Elsevier Ltd February 1, 2020, p 

101047. https://doi.org/10.1016/j.est.2019.101047. 

(12)  Deng, D. Li‐ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 2015, 3 (5), 

385–418. https://doi.org/10.1002/ese3.95. 

(13)  Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.; Mjalli, F. S.; Saleem, M. 

Progress in Flow Battery Research and Development. J. Electrochem. Soc. 2011, 158 (8), 

R55. https://doi.org/10.1149/1.3599565. 

(14)  Leung, P.; Li, X.; Ponce De León, C.; Berlouis, L.; Low, C. T. J.; Walsh, F. C. Progress in 

Redox Flow Batteries, Remaining Challenges and Their Applications in Energy Storage. 

RSC Adv. 2012, 2 (27), 10125–10156. https://doi.org/10.1039/c2ra21342g. 

(15)  Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; 



34 

 

 

Mazur, P.; Aranzabe, E.; Ferret, R. Redox Flow Batteries: Status and Perspective towards 

Sustainable Stationary Energy Storage. J. Power Sources 2021, 481, 228804. 

https://doi.org/10.1016/j.jpowsour.2020.228804. 

(16)  Alotto, P.; Guarnieri, M.; Moro, F. Redox Flow Batteries for the Storage of Renewable 

Energy: A Review. Renew. \& Sustain. ENERGY Rev. 2014, 29, 325–335. 

https://doi.org/10.1016/j.rser.2013.08.001. 

(17)  Qi, Z.; Koenig, G. M. Review Article: Flow Battery Systems with Solid Electroactive 

Materials. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. 

Phenom. 2017, 35 (4), 040801. https://doi.org/10.1116/1.4983210. 

(18)  De La Cruz, C.; Molina, A.; Patil, N.; Ventosa, E.; Marcilla, R.; Mavrandonakis, A. New 

Insights into Phenazine-Based Organic Redox Flow Batteries by Using High-Throughput 

DFT Modelling. Sustain. Energy Fuels 2020, 4 (11), 5513–5521. 

https://doi.org/10.1039/d0se00687d. 

(19)  Gentil, S.; Reynard, D.; Girault, H. H. Aqueous Organic and Redox-Mediated Redox 

Flow Batteries: A Review. Current Opinion in Electrochemistry. Elsevier B.V. June 1, 

2020, pp 7–13. https://doi.org/10.1016/j.coelec.2019.12.006. 

(20)  Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; 

Ponce de León, C.; Walsh, F. C. Recent Developments in Organic Redox Flow Batteries: 

A Critical Review. Journal of Power Sources. Elsevier B.V. August 31, 2017, pp 243–

283. https://doi.org/10.1016/j.jpowsour.2017.05.057. 



35 

 

 

(21)  Cao, J.; Tian, J.; Xu, J.; Wang, Y. Organic Flow Batteries: Recent Progress and 

Perspectives. Energy and Fuels 2020, 34 (11), 13384–13411. 

https://doi.org/10.1021/acs.energyfuels.0c02855. 

(22)  Li, M.; Rhodes, Z.; Cabrera-Pardo, J. R.; Minteer, S. D. Recent Advancements in Rational 

Design of Non-Aqueous Organic Redox Flow Batteries. Sustain. Energy Fuels 2020, 4 

(9), 4370–4389. https://doi.org/10.1039/d0se00800a. 

(23)  Elena I. Romadina, Denis S. Komarov, K. J. S.; A.Troshin, P. New Phenazine Based 

Anolyte Material for High Voltage Organic Redox Flow Batteries. Chem. Commun. 2021, 

57 (24). https://doi.org/10.1039/D0CC07951K. 

(24)  Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for 

Molecular and Materials Science. Nature 2018, 559 (7715), 547–555. 

https://doi.org/10.1038/s41586-018-0337-2. 

(25)  Schmidt, J.; Marques, M. R. G.; Botti, S.; Marques, M. A. L. Recent Advances and 

Applications of Machine Learning in Solid-State Materials Science. npj Comput. Mater. 

2019, 5 (1). https://doi.org/10.1038/s41524-019-0221-0. 

(26)  Wei, J.; Chu, X.; Sun, X.; Xu, K.; Deng, H.; Chen, J.; Wei, Z.; Lei, M. Machine Learning 

in Materials Science. InfoMat 2019, 1 (3), 338–358. https://doi.org/10.1002/inf2.12028. 

(27)  Pilania, G.; Wang, C.; Jiang, X.; Rajasekaran, S.; Ramprasad, R. Accelerating Materials 

Property Predictions Using Machine Learning. Sci. Rep. 2013, 3, 1–6. 

https://doi.org/10.1038/srep02810. 



36 

 

 

(28)  Batra, R. Accurate Machine Learning in Materials Science Facilitated by Using Diverse 

Data Sources. Nature 2021, 589 (7843), 524–525. https://doi.org/10.1038/d41586-020-

03259-4. 

(29)  Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Duvenaud, D.; Maclaurin, 

D.; Blood-Forsythe, M. A.; Chae, H. S.; Einzinger, M.; Ha, D. G.; Wu, T.; Markopoulos, 

G.; Jeon, S.; Kang, H.; Miyazaki, H.; Numata, M.; Kim, S.; Huang, W.; Hong, S. I.; 

Baldo, M.; Adams, R. P.; Aspuru-Guzik, A. Design of Efficient Molecular Organic Light-

Emitting Diodes by a High-Throughput Virtual Screening and Experimental Approach. 

Nat. Mater. 2016, 15 (10), 1120–1127. https://doi.org/10.1038/nmat4717. 

(30)  Hautier, G.; Fischer, C. C.; Jain, A.; Mueller, T.; Ceder, G. Finding Natures Missing 

Ternary Oxide Compounds Using Machine Learning and Density Functional Theory. 

Chem. Mater. 2010, 22 (12), 3762–3767. https://doi.org/10.1021/cm100795d. 

(31)  Faber, F. A.; Lindmaa, A.; Von Lilienfeld, O. A.; Armiento, R. Machine Learning 

Energies of 2 Million Elpasolite (ABC2D6) Crystals. Phys. Rev. Lett. 2016, 117 (13), 2–7. 

https://doi.org/10.1103/PhysRevLett.117.135502. 

(32)  Carrasquilla, J.; Melko, R. G. Machine Learning Phases of Matter. Nat. Phys. 2017, 13 

(5), 431–434. https://doi.org/10.1038/nphys4035. 

(33)  Cavasotto, C. N.; Di Filippo, J. I. Artificial Intelligence in the Early Stages of Drug 

Discovery. Arch. Biochem. Biophys. 2021, 698, 108730. 

https://doi.org/https://doi.org/10.1016/j.abb.2020.108730. 



37 

 

 

(34)  Peyton, B. G.; Briggs, C.; D’Cunha, R.; Margraf, J. T.; Crawford, T. D. Machine-Learning 

Coupled Cluster Properties through a Density Tensor Representation. J. Phys. Chem. A 

2020, 124 (23), 4861–4871. https://doi.org/10.1021/acs.jpca.0c02804. 

(35)  Seko, A.; Hayashi, H.; Nakayama, K.; Takahashi, A.; Tanaka, I. Representation of 

Compounds for Machine-Learning Prediction of Physical Properties. Phys. Rev. B 2017, 

95 (14), 1–11. https://doi.org/10.1103/PhysRevB.95.144110. 

(36)  Sahoo, S.; Adhikari, C.; Kuanar, M.; Mishra, B. A Short Review of the Generation of 

Molecular Descriptors and Their Applications in Quantitative Structure Property/Activity 

Relationships. Curr. Comput. Aided-Drug Des. 2016, 12 (3), 181–205. 

https://doi.org/10.2174/1573409912666160525112114. 

(37)  Zeiri, Y.; Fisher, D.; Lukow, S. R.; Berezutskiy, G.; Gil, I.; Levy, T. Machine Learning 

Improves Trace Explosive Selectivity: Application to Nitrate-Based Explosives. J. Phys. 

Chem. A 2020, 124 (46), 9656–9664. https://doi.org/10.1021/acs.jpca.0c05909. 

(38)  Nayak, S.; Bhattacharjee, S.; Choi, J.-H.; Cheol Lee, S. Machine Learning and Scaling 

Laws for Prediction of Accurate Adsorption Energy. J. Phys. Chem. A 2019, 124 (1), 247–

254. https://doi.org/10.1021/acs.jpca.9b07569. 

(39)  Wei, Y.; Chin, K.; M. Barge, L.; Perl, S.; Hermis, N.; Wei, T. Machine Learning Analysis 

of the Thermodynamic Responses of In Situ Dielectric Spectroscopy Data in Amino Acids 

and Inorganic Electrolytes. J. Phys. Chem. B 2020, 124 (50), 11491–11500. 

https://doi.org/10.1021/acs.jpcb.0c09266. 



38 

 

 

(40)  L. Nisbet, M.; M. Pendleton, I.; M. Nolis, G.; J. Griffith, K.; Schrier, J.; Cabana, J.; J. 

Norquist, A.; R. Poeppelmeier, K. Machine-Learning-Assisted Synthesis of Polar 

Racemates. J. Am. Chem. Soc. 2020, 142 (16), 7555–7566. 

https://doi.org/10.1021/jacs.0c01239. 

(41)  Wexler, R. B.; Mark P. Martirez, J.; M. Rappe, A. Chemical Pressure-Driven 

Enhancement of the Hydrogen Evolving Activity of Ni2P from Nonmetal Surface Doping 

Interpreted via Machine Learning. J. Am. Chem. Soc. 2018, 140 (13), 4678–4683. 

https://doi.org/10.1021/jacs.8b00947. 

(42)  Lee, M. H. Identification of Host-Guest Systems in Green TADF-Based OLEDs with 

Energy Level Matching Based on a Machine-Learning Study. Phys. Chem. Chem. Phys. 

2020, 22 (28), 16378–16386. https://doi.org/10.1039/d0cp02871a. 

(43)  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, 

G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, 

J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ort,  and D. J. 

F. Gaussian 09. Gaussian, Inc.: Wallingford CT 2016. 

(44)  Landrum, G. RDKit: Open-source cheminformatics https://www.rdkit.org/. 

(45)  Pedregosa FABIANPEDREGOSA, F.; Michel, V.; Grisel OLIVIERGRISEL, O.; Blondel, 

M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; Cournapeau, D.; Pedregosa, F.; 

Varoquaux, G.; Gramfort, A.; Thirion, B.; Grisel, O.; Dubourg, V.; Passos, A.; Brucher, 

M.; Perrot andÉdouardand, M.; Duchesnay, A.; Duchesnay EDOUARDDUCHESNAY, 



39 

 

 

Fré. Scikit-Learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent 

Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. 

Matthieu Perrot. J. Mach. Learn. Res. 2011, 12 (85), 2825–2830. 

(46)  Nakagawa, R.; Nishina, Y. Simulating the Redox Potentials of Unexplored Phenazine 

Derivatives as Electron Mediators for Biofuel Cells. J. Phys. Energy 2021, 3 (3), 034008. 

https://doi.org/10.1088/2515-7655/ABEBC8. 

(47)  Miao, L.; Liu, L.; Zhang, K.; Chen, J. Molecular Design Strategy for High-Redox-

Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for 

Lithium Batteries. ChemSusChem 2020, 13 (9), 2337–2344. 

https://doi.org/10.1002/CSSC.202000004. 

(48)  Sousa, A. C.; Martins, L. O.; Robalo, M. P. Laccases: Versatile Biocatalysts for the 

Synthesis of Heterocyclic Cores. Mol. 2021, Vol. 26, Page 3719 2021, 26 (12), 3719. 

https://doi.org/10.3390/MOLECULES26123719. 

(49)  Castro, K. P.; Clikeman, T. T.; DeWeerd, N. J.; Bukovsky, E. V.; Rippy, K. C.; 

Kuvychko, I. V.; Hou, G.-L.; Chen, Y.-S.; Wang, X.-B.; Strauss, S. H.; Boltalina, O. V. 

Incremental Tuning Up of Fluorous Phenazine Acceptors. Chem. – A Eur. J. 2016, 22 

(12), 3930–3936. https://doi.org/10.1002/CHEM.201504122. 

(50)  Wang, C.; Li, X.; Yu, B.; Wang, Y.; Yang, Z.; Wang, H.; Lin, H.; Ma, J.; Li, G.; Jin, Z. 

Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox 

Flow Batteries. ACS Energy Lett. 2020, 17, 411–417. 



40 

 

 

https://doi.org/10.1021/ACSENERGYLETT.9B02676. 

(51)  1.1. Linear Models — scikit-learn 1.0 documentation https://scikit-

learn.org/stable/modules/linear_model.html#bayesian-regression (accessed Oct 23, 2021). 

(52)  Wipf, D.; Nagarajan, S. A New View of Automatic Relevance Determination. Adv. Neural 

Inf. Process. Syst. 2007, 20. 

(53)  1.7. Gaussian Processes — scikit-learn 1.0 documentation https://scikit-

learn.org/stable/modules/gaussian_process.html (accessed Oct 23, 2021). 

(54)  Quick Start to Gaussian Process Regression | by Hilarie Sit | Towards Data Science 

https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319 

(accessed Oct 23, 2021). 

(55)  1.3. Kernel ridge regression — scikit-learn 1.0 documentation https://scikit-

learn.org/stable/modules/kernel_ridge.html (accessed Oct 23, 2021). 

(56)  1.4. Support Vector Machines — scikit-learn 1.0 documentation https://scikit-

learn.org/stable/modules/svm.html#svm-regression (accessed Oct 23, 2021). 

(57)  4.2. Permutation feature importance — scikit-learn 1.0 documentation https://scikit-

learn.org/stable/modules/permutation_importance.html#permutation-importance (accessed 

Oct 23, 2021). 

(58)  1.1. Linear Models — scikit-learn 1.0 documentation https://scikit-

learn.org/stable/modules/linear_model.html (accessed Oct 21, 2021). 



41 

 

 

(59)  Burden, F. R. Molecular Identification Number for Substructure Searches. J. Chem. Inf. 

Comput. Sci. 1989, 29 (3), 225–227. https://doi.org/10.1021/CI00063A011. 

(60)  Stanton†, D. T. Evaluation and Use of BCUT Descriptors in QSAR and QSPR Studies. J. 

Chem. Inf. Comput. Sci. 1998, 39 (1), 11–20. https://doi.org/10.1021/CI980102X. 

(61)  B, P.; SD, P. Classification of Kinase Inhibitors Using BCUT Descriptors. J. Chem. Inf. 

Comput. Sci. 2000, 40 (6), 1431–1440. https://doi.org/10.1021/CI000386X. 

(62)  Gasteiger, J.; Marsili, M. Iterative Partial Equalization of Orbital Electronegativity—a 

Rapid Access to Atomic Charges. Tetrahedron 1980, 36 (22), 3219–3228. 

https://doi.org/10.1016/0040-4020(80)80168-2. 

(63)  Landrum, G. Getting Started with the RDKit in Python — The RDKit 2020.03.1 

documentation https://www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-

descriptors (accessed Mar 31, 2021). 

(64)  QuaSAR-Descriptor http://www.cadaster.eu/sites/cadaster.eu/files/challenge/descr.htm 

(accessed Oct 22, 2021). 

(65)  Wildman, S. A.; Crippen, G. M. Prediction of Physicochemical Parameters by Atomic 

Contributions. J. Chem. Inf. Comput. Sci. 1999, 39 (5), 868–873. 

https://doi.org/10.1021/ci990307l. 

 



42 

 

 

For Table of Contents Use Only 

Predicting the Redox Potentials of 

Phenazine Derivatives using DFT 

Assisted Machine Learning 

Siddharth Ghule*, Soumya Ranjan Dash, 

Sayan Bagchi, Kavita Joshi*, Kumar 

Vanka* 

 

 

 


