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ABSTRACT

Performing first principle calculations to discover electrodes’ properties in the large chemical space
is a challenging task. While machine learning (ML) has been applied to effectively accelerate those
discoveries, most of the applied methods ignore the materials’ spatial information and only use
pre-defined features: based only on chemical compositions. We propose two attention-based graph
convolutional neural network techniques to learn the average voltage of electrodes. Our proposed
method, which combines both atomic composition and atomic coordinates in 3D-space, improves
the accuracy in voltage prediction by 17% when compared to composition based ML models. The
first model directly learns the chemical reaction of electrodes and metal-ions to predict their average
voltage, whereas the second model combines electrodes’ ML predicted formation energy (Eform) to
compute their average voltage. Our models demonstrates improved accuracy in transferability from
our subset of learned metal-ions to other metal-ions.

Keywords Electrodes · Graph neural network · Voltage · Deep learning

1 Introduction

Batteries are the dominant source of energy for diverse applications and main work-horse for portable electronics
[1, 2]. Common examples where batteries are increasingly adopted are electric vehicles and grid energy storage
[3, 4]. Besides their wide use, there are still big interests in improving these batteries’ performance for more improved
reliability in devices demanding large energy density. But to develop next-generation batteries, accurate and efficient
∗Corresponding author: R.P.J
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exploration of large chemical space is necessary and predicting their performance represents the first step towards this
goal. Traditionally, the exploration of these batteries or electrodes’ properties was done using time-consuming physics
based simulations [5] and/or by using resource-intensive experiments [6]. Mainly, examining each material in the large
chemical space while searching for robust electrodes imposes great difficulties with these traditional methods. Hence,
machine learning has been used as an alternative for their impressive performance and are increasingly adopted in the
battery community for predicting the performance metrics of battery components including intercalation potentials or
voltage [2, 7–14].

Recently multiple ML-based approaches to predict the voltage of electrodes materials have been used[8, 15, 16]. Such
approaches include models based on ML-potentials and also other simple deep neural network, which are the most
accurate. ML-potentials based models are trained to learn the potential energy surface of solids using data from
physics based simulations[8]. Though promising, the accuracy of these ML-potentials is limited to particular types
of materials with specific atomic compositions and have weak transfer-ability. Another important limitation to these
ML-potentials is that generating the dataset for their model from density functional theory (DFT), for each composition
space, is extremely challenging. For instance, Viswanathan et al. adapted a ML-potentials to predict voltage, only for
Li-graphite based electrodes, using a relatively small DFT based dataset [8]. While the accuracy of Viswanathan’s
model compares to that of DFT simulations for Li-graphite based electrodes, its transfer-ability to Na-graphite or
K-graphite is impractical. This impracticability results from the fact that the Li-graphite specific ML-potentials model
performs poorly on other electrodes type. Since such data does not exist for each materials for other metal-ion battery,
ML models that will work well with diverse metal-ion batteries and transfers equally well is necessary.

For other models including deep neural network, ML-models are trained on nearly 5000 electrodes materials from
materials project database with density functional theory calculated voltage as target [15, 16]. Nonetheless, these
models have poorer predictive ability than other ML-models used for properties of solids.[17] This poor performance
can be attributed to both the small size of the dataset and chemical diversity within such small dataset for the different
metal-ion batteries. Also, more advanced ML methods, such as graph based ML approaches, had not been applied yet in
the domain of electrode materials. The majority of existing literature mostly employs pre-defined calculated features as
input information for the materials. Solely relying on these pre-calculated atomic composition features implies that the
model ignores any 3D-structural environment information within the materials and thus misses the key attributes used
in reference physics based simulations [15, 16]. However, we anticipate that combining both chemical composition
along with some 3D-structural information inside of a more complex deep learning method may lead to a significantly
more accurate voltage prediction; as it has been shown for other crystals’ properties predictions[17–19].

In this work, we adapt a graph-convolutional neural network that learns the robust representation of electrodes materials
from the atom types and corresponding 3D-coordinates only. We show that, our method improves the accuracy in
voltage prediction by nearly more than 17 % when compared to other works in the literature. Our proposed method
shows great transferability to new metal-ion battery chemistry as it outperforms all related published works on voltage
prediction by more than 20 %. Our voltage-prediction solution includes two techniques. The first consists of a model
which learns the chemical reaction of input electrodes and outputs their average voltage. The other technique involves
using a trained model that predicts Eform of individual electrodes. These electrodes’ Eform are subsequently used
within our derived formula to output the voltage-prediction. Comparing our performance to those found in the literature,
we show that calculating the voltage from formation energy of electrodes is ideal way to predict voltage in the scenario
where there is limited data to train ML models for intercalation reactions.

2 Methods

2.1 Data

DFT computed voltages and structures of electrodes materials for 4,402 battery systems were collected from the
Material Project (MP) database using Pymatgen Materials Genomes (pymatgen)[20]. The distribution of the dataset,
which consists of ten different metal-ions (Cs, Y, Zn, Ca, Li, Mg, Na, K, Al, and Rb) batteries is shown in Fig. 1 [21].
Due to its high popularity as charge carrier, Li (2291) has the highest number of battery systems. Ca-based systems
(484) appear in the dataset more than Mg (393), Na (328), and Zn (385) based electrodes. The lowest numbers in Fig. 1
are available from Rb (50) and Cs (39).

To develop the two proposed methods below described, we use the previously mentioned dataset of 4,402 electrodes for
the chemical reaction-based model and another dataset of about 60,000 materials downloaded from the MP database for
Eform-based model [22]. The two datasets are mutually exclusive of their materials. For each dataset, we split the data
into 3 sets: with 85% used for training, 7.5% for testing, and 7.5% for validation.

2



A PREPRINT - JANUARY 1, 2022

Cs Y Zn Ca Li Mg Na K Al Rb
Ion

0

500

1000

1500

2000

N
um

be
r

Figure 1: Distribution of the numbers of battery frameworks collected from the MP database for each metal-ion.

2.2 Voltage

Understanding the chemical reaction of an intercalation battery framework is essential to learn the voltage of corre-
sponding system. As an example, intercalation reaction of the hypothetical layered material Ax1

BαCβDγ and A ions to
form Ax2

BαCβDγ can be represented as follows.

Ax1
BαCβDγ + (x2 − x1)Az+ + z(x2 − x1)e− ↔ Ax2

BαCβDγ (1)

Here, the electrode at the left-hand side, which reacts with the cation, exhibits higher potential than the electrode on
the right-hand side. Thus, we label the left-hand and right-hand side electrodes as high-potential and low-potential
electrodes, respectively. To calculate the voltage in DFT, we estimate the Gibbs free energy of individual electrodes
defined as G = ∆E + P∆V ′ − T∆S, where ∆E is the internal energy change, P is the pressure, ∆V ′ is the volume
change, T is the temperature and ∆S is the entropy difference of the system. However, P∆V ′ ≈ 10−5 eV and
T∆S ≈ 25 meV at room temperature. Therefore by neglecting those two terms, we are able to calculate the voltage
(V ) by only considering the internal energy change as shown in Eq.2. Here, the terms E[ηxi ](i = 1, 2) are the total
energy of the chemical formula (η) with x1 and x2 contents of the ion (A), and z is the valency of the intercalating
metal-ion. For instance, ηx1

= Ax1
BαCβDγ and ηx2

= Ax2
BαCβDγ for the chemical reaction of Eq.1. For the ions

mentioned in Fig. 1, z = 1 for Li, Na, K, Rb and Cs, z = 2 for Ca, Mg and Zn, and z = 3 for Al and Y.

V ≈ 1

z(x2 − x1)e
(E[ηx1

]− E[ηx2
] + (x2 − x1)E(A)) (2)

Eformxi
= E[ηxi

]− x1E(A)− αE(B)− βE(C)− γE(D) (3)

The Eform per unit formula of Ax1
BαCβDγ electrode is given by Eq.3, where E(A), E(B), E(C) and E(D) represents

the energy of each atom in their bulk phase. By computing the difference between formation energies of high and low
electrodes, we can show that voltage can be determined using Eq. 4.

V ≈ 1

z(x2 − x1)e
(Eformx1

− Eformx2
) (4)

However with ML, we can calculate the voltage in two different ways. (I) By training the ML models directly to
learn the voltage and (II) by training ML models to learn the formation energy of involved high-potential and low
potential electrodes. We compare the performance of model trained on each case. For the former case, input to the ML
models is chemical reactions (hence labelled reaction-based model) whereas for the latter input is the structure of each
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compounds to learn the corresponding formation energy (labelled Eform-based model). The voltage is then calculated
from formation energies using Equation 4.

2.3 Graph Neural Network Architecture

Input

X 4

Augmented GAT Layer (AGAT)

Batch Normalization

Global Attention Layer

Global Pooling Layer

X 2

Hidden Layer

Output

Figure 2: An overview of the GATGNN architecture.

Graph neural networks (GNN) are deep neural networks that have been applied to effectively learn latent features from
network or graph data [23]. Our models are based on a subset of these GNNs which adapt the technique of the attention
mechanism to GNN [24–26]. Particularly, we adapt the technique of GATGNN introduced by Louis et. al. [27] for this
study. Compared to other GNN applied in the domain of materials, GATGNN learns each atom’s contribution both
locally (within a local atomic space) and globally (with respect to all atoms in the material) [17, 18, 28, 29]. Particularly,
our approach efficiently captures the atoms’ local importance through its augmented graph attention layers (AGAT) and
then the atoms’ global importance using its global attention layer. For the local attention, our model consist of 4 AGAT
layers of 4 attention-heads, each consisting of 64 neurons. The local soft-attention αi,j between a node i and a neighbor
j can be represented by the as:

αi,j =
exp(ai,j)∑

k∈Ni
exp(ai,k)

(5)

Ni denotes the neighborhood of node i and ai,j is the parameterized weight coefficient between nodes i and j, which
denotes the importance of node j to node i in in Equation 5.

For the global attention, we use a single global composition layer. The atom’s global attention is learned from the
encoded atom’s type [27]. In our model, each atom communicates with the sixteen nearest neighboring atoms, to create
a 16 x 9-dimensional feature vector for each bond, and each atom is embedded by a 16 dimensional feature vector [27].
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The global attention gi can be described as following:

gi =
(xi ‖ E) ·W∑

xc∈X (xc ‖ E) ·W
(6)

x ∈ RF denotes a learned embedding, E denotes a compositional vector of the crystal, W ∈ R1×(F+|E|) denotes a
parameterized matrix, and xc denotes the learned embedding of any atom c within the crystal in Equation 6.

The overall architecture of our GATGNN is shown in Figure 2. We implement all the components in our proposed
approach using deep learning libraries of Pytorch and the library of Pytorch-Geometric [30, 31]. The same loss function
SmoothL1 loss function is used to train both models [32].

2.4 Chemical Reaction-based Voltage Predictor

Figure 3: Architecture of our reaction-based average voltage model. Top panel shows the underlying GATGNN modules
used in the work.

Due to recent advances in ML models, they have been increasingly and accurately adopted for learning the properties of
chemical reactions of molecules[33, 34]. These models however have not been used for reactions involving crystals.
Here, we develop a graph neural network model which considers the chemical reaction of electrodes and metal-ions as
the input. Our proposed reaction-based model consists of 2 graph neural networks arranged in parallel, which then are
both followed by series of hidden fully connected layers. Each graph neural network (each GATGNN) takes for input
the structure of an electrode encoded as a graph and outputs a single embedded vector representation of an electrode.
Figure 3 illustrates the framework of our proposed model.

For the reaction based model, we feed each involved electrode through GATGNN block and concurrently learn from
corresponding low and high potential electrodes. Following the graph convolutions, the output of both blocks are
subsequently concatenated into a 128 dimensional vector to be fed to 2 fully connected layers. The final predicted
average voltage is calculated by learning the chemical interaction of the two electrodes. Hyperparameters were
optimized for all the models used in this work. We train the model for 500 epochs with early-stopping, using a learning
rate of 1× 10−3, weight-decay of 5× 10−3, and batch size of 128.

2.5 Formation Energy-based Voltage Predictor

Our proposed Eform-based model is based on an optimized pre-trained model of a GATGNN of 4 layers 128 neurons
with 4 attention heads to model crystals to their Eform. As illustrated in Figure 4, the proposed method consists of 1
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GATGNN which independently outputs theEform for low and high potential electrode. This optimized formation-energy
GATGNN model was trained for 300 epochs early-stopping, using a learning rate of 1×10−3, weight-decay of 5×10−3,
batch size of 64. Following the prediction of the electrodes’ Eform, their average voltage is subsequently obtained using
Equation 4.

Figure 4: Architecture of Eform-based average voltage model

3 Results and Discussion

The accuracy of the trained models was investigated using MAE and R2 as the statistical measures.

MAE =
1

N

N∑
i=1

(V DFT
i − V ML

i ) (7)
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Figure 5: Voltage calculated from DFT Vs voltage predicted by machine learning graphs from (a) reaction-based and
(b) Eform-based models (4000 data points). Here, part (a) has only a 329 data points since rest of the data were used to
train the reaction-based model.
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R2 = 1−
∑N
i=1(V DFT

i − V ML
i )2∑N

i=1(V DFT
i − V )2

(8)

Here, MAE is the mean absolute error and R2 is the coefficient of determination. V DFT
i represents the voltage computed

from DFT for ith battery framework, and V ML
i indicates the corresponding machine learning predicted voltage. V and

N are the number of data and the average voltage in the test set, respectively. In Fig. 5, the voltage predicted using
machine learning models (ML-Voltage) vs the voltage calculated using DFT (DFT-Voltage) is shown for both reaction-
and Eform-based models.

For the reaction-based model, the test set consist of 329 battery systems comprising of 177 Li, 35 Ca, 3 Cs, 7 Rb, 11 K,
10 Y, 20 Na, 11 Al, 29 Zn, and 26 Mg battery systems. For the Eform-based model, we used all 4,402 electrodes of
intercalation frameworks as the test set. It is clear from Fig. 5 that both models provide almost the same MAE even
though the both training and test set sizes are significantly different. Among two approach, reaction-based model is
most accurate with MAE of 0.298 V. Moreover, the R2 value of reaction-based model is about 6% higher than that of the
Eform-based model. One of the advantages of the reaction-based model over the other model is that it achieves almost
the same accuracy as its counterpart although was trained using only 4073 materials. On the contrary, the Eform-based
model trained with 60,000 materials to reached an MAE of 0.315 V. We note that, for training the Eform-based model,
we excluded the battery materials from the training set. Our method provides nearly 17 % improvement when compared
to previous approaches on the same data[15, 16].
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Figure 6: Performance of reaction-based and Eform-based models to predict the voltage of Na and K-ion based
electrodes.

To examine the transferability of our models, we studied the accuracy of predicting the voltage in Na, and K ions-based
electrodes. For this, we replaced the Li ions in known Li electrodes structures from materials Project with Na and
K-ions. For such structures, geometry optimization was not performed to calculate voltage from our ML models. This
approach allows us to examine the effect of geometry optimization on the performance of our models while predicting
the voltage. Our approach is motivated by benchmark ML models used for molecules, which have achieved chemical
accuracy with empirically obtained 3D-coordinates from SMILES strings of molecules [35]. For this, we extracted only
DFT voltage of those Na and K-ions-based electrodes from MP database, which share the same structure (symmetry,
space groups) as corresponding Li-based electrodes. As listed in Table 3, Na-ion shares relatively larger amount of Li
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electrode structures (127), while K-ion electrodes has only 32. We replaced Li in those Li-based electrodes with Na and
K-ions and calculated voltage using our ML models. We compared such voltage for Na and K-based electrodes with the
corresponding voltage taken from MP. We found that, Eform-based model can predict voltage with MAE of 0.47 V
which is nearly 20 % improvement over similar studies performed in the literature to examine the transferability of the
model [16]. We obtained relatively large MAE of 0.56 V from reaction based model, which again is similar to previous
work reported in literature. For K-ion battery electrodes, we obtained relatively large error from both reaction based
and formation energy based models. We found that, formation energy based models are more accurate for predicting
voltage for K-ion battery with MAE of 0.70 V.

Table 1: The number of Na, and K battery frameworks which share the same structures of Li frameworks (Test set size)
and the MAE values in V for predicting voltage of the battery systems, where Li ions were substituted by those alkali
ions.

Alkali ion Test set size MAE (GATGNN) MAE (GATGNN)
Reaction-based Eform-based

Na 127 0.56 0.47
K 32 0.87 0.70

In summary, we developed and compared the performance of two attention based graph neural networks to predict the
voltage of the battery electrode materials. The first method predicts the voltage by considering the chemical reaction
between a high-potential electrode and a metal ion to form a low-potential electrode. The second model predicts the
Eform of individual electrodes before being used to compute the voltage. Our reaction-based model is 17% more
accurate than the model explored in literature on the same MP dataset. Our reaction-based model consistently provides
lower MAE and higher R2 values compared to that from Eform-based model. Moreover, we show that relative to
known models in literature, our models demonstrate high transfer-ability of performance when applied to Na and K-ion
electrodes.
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