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ABSTRACT

Semiconductor device technology has exceptionally developed in complexity since discovering the
bipolar transistor. With the rapid advancement of various technologies, semiconductors with distinct
properties are essential. Recently, deep-learning, data-mining, and density functional theory (DFT)-
based high-throughput calculations were widely performed to discover potential semiconductors
for diverse applications. CubicGAN is a generative adversarial network where high-throughput
analyses were done to uncover mechanically and dynamically stable materials with the assistance
of DFT. In our work, we screened the semiconductors using a binary classifier from materials
found from the CubicGAN. Next, we performed DFT computations to study their thermodynamic
stability based on energy-above-hull and formation energy. According to our studies, 12 stable
semiconductors were found with a particular class of materials, which we label as AA′MH6. Those
are BaNaRhH6, BaSrZnH6, BaCsAlH6, SrTlIrH6, KNaNiH6, NaYRuH6, CsKSiH6, CaScMnH6,
YZnMnH6, NaZrMnH6, AgZrMnH6, AgZrMnH6, and ScZnMnH6. It could be shown that AA′MH6

with M=Mn and NaYRuH6 semiconductors have considerably different structural, mechanical, and
thermodynamic properties compared to the rest of the AA′MH6 semiconductors. In this study,
The maximum bandgap found was approximately 3.3 eV from KNaNiH6, while the minimum
bandgap was about 1.3 eV from CaScMnH6. BaNaRhH6, BaCsAlH6, CsKSiH6, KNaNiH6, and
NaYRuH6 were identified as wide-bandgap semiconductors, where bandgaps are greater than 2 eV.
Furthermore, BaSrZnH6 and KNaNiH6 are a direct bandgap semiconductors, whereas other AA′MH6

semiconductors exhibit indirect bandgaps.

Keywords Deep learning · Semiconductors · Density Functional Theory · Generative Adversarial Networks

1 Introduction

Semiconductors are essential components of modern devices that use transistors, light-emitting diodes [1], integrated
circuits [2], photovoltaic [3], solar cells [4], and so on [5, 6, 7]. Semiconductors exhibit variable resistance since
electron flow can be controlled by light and heat. Therefore, these materials can be used for energy conversion, and
digital switching [8]. The elemental semiconductors found from Group XIV in the periodic table, like Si and Ge, and
the compounds of Ge are widely used in electronics, photovoltaic and optoelectronic devices. However, semiconductors
with various properties are required for industrial applications [8, 9]. For instance, excellent thermal conductivity
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and electric field breakdown strength, and also wide bandgap of SiC semiconductor make it a suitable material for
high-temperature, high-power, high-frequency, and high-radiation conditions [10]. Thus, computational approaches
for exploring novel semiconductors are essential to enhance future technologies. High-throughput screening with the
aid of first-principles calculations was performed by several groups to discover novel optoelectronic semiconductors.
Setyawan et al. and Ortiz et al. reported the high-throughput screening and data-mining frameworks to investigate
bandgap materials for radiation detection [11, 12, 13]. High throughput material screening by Zhao et al. found that
Cu-In-based Halide Perovskite as potential photovoltaic solar absorbers [14, 13]. Based on 4507 hypothetical materials,
Li et al. suggest 23 candidates for light-emitting applications, and 13 potential compounds for solar cell technologies
[15, 13]. Such examples indicate that high-throughput screening can now be used to explore promising semiconductor
materials.

Generative adversarial networks (GANs) are a kind of generative models that learn patterns/distribution from input
data [16]. GANs use two sub-models to train a generative model. The generator model generates fake data, and the
discriminator model learns to tell fake data from real data. The two sub-models are trained simultaneously to achieve a
Nash Equilibrium: the generator can generate data that the discriminator can recognize half the chance. Wasserstein
distance [17] and gradient penalty [18] are introduced during training in order to overcome mode collapse and improve
the training stability in original GANs [16]. There are a limited number of works that leverage GANs to generate crystal
structures in material science. The reasons behind that are: 1) Crystal structures have so many formations, such as a
different number of elements and number of atoms in a unit cell. It is hard to come up with an unified representation to
make GANs learn from them like images or text; 2) GANs used in computer vision cannot generate crystal structures
that satisfy physics or symmetric constraints. For instance, GANs easily generate materials that are not recognizable
or that have crowd atoms in a unit cell. CrystalGAN [19] is believed to be the first work that uses GANs to generate
materials. It applies CyClyGAN [20] to simple systems mapping ternary a hydride into another. In [21], Kim et al. use
WGAN-GP [18] to train a generative model to generate Mg-Mn-O systems with atom coordinates as the input. All the
works above only consider a simple or specific family of materials at a limited scale. CubicGAN proposed by Zhao et
al. [22], however, is the first work that generates materials at a large scale.

In this research, we developed a binary classifier to filter the semiconductors/Insulators (non-metals) from the dynami-
cally stable quaternary Cubic materials discovered using the CubicGAN model, where high-throughput calculations
were done with the assistance of a GAN model and density functional theory (DFT). We studied the most important
elemental and electronic properties, which are helpful to distinguish the non-metals and metals using the machine
learning models. In addition, we carried out DFT calculations for those semiconductors to corroborate the thermody-
namic stability and semiconductor properties. As a result, we find that 12 cubic semiconductors of a particular class
of materials, which we label as AA′MH6, are thermodynamically stable against their competing phases. We further
performed the DFT calculations to study their structural, mechanical, thermodynamic, and electronic properties. Our
results show that AA′MnH6 and NaYRuH6 have higher Cii (i=1,2,3) elastic constants, bulk modulus, shear modulus,
and Young’s modulus compared to the respective mechanical properties of the rest of the AA′MH6 materials. At
temperatures less than 200 K, AA′MnH6 and NaYRuH6 have lower specific thermal capacity (Cv) relative to other
AA′MH6 materials. The highest Cv at 300K found in this work is from BaSrZnH6 (127.96 JK−1mol−1). Moreover,
our band structure calculations show that 5 of AA′MH6 materials are wide-bandgap semiconductors, and 11 of them
are indirect semiconductors.

2 Method

2.1 Generative Adversarial Network

The hypothetical materials used in our research are generated by our CubicGAN [22], a generative adversarial network
(GAN) based model for generating cubic crystal structures in a high-throughput manner. Our GAN model consists
of a generator network and a discriminator/critic network. The discriminator learns to tell real materials from fake
materials generated by the generator. The generator learns how to generate samples with similar distribution as the
training samples. After trained, we can sample from the generator to generate new materials. In CubicGAN, we focused
on generating ternary and quaternary materials with the space groups 221, 225, and 216. Moreover, to simplify the
problem, CubicGAN uses special fractional coordinates, all in the set of {0.0, 0.25, 0.5, 0.75}. The CubicGAN is
trained using material data from OQMD [23, 24] and is evaluated on material data from Materials Project [25] and
ICSD [26]. The main framework of CubicGAN and the post-processing for the generated materials are shown in
Figure 1. It is notoriously hard to train the original GAN model because the adversarial loss is not continuous in the
generator, which causes vanishing gradients and saturation in the discriminator. We take advantage of the Wasserstein
GAN with gradient penalty by penalizing the norm of gradients of the critic with respect to the inputs [18]. The critic
takes real materials and fake materials generated by the generator and then outputs a score which can be interpreted as
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how real the input materials are. The score is used to update the parameters of models of the generator and the critic.
The adversarial loss is defined as:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(∥∇x̂D(x̂)∥2 − 1)2] (1)

where x̂ is the linear interpolation between a real material and the generated one and E
x̂∼Px̂

[(∥∇x̂D(x̂)∥2 − 1)2] is the

gradient penalty which enforces gradients with norm at most 1 everywhere. λ is set 10 in this work.

Figure 1: The main framework of CubicGAN. (a) WGAN architecture and (b) post-processing of generated samples.

Conditioning on random noise, three or four-element combinations, and space group, the generator not only generates
novel materials with existing prototypes but also generates novel stable ones with new prototypes. When the CubicGAN
generates 10 million materials, it can rediscover most of the cubic materials in Materials Project and ICSD. In
CubicGAN, we only focus on the generated materials with new prototypes, which are defined by the anonymous
formula and the space group ID. In total, 24 and 1 new prototypes are found in 10 million generated ternary and
quaternary materials, respectively. Sub-figure (a) of Figure 1 shows how to filter out the materials. On average, 90% of
generated materials have readable CIFs, and we only select materials with neural charge and negative formation energy
predicted by CGCNN [27]. After filtering down materials with novel prototypes, we performed DFT calculations,
and 36847 candidate materials have been relaxed successfully. Further, 506 stable materials are verified by phonon
dispersion.

2.2 Semiconductor - Metal Classifier

Table 1: The total number (N ) and percentage of ternary and quaternary non-metals (NM) and metals (M) for all the
types of Bravais lattice and also for Cubic structures (Cubic-NM and Cubic-M) in the Material project database [28].

Material NNM NM NM % M % NCubic−NM NCubic−M Cubic-NM % Cubic-M %
Ternary 28102 35682 44.06 55.94 2094 8385 19.98 80.02

Quaternary 28527 10497 73.10 26.90 2578 1438 64.19 35.81

As the CubicGAN model generates only ternary and quaternary materials, we first analyzed the number of non-metals
(semiconductors and insulators), and metals in the material project (MP) database [28], as shown in Table 1. We
collected all quaternary materials where the bandgap details are available using Pymatgen code [29]. It could be found
that ≈44 % of the ternary materials are non-zero bandgap materials while ≈56 % are metals. However, ≈73 % of the
quaternary materials are semiconductors or insulators, whereas only ≈27 % of them are metals. This indicates that
the probability of finding a stable quaternary material with a non-zero bandgap is higher compared to finding that in a
ternary material set. We also compared the same details of the cubic materials. It is interesting that ≈80 % of the cubic
ternary materials are metals, and only ≈20 % of them are non-metals. On the contrary, the quaternary cubic materials
have 30 % more non-zero bandgap materials than the number of metals. It shows that there is a low probability of
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discovering a non-zero bandgap cubic ternary compound. Instead, in this project, we mainly focused on the quaternary
cubic materials for finding stable semiconductors. In this way, by reducing the search space of the materials, we are
able to shorten the computational time taken by the DFT calculations.

To develop a semiconductor-metal classifier, we first collected the pretty formulas, Bravais lattice type, and bandgap
details of all the quaternary materials from the MP database. There were 28527 non-zero bandgap materials (semicon-
ductors and insulators) and 10497 metals in the collected dataset. In order to let our machine learning models learn the
hidden information of both classes of the materials fairly, we randomly selected 10497 number of non-zero bandgap
materials. Thus, both metal and non-metal classes have an equal number of components.

We first transformed the Bravais lattice type of the materials into one-hot-encoding. We considered 55 elemental and
electronic structure attributes, such as the first ionization energy, atomic volume, electronegativity, total number of
valence electrons, and number of valence electrons in s, p, d, and f orbitals, to develop the feature set (see Supporting
Information). The weighted average (Avg.) and a maximum difference of those properties for a given chemical formula
were added to the feature set. The Avg. of a property S of a quanternary compound AαBβCγDδ was calculated based
on the following expression,

SAvg
AαBβCγDδ

=
1

α+ β + γ + δ
(αSA + βSB + γSC + δSD), (2)

where SA, SB, SC and SD are the property S of A, B, C, and D elements, respectively. We also encoded the composition
based on a vector with 117 components, where each component represents an element in the periodic table. Altogether,
226 features were considered for training the models.

To create the classifier, we developed a DNN model with two hidden layers using Keras [30] on top of TensorFlow
[31]. The first and second hidden layers of DNN include 200, and 100 neurons, respectively. In order to include the
nonlinearity into the system, we shifted the summed weighted inputs of each layer through the rectified linear unit
(ReLu) activation function. We randomly dropped out 5% of the units of the hidden layers while training the models.
This process is very important for limiting the overfitting of training data. Another useful approach to diminishing
overfitting is weight regularization. We employed Ridge (L2) regularization method for adding penalties during updating
weights. The adaptive moment estimation (Adam) optimizer with a 0.001 learning rate was considered with binary
cross-entropy as the loss function and the metric during the calculations. The optimized number of epochs and batch
size are 500 and 1500, respectively.

To understand the most influential elemental and electronic attributes to classify a material as non-metal or metal, we
studied the feature importance (FI) of the materials using a random forest classifier (RFC). Here, we removed the
composition vector which was used in the DNN model since we want only the elemental and electronic attributes in
the feature importance. We created RFC based on the Scikit-learn code [32] by considering decision trees, minimum
samples split, minimum samples leaf, maximum features, and the maximum depth, as 1000, 6, 2, 4, and 90, respectively.
The classification report of the RFC model is mentioned in the Supporting Information.

2.3 Density Functional Theory Calculations

Density functional theory calculations were performed as implemented in the Vienna ab simulation package (VASP)
code [33, 34, 35, 36]. The electron wave functions were described using the PAW pseudopotentials [37, 38]. The
exchange-correlation interactions were treated based on the generalized gradient approximation (GGA) within the
Perdew-Burke-Ernzerhof (PBE) formulation [39, 40]. The energy threshold value of the plane-wave basis was set as
500 eV. In addition, the energy convergence criteria were set to 10−8 eV, and the force convergence criterion for the
ionic steps is set to 10−2 eV. The Brillouin zone integrations were performed using a dense k-point mesh within the
Monkhorst-Pack scheme for the structure optimizations, band structure, density of states, mechanical properties, and
phonon calculations. Phonon dispersions were obtained using phonopy code [41]. The elastic constants were calculated
by employing density functional perturbation theory (DFPT) as implemented in VASP [42]. VASPKIT code [43] was
used to obtain the bulk modulus (K), Shear modulus (G), Young’s modulus (Y), and Poisson’s ratio (µ) of the materials
based on Hill method [44].

3 Results and Discussion

3.1 Predicting New Semiconductors

We studied FI using the RFC model. Even though both Avg. and the maximum difference of each atomic/electronic
property were considered for the RFC model, only four features related to maximum difference have FI greater than 1
%. This indicates that Avg. of the properties plays a significant role when classifying a material like metal or non-metal.
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The top 10 features are mentioned in Fig. 2. Avg. Availability of metal and transition-metal atoms have high FI,
indicating having metallic atoms is important for the material to be a metal or a semiconductor/insulator. The Avg.
number of p (Npval) and d (Ndval) valence electrons are the two electronic properties in the top 10 features. The
thermodynamical properties like average atomic boiling point and atomic specific heat capacity also have high FI
percentages. When the radius of the atom is high, electrons are less attracted to the nuclei. Therefore, the electrons can
behave as free electrons for providing metallic properties. When more valence electrons exist with a high atomic radius,
there is a high probability that those elements can contribute to forming a metallic character in a material. Thus, low
atomic density will be preferred for metals. This can be the main reason for having high FI for Avg. Atomic density,
volume, and covalent radius.
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Figure 2: Feature Importance as a percentage from the RFC model. Labels on the x-axis: atomic density (ρ), metal
atom (M), +2 oxidation state (+2), transition metal atom (TM), atomic volume (V), boilling point (Tboil), covalent
radius (Rcov), specific heat capacity at constant pressure (Cp), number of p-valence electrons (Npval) and number of
d-valence electrons (Ndval). Avg. and Avail. stands for weighted average and availability, respectively.
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Figure 3: Material type (NM: Non-metal, M: Metal) as a function of (a) weighted average (Avg.) of availability (Avail.)
of transition metal (TM) (ρ), (b) Avg. of number of unfilled valence orbitals (Nunfilled), and (c) Number of unfilled
valence d-orbitals (Ned−unfilled). Feature Importance (FI) of each attribute is also mentioned as a percentage.

We further analyzed the descriptors with FI percentage in the range of 1 to 2 % by plotting non-metal and metal classes
of all the 39024 quaternary materials against the descriptors. As can be seen in Figure 3, an elemental property and
two electronic properties show interesting behavior. Those properties are the Avg. Availability of elements from
d-block (transition metal), the Avg. Number of unfilled valence orbitals and the Avg. Number of unfilled d-valence
orbitals. The availability of d-block elements for a given chemical formula is 1 when all the elements transition metal
elements. As shown in Fig. 3 (a), the number of non-metals is decreasing since 0.4, implying the probability of
finding a semiconductor or an insulator decreases after this value. Within the 39024 quaternary materials, there was no
semiconductor or insulator after 0.76 Avg. Availability of transition metal elements. After Avg. Number of unfilled
valence orbitals is 7, probability of finding a non-metal becomes low (see Fig. 3 (b)). Avg. Number of unfilled d valence
orbitals also has a critical value, which is around 4 (see Fig. 3 (c)). This will be helpful for one to restrict their chemical
space while searching semiconductors with transition metal elements.
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Figure 4 shows the normalized confusion matrix for the DNN classifier. It is apparent that 41 % of the instances
were classified as true metals while 43 % of the materials were listed as true non-metals. The percentages of false
metals and false non-metals were 9.8 % and 6 %. Thus, we can expect an approximately balanced binary classification
from the trained model. The classification report for the DNN model is shown in Table 2. It is clear that the DNN
classifier predicts whether a quaternary material is a metal or non-metal with 0.85 accuracies. Precision is the matrix
that compares the number of true positive instances with the number of predicted positive instances. In our work, the
DNN model classifies a material as a non-metal with 0.82 and metal with 0.88 precision. The recall is a measure of
the number of correctly predicted positive cases compared to the total number of positive cases in the dataset. Table 2
shows that there is 0.88 recall for non-metal, while there is 0.82 recall for metals. By combining precision and recall,
F1-score can be calculated as 0.85 for both metal and non-metal classes.
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Figure 4: Normalized confusion matrix of semiconductor-metal classifier for metals (M) and non-metals (NM).

Table 2: The classification report of the test set for the semiconductor - metal classifier
precision recall f1-score support

Metal 0.88 0.82 0.85 1800
Non-metal 0.82 0.88 0.85 1698
accuracy 0.85 3498
macro avg 0.85 0.85 0.85 3498
weighted avg 0.85 0.85 0.85 3498

To show the methodology of finding stable semiconductors based on generative adversarial networks, we applied
our DNN classifier on CubicGAN predicted mechanically and dynamically stable quaternary materials. Out of 323
quaternary new materials predicted by the CubicGAN model, 101 compounds were classified as non-metals by our
binary classifier.

3.2 Structure and Thermodynamic Stability

We carried out our DFT calculations on those non-metals to find thermodynamically stable semiconductors. We
discovered that 12 semiconductors, which have chemical formulas in the form of AA′MH6, exhibit zero energy-above-
hull against the respective competing phases. Those are BaNaRhH6, BaSrZnH6, BaCsAlH6, SrTlIrH6, KNaNiH6,
NaYRuH6, CsKSiH6, CaScMnH6, YZnMnH6, NaZrMnH6, AgZrMnH6, AgZrMnH6, and ScZnMnH6. We also find
that Kadir et al. reported 5 different AA′MH6 type semiconductors, where M = Ir [45]. They were able to synthesize
NaCaIrH6, NaSrIrH6, NaBaIrH6, KSrIrH6, and KBaIrH6 by direct combination of the alkali (Na and K), alkaline
earth (Ca, Ba, and Sr) binary hydrides/deuterides with Ir powder. Their X-ray and neutron powder diffraction studies
confirm that those semiconductors have the space group symmetry F-43m. Furthermore, open quantum materials
database (OQMD) [46, 47] contains the structural properties and band gaps of NaCaIrH6, NaSrIrH6, NaBaIrH6

semiconductors and the MP database has those information of NaCaIrH6, and NaBaIrH6 semiconductors [28] (See
Supporting Information).

CubicGAN generates conventional structures with cubic Bravais lattice with F-43m (216) space group for AA′MH6

materials, which have 36 atoms. On the contrary, the primitive unit cell with hexagonal Bravais lattice has only 9
atoms. Therefore, we considered the hexagonal unit cell to lower the computational time of the DFT calculations. In
the primitive unit cells (see Fig 5), green and red sites are symmetrically equivalent, while grey sites are located at the
right middle of the hexagonal unit cell. Thus, we label green and red sites as A and A′, while the middle site is M. Rest
of the 6 sites are occupied by H atoms. In the research work of Kadir et al., they considered alkali atoms as A atoms,
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A

A'

M

H

Primitive Conventional

Figure 5: Side view of the structure of AA′MH6 materials with primitive and conventional unitcells, which are indicated
by red lines.

alkaline earth atoms as A′ atoms, and M atoms as Ir. In this research, our findings show that both A and A′ atoms can
be alkali atoms (E.g., CsKSiH6) or alkaline earth atoms (E.g., BaSrZnH6). Moreover, the M atom can be a transition
metal atom or even Al or Si. Therefore, our experiments show that those materials can have high chemical diversity.

The lattice parameters, A-H, M-H, A-M, and A-A′ bond lengths, are mentioned in Table 3. The primitive hexagonal
unit cells have a/c = 1 lattice parameter ratio making a = b = c. As shown in Table 3, Mn-related AA′MH6 and
NaYRuH6 structures have the shortest lattice parameters compared to the rest of the materials. They have lattice
parameters less than 5.0 Å, while other materials have greater than 5.4 Å. All A, A′ and M elements make bonds
with H atoms. A and A′ elements are bonded to twelve equivalent H atoms to form AH12 and A′H12 cuboctahedra.
And also, M atoms make MH6 octahedra by making bonds with 6 H atoms. An AH12 (A′H12) cuboctahedra shares
corners with twelve equivalent AH12 (A′H12) cuboctahedra. Moreover, they share faces with four MH6 octahedra
[48]. Due to symmetry, A-H and A′-H bond lengths are equal. M-H bond lengths are the shortest compared to other
bonds for a given compound. A-A′ of Mn-related AA′MH6 and NaYRuH6 structures are less than 3.4 Å, and A-M and
A′-M distances are less than 3.1 Å. It can cause strong interactions between those atoms. A-A′ distance for the rest of
the materials is greater than 3.8 Å, and A-M and A′-M distances are greater than 3.3 Å, indicating relatively weaker
interactions.

The thermodynamical stability of the AA′MH6 materials against their elements was studied using the formation energies,
which were based on the following equation.

E_form =
1

N
(Etot − xi

∑
i

Ei) (3)

Here, Etot is the total energy per unit formula of the material. xi is the number of atoms of each element in the unit
formula; i.e., 1 for A, A′, M atoms and 6 for H. N =

∑
xi; i.e., 9 for AA′MH6. To find the atomic energies (Ei),

we collected the most stable structures of each element using Pymatgen code [29]. Same DFT settings were used
to calculate the energy of each element. It is clear that all the six materials have negative formation energies, which
confirms their stability.

3.3 Mechanical Properties and Stability

Next, we studied the mechanical properties and stability of the AA′MH6 materials by calculating the elastic constants
using the DFPT method. To analyse the mechanical properties, we used the Vaspkit code [43], where it computes the
elastic constants by considering the AA′MH6 cubic system. Since cubic unitcells has a = b = c lattice lengths and
α = β = γ = 900 lattice angles, C11 = C22 = C33, C44 = C55 = C66, and C12 = C13 = C23 [49]. Therefore,
we mentioning only the three independent elastic constants (C11, C12 and C44 ) in Table 4. It is clear that AA′MH6

materials have relatively higher C11 for AA′MnH6 and NaYRuH6, compared to the other four materials in Table 4. As
discussed before, the lattice constants, and A-A′ bond lengths of AA′MnH6 and NaYRuH6 structures are considerably
lower than that of the rest of the materials. As illustrated by Fig. 5, A-A′ bonds are aligned in a, b and c directions.
C11, C22, and C33 are parallel to a, b and c directions, respectively. Therefore, higher Cii (i=1,2 and 3) can be
mainly due to the strong interactions between the A and A′ atoms. Born stability criteria for the cubic systems are
C11 −C12 > 0, C11 + 2C12 > 0 and C44 > 0 [49]. It is clear from Table 4 that all the eight materials comply with the
above requirements.
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Table 3: The lattice parameter (a) and bond lengths in Å, and the formation energies in eV/atom for AA′MH6 materials.
Material a A-H M-H A-M A-A′ Eform

BaNaRhH6 5.5105 2.76924 1.67023 3.37448 3.89651 -0.4678
BaSrZnH6 5.47201 2.73801 1.83004 3.35091 3.8693 -0.3496
BaCsAlH6 5.84781 2.93934 1.76669 3.58104 4.13503 -0.3159
SrTlIrH6 5.56492 2.79622 1.69039 3.4078 3.93499 -0.3488
CsKSiH6 5.86576 2.968 1.61863 3.59203 4.14772 -0.1817
KNaNiH6 5.40252 2.73044 1.51196 3.30835 3.82016 -0.1715
NaYRuH6 4.97064 2.48578 1.70949 3.04388 3.04388 -0.4999
CaScMnH6 4.74883 2.37467 1.64383 2.90805 3.35793 -0.5261
YZnMnH6 4.69455 2.34755 1.62362 2.87481 3.31955 -0.3099
NaZrMnH6 4.64255 2.32129 1.63348 2.84297 3.28278 -0.3111
AgZrMnH6 4.62246 2.31127 1.62077 2.83067 3.26857 -0.2070
ScZnMnH6 4.50635 2.25322 1.60682 2.75957 3.18647 -0.3070

We also calculated the Bulk modulus (K), Young’s modulus (Y ), and isotropic Poisson’s ratio (µ) based on Hill
approximation [50] as mentioned in Table 4. Smallest K values were found from CsKSiH6 (16.615 GPa), while largest
value was calculated from AgZrMnH6 (120.755 GPa). SrTlIrH6 (21.915 GPa) provides lowest Y , while NaZrMnH6

(156.876 GPa) exhibits the maximum Y . It is clear that NaYRuH6 and all the Mn-based materials have significantly
larger K and Y values than that of the other six materials. This can be mainly because of high Cii (i=1,2, and 3) formed
due to strong A-A′ bonds. Because of low Y , NaYRuH6 and Mn-based AA′MH6 materials can be considered stiffer
materials relative to the other six semiconductors. And also, they exhibit more resistance to compression due to high
K. All the µ values of the AA′MH6 materials are between 0.2 and 0.4. maximum µ was found from SrTlIrH6. Thus,
SrTlIrH6 has considerably low Y and high µ. This indicates that SrTlIrH6 semiconductor is less stiff due to small Y
and more deformable elastically at small strains due to large µ.

Table 4: The mechanical properties of the AA′MH6 materials. The C11, C12, C44 elastic constants, bulk modulus (K),
Shear modulus (G) and Young’s modulus (Y ) were calculated in GPa. µ is the isotropic Poisson’s ratio.

Material C11 C12 C44 K G Y µ
BaNaRhH6 60.514 20.174 11.901 33.621 14.722 38.541 0.309
BaSrZnH6 86.238 20.648 30.492 42.512 31.393 75.577 0.204
BaCsAlH6 50.455 16.174 13.119 27.601 14.602 37.24 0.275
SrTlIrH6 52.588 26.735 5.549 35.353 7.845 21.915 0.397
CsKSiH6 28.939 10.454 7.203 16.615 7.960 20.592 0.293
KNaNiH6 36.027 11.720 6.618 19.822 8.463 22.225 0.313
NaYRuH6 131.450 36.248 44.149 67.982 45.499 111.600 0.226
CaScMnH6 192.385 28.606 38.997 83.199 52.744 130.627 0.238
YZnMnH6 171.063 50.92 23.563 90.968 34.649 137.167 0.331
NaZrMnH6 196.714 47.003 57.275 96.907 63.761 156.876 0.23
AgZrMnH6 190.957 85.654 50.274 120.755 51.211 134.606 0.314
ScZnMnH6 191.749 60.602 60.537 104.317 62.504 156.295 0.250

3.4 Thermodynamic Properties and Dynamical Stability

The temperature of the highest normal mode of a crystal is known as the Debye temperature θD. This can be obtained
by employing Debye sound velocity (νD) as explained by Eq. 4. Debye sound velocity can be calculated using the
longitudinal and transverse sound velocities, which can be determined based on K and G as shown in Eq. 6 [51]. Here,
N , V0, and ρ are the number of atoms, volume, and density of the unicell, respectively. And also, h is Plank’s constant,
and kB is Boltzmann’s constant.

θD =
h

kB

(
3N

4πV0

) 1
3

νD (4)

νD =

[
1

3

(
2

ν3l
+

1

ν3t

)]− 1
3

(5)
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Figure 6: Phonon dispersion of AA′MH6 materials.

νl =

(
3K + 4G

3ρ

) 1
2

and νt =

(
G

ρ

) 1
2

(6)

Table 5 shows the respective ρ, νl, νt, νD and θD values for AA′MH6 crystals. Debye temperature of NaYRuH6 and
Mn-based AA′MH6 materials are significantly higher than that of other AA′MH6 materials. As θD depends on K and
G (see Eq. 6 and 4), enhanced θD is due to high K and G of those semiconductors.

We also plotted Cv as a function of temperature T using the Phonopy code [41]. Cv can be determined based on the
following expression,

Cv =
∑
qj

kB

(
ℏωqj

kBT

)2
exp(ℏωqj/kBT )

[exp(ℏωqj/kBT )− 1]2
, (7)

where ωqj is the phonon frequency for q wave vector at jth phonon band index and ℏ is the reduced Plank’s constant
[41]. As can be seen in Fig 7, Cv of NaYRuH6 and Mn-based AA′MH6 materials are plotted with broken lines, and
that of the rest of the materials are indicated by solid lines. It is clear that Cv of NaYRuH6 and Mn-based AA′MH6

materials are smaller than that of the other materials at the low temperatures (0 to 150 K). At the low temperature limit
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(T ≥ θD, θD/T « 1), Cv is proportional to (T/θD)3. Since θD is higher compared to that of other materials, Cv is
smaller at low temperatures for NaYRuH6 and Mn-based AA′MH6.

Table 5: The density (ρ), longitudinal (νl) , transverse (νt ) and average (νD) sound velocity, Debye temperature (θD)
and specific thermal capacity at 300 K (C300K

v ) for the AA′MH6 materials.
Material ρ (gcm−3) νl ( ms−1) νt (ms−1) νD (ms−1) θD (K) C300K

v (JK−1mol−1)
BaNaRhH6 4.0401 3630.4733 6902.4643 2858.5852 337.0342 119.113
BaSrZnH66 3.4683 4932.0885 12405.1302 3901.0279 463.1759 127.961
BaCsAlH6 2.9078 4023.4038 7286.8499 3164.0609 351.5324 115.715
SrTlIrH6 5.4546 2898.0880 4445.3015 2265.8564 264.5375 120.116
CsKSiH6 1.9584 3728.7223 5212.2198 2901.6325 321.3897 109.520
KNaNiH6 1.5423 4490.9338 5199.8403 3445.3146 414.3299 121.746
NaYRuH6 3.4194 6133.7278 14188.8339 4846.6876 633.4998 112.140
CaScMnH6 2.6144 7663.0364 14886.6869 6036.7538 825.9060 110.588
YZnMnH6 3.9895 5863.5797 10231.3126 4606.2522 637.4814 116.661
NaZrMnH6 3.3572 7361.3351 16649.9772 5814.9095 813.7671 106.507
AgZrMnH6 5.0489 6118.9252 12770.7618 4827.2738 678.4886 106.507
ScZnMnH6 3.5897 7230.2461 15811.8943 5708.4879 823.0192 115.952

Figure 7: The specific heat capacity (Cv) of AA′MH6 materials as a function of temperature (T ).

3.5 Electronic Properties

As can be seen in Table 6, A, A′ and M elements lose electrons (except in Ru, where it has small negative value), while
H atoms gain electrons. Thus, we can expect an ionic character in A-H, A′-H, and M-H bonds. Even though A and
A′ sites are symmetrically equivalent, the atoms at those sites can lose a different amount of electrons. This is mainly
because atoms at those sites have different oxidation states. Based on Table 6, Na, K, and Cs alkali atoms have their
usual oxidation state (+1), while alkaline earth atoms such as Ca, Sr, and Ba lose more than 1 electron as they can donate
up to 2 electrons. Al, Si, and Tl exhibit their most common oxidation states, which are +3, +4, and +1, respectively. It
is reported that first-principles computations provide only negligible changes in the local transition-metal charge for
semiconducting crystals [52]. Therefore, we propose that we can consider MHn−

6 complex as a single unit since the
M-H bond lengths are very short compared to other H-related bonds. n can be found by computing ∆qM + 6×∆qH,
which is greater than 2 for all the M atoms except for Ni and Si. For those two atoms, n ≈ 1.6. Therefore, we can expect
MH2−

6 for Si and Ni complexes, while MH3−
6 for the rest of the complexes. Kadir et al. suggest that IrH3−

6 complexes
exist in AA′IrH6 semiconductors [45]. Therefore, MH3−

6 can be the common complex that exists in AA′MH6 materials.

10
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Table 6: The Bader charge transfer (∆q) in electrons for each element of AA′MH6 Materials.
Material ∆qA ∆qA′ ∆qM ∆qH
BaNaRhH6 1.4256 0.8613 0.0127 -0.3841
BaSrZnH6 1.3057 1.4588 0.6579 -0.5701
BaCsAlH6 1.4853 0.7135 3.0000 -0.8581
SrTlIrH6 1.5551 0.4674 0.2944 -0.3855
CsKSiH6 0.7625 0.8483 4.0000 -0.9345
KNaNiH6 0.7781 0.8734 0.5139 -0.3612
NaYRuH6 0.8341 1.8845 -0.1099 -0.4356
CaScMnH6 1.3626 1.6427 0.2943 -0.5509
YZnMnH6 1.7862 0.7053 0.3301 -0.4717
NaZrMnH6 0.8179 1.8115 0.3468 -0.4978
AgZrMnH6 0.2876 1.8191 0.3904 -0.4168
ScZnMnH6 1.6590 0.7511 0.2937 -0.4484

Figures 8 and 9 show the band structures and partial density of states (PDOS) of the AA′MH6 materials. It is clear
that all the six AA′MH6 materials are semiconductors. The bandgap for each material is mentioned in Table 7. In
this research, the highest band gap can be found in KNaNiH6 (≈ 3.3 eV) and the lowest bandgap is in CaScMnH6

(≈ 1.3 eV). The bandgap range of wide-bandgap semiconductors is considered as the range above 2 eV [53]. Thus,
BaNaRhH6, BaCsAlH6, CsKSiH6, KNaNiH6, and NaYRuH6 can be identified as wide-bandgap semiconductors. As
reported by Kadir et al., NaCaIrH6, NaSrIrH6, NaBaIrH6, KSrIrH6 and KBaIrH6 have bandgaps between 2.91 and
3.33 eV [45] (see Supporting Information). Wide-bandgap semiconductors are vital for manufacturing optical devices
emitting green, blue, and UV frequencies and also power devices functioning at higher temperatures [53, 54].

Other than in BaCsAlH6 and CsKSiH6, all the AA′MH6 materials have their conduction band minimum (CBM) at X
high-symmetric K-point. The CBM of BaCsAlH6 and CsKSiH6 are at Γ points. The valence band maximum (VBM)
of BaNaRhH6, SrTlIrH6, YMnZnH6, NaYRuH6, and AgZrMnH6 exist at W K-point. BaSrZnH6, KNaNiH6 and
BaSrZnH6 have VBM at X, while that of CaScMnH6 and AgZrMnH6 is at K high-symmetric point in the reciprocal
space. Thus, both CBM and VBM of BaSrZnH6 and KNaNiH6 reside at X K-point, indicating those materials are
direct bandgap semiconductors. BaNaRhH6, KNaNiH6, CaCsMnH6, and NaYRuH6 materials have very flat bands near
the Fermi level, which is indicated by zero energy. As shown by electronic band theory, the electron effective mass can
be very high at the flat bands [55]. Our partial density of states (PDOS) studies reveal that d-orbitals of transition metal
atoms reside at the M site dominate in the valence region near the Fermi level. Even though the transition metal atoms
can be found at A and A′ sites, their pdos of d-orbitals are not significant near the Fermi level.

Table 7: The band gap, conduction band minimum (CBM), valence band maximum (VBM) and type of semiconductor
for AA′MH6 materials.

Material Band Gap (eV) CBM VBM Type
BaNaRhH6 3.0181 X W Indirect
BaSrZnH6 1.5864 X X Direct
BaCsAlH6 2.9382 G X Indirect
SrTlIrH6 1.6245 X W Indirect
CsKSiH6 2.1647 G X Indirect
KNaNiH6 3.3024 X X Direct
NaYRuH6 2.5322 X W Indirect
CaScMnH6 1.2716 X K Indirect
YZnMnH6 1.6003 X W Indirect
NaZrMnH6 1.5694 X K Indirect
AgZrMnH6 1.4111 X K Indirect
ScZnMnH6 1.6732 X W Indirect

4 Conclusion

In summary, we have performed a systematic study to find stable semiconductors from the cubic materials predicted by
a generative adversarial network named CubicGAN. First, we analyzed all the ternary and quaternary materials to find
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Figure 8: Band structures of AA′MH6 materials. Fermi energy marks zero energy.

which category has a higher probability of discovering a non-metal. A higher percentage (≈ 56%) of ternary materials
are metals, while most quaternary materials (≈ 73%) are non-metals. And also, ≈ 80% of cubic ternary materials are
metals, whereas ≈ 64% of cubic quaternary materials are non-metals. This indicates a higher probability of finding a
cubic quaternary semiconductor. Next, we analyzed FI using an RFC model. Based on the features where FI is greater
than 1%, there is a low probability of finding a non-metal at higher values of Avg. availability of TM (> 0.4), the Avg.
number of unfilled valence orbitals (> 0.76), and the Avg. number of unfilled valence d-orbitals (> 0.4). We applied
our DNN classifier to the 323 mechanically and dynamically stable quaternary materials discovered by the CubicGAN
model. DNN classified that 101 materials are semiconductors. Then, we carried out DFT calculations to investigate the
thermodynamic stability and semiconductor properties of those 101 materials. It could be found that 12 materials with
the chemical formulas in the form of AA′MH6 have non-zero bandgaps, zero energy-above-hull, and negative formation
energies. Therefore, those are thermodynamically stable semiconductors. Next, we studied the structural, mechanical,
and thermodynamic properties of those 12 stable semiconductors using DFT. Our studies show that AA′MH6 with
M=Mn and NaYRuH6 materials have different properties than the rest of the 12 materials. A-M and A-A′ bond lengths
of AA′MnH6 and NaYRuH6 materials are considerably lower than that of the other 6 materials. Moreover, A-A′ bonds
are parallel to a, b and c directions of the cubic unit cell. Therefore, Elevated Cii (i = 1, 2, 3) elastic constants in
AA′MnH6 and NaYRuH6 materials can be due to strong interactions between A and A′ atoms. K, G, and Y modulus
values are also considerably higher for former than later. Due to those mechanical property differences, AA′MnH6 and
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Figure 9: Partial density of states (PDOS) of AA′MH6 materials. Fermi energy marks zero energy.

NaYRuH6 materials exhibit smaller Cv at low temperatures compared to the other 6 materials. Furthermore, our band
structure calculations show that maximum bandgap (≈ 3.3 eV) can be obtained from KNaNiH6, whereas minimum
bandgap (≈ 1.6 eV) is from YZnMnH6. BaNaRhH6, BaCsAlH6, CsKSiH6, KNaNiH6, and NaYRuH6 materials have
bandgaps greater than 2 eV implementing those are wide-bandgap semiconductors.
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