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Abstract

Absorption of slow moving electrons by neutral ground state nucleobases have

been known to produce resonances metastable states. There are indications that such

metastable states may play a key-role in DNA/RNA damage. Therefore, herein, we

present an ab-initio non-Hermitian investigation of the resonance positions and decay

rates for the low lying shape-type states of the uracil anion. In addition, we calcu-

late the complex transition dipoles between these resonance states. We employ the

resonance via Padé (RVP) method to calculate these complex properties from real

stabilization curves by analytical dilation into the complex plane. This method has al-

ready been successfully applied to many small molecular systems and herein we present

the first application of RVP to a medium-size system. The presented resonance ener-

gies are converged with respect to the size of the basis set and compared with previous

theoretical works and experimental findings. Complex transition dipoles between the

shape-type resonances are computed using the energy-converged basis set. The ability

to calculate ab-initio energies and lifetimes of biologically relevant systems opens the

door for studying reactions of such systems in which autoionization takes place. While

the ability to also calculate their complex transition dipoles open the door for studying

photo induced dynamics of such biological molecules.
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Introduction

High energy particles may lead to DNA damage in the form of single and double strand break.

This kind of damage can be extremely dangerous, as it is considered genotoxic, mutagenic and

recombinogenic.1 Apparently, those processes are not produced by the primary high-energy

quanta, but by secondary species such as free electrons with low energy.2 In practice, due

to the radiation, a large quantity of low energy electrons (LEE) with an energy distribution

lying below 10 eV is produced; these electrons are likely to induce significant amount of

chemical damage within the cell.3–6 LEE attached to molecules often lead to anions in a

metastable state, resonances. A resonance is a metastable state of the system, in which the

system does not break into subsystems, even though it has enough energy to do so. Instead,

the break up process requires some finite time (decay rate). In non-Hermitian quantum

mechanics resonances are associated with complex eigenvalues: E = Er− i
2
Γ, where the real

part relates to the energy position of the resonance, while the imaginary part relates to the

decay rate (lifetime/width) of the metastable state.7

Anionic resonances in biological molecules, like DNA and RNA nucleobases, may lead

to dissociative electron attachment (DEA). The outcome of DEA process highly depends

on the energy and lifetime of the attached electron, i.e., it determines fragmentation or

non-dissociative relaxation mechanism.8–10 To get a better understanding of the mechanisms

responsible for DNA damage by LEE via DEA, we need to acquire more knowledge on the in-

teraction of LEE with nucleobases.11 Studying the mechanism causing DNA damage has been

of great interest in the experimental and theoretical science communities, however, showing

various processes with very different energy values.12–18 Therefore, an ab-initio treatment is

needed. Such a treatment can help to explain the interaction of resonances with light (as it

is necessary to calculate complex transition dipole in order to understand such interaction).

Recently we introduced and benchmarked a new method known as resonance via Padé

(RVP). This method use the stabilization technique ,19–21 to calculate atomic and molecular

resonances from standard (Hermitian) electronic structure packages.22,23 So far, the method
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had been successfully applied to small molecular and atomic systems such as, He∗,22,23

H∗2,
22,23 H∗−,22 N−2 ,23and Be∗,.24 Moreover, RVP was even used to calculate the He∗−H2

complex potential energy surfaces (CPESs) in order to interpret and describe cold molecular

collision experiments,25–27 these CPESs were used to compute theoretical cross sections that

were in remarkable agreement with the measurements.28,29 Additionally, RVP was also used

for predicting the interatomic Coulombic decay (ICD) products within the extreme Li–He

system.30,31

In light of the above, it is of great interest in treating large chemical system. Therefore,

in this work, we present the first application of RVP to a medium-size system, the uracil

anion (with 59 electrons), while focusing on its shape-type resonances.

Uracil is the smallest nucleobase in RNA and it resembles the DNA nucleobase thymine,

making it appealing for theoretical calculations. The anionic resonance states of uracil are

formed by the attachment of an electron to one of the unoccupied virtual (π∗ and σ∗) orbitals

of the neutral ground state. The π∗ shape-type resonance have been observed experimentally

and calculated theoretically, while the σ∗ have only been treated theoretically .32,33 Many

theoretical studies on uracil can be found in the literature. Earlier works on the uracil anion

present a large range of results, including the stabilized Koopmans’ theorem (S-KT) stabi-

lization,34 stabilized Koopmans-based approximation (S-KB) stabilization,34 R-matrix,35,36

Schwinger multichannel method with pseudopotential (SMCPP).37 However, the most re-

cent studies include the Generalized Padé Approximation (GPA)/stabilization graphs ap-

proach,38 and complex absorbing potential (CAP)/symmetry-adapted cluster-configuration

interaction (SAC-CI) approach.39 Herein, we compare these results with ours. In particular,

it is interesting to compare RVP with GPA. While both of these methods are based on sta-

bilization graphs, they are essentially different, and it was shown by Haritan and Moiseyev

that each method has its’ own advantages and disadvantages.40 Nevertheless, RVP possess

several clear advantages: the RVP fitting is less sensitive than the GPA fitting to the chosen

data set40 and the RVP allows calculations of other complex properties, such as the com-
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plex transition dipoles,41 which are essential for studying light-matter interactions. In fact,

herein we report the transition dipoles between the resonance states. This data can be used,

for example, to calculate the photoionization spectra and the Fano asymmetry parameter.42

Thus, the information presented in this work enables future investigation of uracil and the

mechanisms involving DEA.

In the last section of this work, we will shortly discuss a mechanism that may minimize

radiation damage to biological systems, such as uracil, and illustrates the need for calculating

complex energies as well as transition dipoles.

Computational Details

The neutral geometry of uracil is optimized at the MP2/cc-pVTZ level of theory with a

Cs symmetry (see Supporting Information for more details).43,44 The energy positions and

decay rates of the three lowest π∗ shape-type resonances of the uracil anion are calculated

using the RVP technique. Equation-of-motion coupled-cluster with singles and doubles for

electron affinities (EOM-EA-CCSD)45 is used to calculate the stabilization graphs, where

the singlet ground state of the neutral uracil serves as the reference state. All calculations

were performed with the quantum chemistry package Q-Chem.46

We perform a basis set convergence employing the following basis sets: Pople’s 6-31+G,

6-311+G, and 6-311+G(2d,p), as well as Dunning’s aug-cc-pVDZ, aug-cc-pVDZ+1s1p1d (in

which we add one diffuse function of s, p and d angular momentum on each atom except

for the hydrogen atoms) and aug-cc-pVTZ. Moreover, upon concluding that a triple-ζ basis

set is essential, we investigate the effect of adding diffuse functions systematically on top of

the cc-pVTZ basis set (while using aug-cc-pVTZ for the hydrogen atoms). We report six

such cc-pVTZ sets, which are augmented with +1s1p, +2s2p, +3s3p, +2s2p1d, +3s2p1d and

+2s2p2d. These additional diffuse functions were added in an even-tempered fashion (with

respect to the value of the original most diffuse function with an even-temper parameter of
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2). All the employed basis sets are presented in the Supporting Information (SI).

The stabilization graphs are obtained via partial scaling,24 i.e., only the exponents of the

most diffuse functions are divided by a real scaling parameter (α). The range of the scaling

parameter α varies between 0.4 and 3.0. For the cc-pVTZ+XsYpZd basis sets we scale all

the additional +XsYpZd diffuse functions (where for hydrogen we scale the most diffuse

s, p and d functions). For aug-cc-pVXZ (X=D or T) we scale the most diffuse s, p and d

functions, whereas for aug-cc-pVDZ+1s1p1d we scale also the added +1s1p1d functions. For

6-31+G we scale the two most diffuse s and p functions (where for hydrogen only the s), for

6-311+G two s and two p functions (for hydrogen two s), and for 6-311+G(2d,p) two s, two

p and one d (where for hydrogen one s and one p).

Within the RVP method a Padé function is dilated into the complex plane based on data

obtained from real stabilization calculation. The data is taken from the stable (analytic)

region of a branch, however several such branches may exist. The reported complex energies

correspond to the statistically best-behaved results, see the Method Section for additional

details. Fig. 1 presents such a stabilization graph (additional graphs, using different basis

sets, are given in the SI). Fig. 1a presents the entire spectrum, whereas Figs. 1b, c and

d focuses on the stable region associated with each electronic state. These regions are

marked with circles. The stable regions in Figs. 1b, c and d provide the best results from a

statistical point of view. However, for calculating transition dipoles, we require the energy

stable-regions of the relevant states to overlap. Therefore we chose a different branch for

calculating the transition dipoles (Fig. 2a) than for the energy calculations (Fig. 1c))
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a)

b) c) d)

Figure 1: (a) Energy stabilization plot of the uracil anion at the EOM-EA-CCSD/cc-
pVTZ+2s2p2d (H: aug-cc-pVTZ) level. The circles represent the sets of points used as
inputs for the RVP method (i.e. the stable region). Zoom in: (b) 1π∗, (c) 2π∗ and (d) 3π∗.

7



Results and Discussions

Complex Energies – Convergence with respect to the size of the

one-electron basis set

The computed complex energies (positions and widths) of the three lowest-lying shape type

resonances of the uracil anion are presented in Table 1. In this table, we examine the the

convergence of the results with respect to the size of the basis set, where special attention is

given to the role of the diffuse functions. The results are sub-divided into four panels. In the

first panel, we use different Pople’s basis sets. A comparison between the bases in this panel

clearly highlights the importance of using a triple-ζ (TZ) basis set: The resonance energy

position for all three shape-type resonances decreases on going from the 6-31+G to the 6-

311+G basis sets, whereas the effect of additional polarization functions [6-311+G(2d,p)] is

even more pronounced.

Table 1: Energy positions (Er) and widths (Γ, in parenthesis) of the uracil anion using the
RVP method with electronic calculation at the EOM-EA-CCSD level using different basis
sets (the total number of basis functions is indicated in parenthesis).

Er(Γ), eV
Basis sets 1π∗ 2π∗ 3π∗

6-31+G (112) 1.173 (0.015) 2.928 (0.068) 6.108 (0.210)

6-311+G (148) 1.103 (0.042) 2.795 (0.089) 5.889 (0.204)

6-311+G(2d,p) (240) 0.748 (0.012) 2.556 (0.072) 5.646 (0.182)

aug-cc-pVDZ (220) 0.761 (0.019) 2.486 (0.094) 5.490 (0.404)

aug-cc-pVDZ+1s1p1d (292) 0.738 (0.014) 2.440 (0.170) 5.277 (0.673)

aug-cc-pVTZ (460) 0.582 (0.011) 2.240 (0.115) 4.929 (0.339)

cc-pVTZ+1s1p† (364) 0.638 (0.002) 2.204 (0.084) 4.931 (0.635)

cc-pVTZ+2s2p† (396) 0.617 (0.006) 2.321 (0.182) 5.024 (0.649)

cc-pVTZ+3s3p† (428) 0.610 (0.008) 2.333 (0.126) 5.078 (0.677)

cc-pVTZ+2s2p1d† (436) 0.602 (0.010) 2.252 (0.177) 5.016 (0.661)

cc-pVTZ+3s2p1d† (444) 0.598 (0.012) 2.245 (0.176) 4.998 (0.660)
cc-pVTZ+2s2p2d† (476) 0.597 (0.014) 2.183 (0.140) 4.858 (0.657)

† with aug-cc-pVTZ for the hydrogens
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The importance of the polarized functions in Pople’s basis sets naturally led us to check

highly polarised Dunning’s basis sets. Therefore, in the second panel, we compare Dunning’s

correlation-consistent augmented-DZ and TZ basis sets. We observe that at the double ζ

level (aug-cc-pVDZ), we obtain very similar results to the largest Pople basis set. Yet, the

decay rate for the 3π∗ resonance state had an abrupt increase to ∼0.4 eV as compared to

∼0.2 eV in Pople’s basis sets. Additional diffuse basis functions play a key role evaluating

of the widths (-2ImE) as can be seen from comparing the aug-cc-pVDZ results with aug-

cc-pVDZ+1s1p1d results. Furthermore, on going from aug-cc-pVDZ to aug-cc-pVTZ the

energy positions (ReE = Er) are clearly affected. Therefore, in the third panel we employ

the cc-pVTZ basis set and systematically augment it with increasing number of diffuse

functions.

Notice that the energy position differences in the 3rd panel, are within 0.1 eV, thus the

energy position is converged with respect to the additional diffuse basis functions. As for

the width, we see in the 3rd panel that adding only +1s1p basis functions is not sufficient

and that adding +2s2p is essential. On the other hand, we see that while adding +3s3p

basis functions makes an effect (on the 2π∗ width), this effect is small. Therefore, in the 4th

panel we examine the effect of adding d-functions on top of the +2s2p diffuse functions as

was used in the 3rd panel. Clearly, adding only one d-type function (+2s2p vs. +2s2p1d)

and augmenting via +3s2p1d has a very small effect on the results. However, adding two

d-diffuse functions (+2s2p vs. +2s2p2d) has a pronounced effect on the results. Therefore,

we conclude that the largest cc-pVTZ+2s2p2d is the optimal basis set.

Table 2 presents our converged results in comparison with the most recent theoretical

results and with the experimental energy positions (no widths are available). The theoretical

results are showing the same trend. On the contrary, they clearly overestimate the experi-

mental energy positions. However, the agreement between the different theoretical values is

encouraging, in particular when considering the large range of results in earlier studies.34–37
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Table 2: Comparison of the energy positions (Er) and widths (Γ, in parenthesis) of the
lowest three shape-type resonances of uracil anion using RVP (present work) with other
theoretical methods and experimental results.

Er(Γ), eV
1π∗ 2π∗ 3π∗

RVP† 0.5970 (0.014) 2.1833 (0.140) 4.8579 (0.657)
GPA∗ 0.61 (0.02) 2.28 (0.07) 4.98 (0.34)
CAP∗∗ 0.57 (0.05) 2.21 (0.10) 4.82 (0.58)
Exp.47 0.22 1.58 3.83

† this work, EOM-EA-CCSD/cc-pVTZ+2s2p2d (H: aug-cc-pVTZ)
* EOM-EA-CCSD/aug-cc-pVDZ+1s1p1d48,49

** SAC-CI/cc-pVDZ+[2s5p2d]50

Complex Transition Dipoles for the Uracil Anion Resonances

Using the converged basis set, cc-pVTZ+2s2p2d, we also calculated the complex transition

dipoles between the three resonance states of the uracil anion. Employing the RVP technique

to compute complex transition dipoles have been successfully benchmarked in Ref 41. Herein,

we present the first application of RVP to property calculation of a medium-size molecular

system of a biological interest. The complex transition dipoles are an essential in order to

study light-matter interactions within the non-Hermitian formalism.

Figure 2 illustrates the RVP procedure for calculating complex transition dipoles for the

1π∗ ↔ 2π∗ case, i.e., between the first and second shape resonance states. Figure 2a depicts

the energy stabilisation plot for these shape-type states. The overlap between the two stable

regions is highlighted in black. This energy overlap area, in parameter space, corresponds

to a “macroscopic stability” in the transition dipole plot (an analytic area in which the

change in the values is relatively small, in the current case less than 12%). The concept of

“macroscopic stability” was defined for cases where the variational principle does not hold.51

In those cases the behaviour of the continuum states, when scaled by a parameter, is not

well defined, unlike in the energy stabilization case. In the standard energy stabilization

graphs the energy of a continuum state will always decrease as the real scaling parameter α

increases, i.e., as the space spanned by the basis set is increased. As a result, in the dipole
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a) b)

Figure 2: (a) Energy stabilization plot for uracil anion, at the EOM-EA-CCSD/cc-
pVTZ+2s2p2d (H: aug-cc-pVTZ) level. The black squares represent the sets of data points
that are common between the two stabilised areas (the overlap). (b) Transition dipole sta-
bilisation plot for 1π∗ ↔ 2π∗. The black data points corresponds to a macroscopic stable
part on the plot, which has the same α-range as the overlap area in the energy graph. These
points are taken as inputs for the analytical dilation in the Padé approximate.
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case we may obtain different shapes of stabilization graphs, see Figure 2b and Figs. 13

and 14 in the SI. The complex transition dipoles are calculated in a similar manner to the

procedure for the complex energies. The data points marked in black in Figure 2b serve as

input points for the Padé fitting. This is followed by analytically dilation of the Padé function

into the complex plane and search for clusters of stationary points, which corresponds to

the complex dipoles. The outcome of this procedure, i.e., the complex transition dipoles

between the three resonance states, are given in Table 3. The real part dominant the three

transition dipoles, where the imaginary part corresponds to about 1% of it or less.

Table 3: Complex transition dipole moments, real and imaginary parts (in a.u.) between
the three lowest shape-type resonances of uracil anion obtained in this work using RVP.
Basis set: cc-pVTZ+2s2p2d

Reµ Imµ Reµ Imµ Reµ Imµ
1π∗ ↔ 2π∗ 1π∗ ↔ 3π∗ 2π∗ ↔ 3π∗

5.089e-01 -3.599e-03 8.782e-01 -6.017e-03 8.204e-01 -1.628e-02

A simple example that illustrates the need for complex transition dipoles is the research

on minimizing DNA damage via dissociative electron attachment. According to Matsika and

coworkers the 3π∗ state, unlike the 1π∗ and the 2π∗ states, is reactive with respect to CO

elimination.10 Therefore it is desirable to study the elimination of electron attachment to

the 3π∗ state, i.e., we wish to study the transition of the electron from 3π∗ to the 1π∗ or

2π∗ states. This study is only possible if one has the transition dipole between the states.

Hence, this data is extremely important for future works. However, simply using a laser

to induce a transition from one resonance to another dose not solve the problem. Since a

typical laser pulse is of low intensity and their envelop supports many optical cycles, the

oscillations between the two resonances are unavoidable. Nevertheless, by using chirped

laser pulses an asymmetric switch can be obtained, which enables the transfer of 3π∗ to 2π∗

or 1π∗ without the backward transfer to 3π∗. The asymmetric switch is obtained as the
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laser encircles a special point in the frequency-intensity 2D space. The special point, know

as an exceptional point, is a point in this 2D space in which two resonances coalesce (i.e

non-Hermitian degeneracy).7 Explaining this mechanism is out of the scope of this work,

for a general theoretical representation see Ref 52 and for an experimental demonstration of

such an asymmetric switch see Ref 53. Notwithstanding, we perceive that in order to design

an asymmetric switch one requires the complex energies (Table 2) and transition dipoles

(Table 3).

Summary

We study the three lowest shape-type resonances of the uracil anion using the resonance

via Padé (RVP) approach. RVP was already successfully used in studying atomic and small

molecular resonances, and herein we apply this approach to a medium-size chemical system

with a biological interest. The presented results are converged with respect to the one-

electron basis set and compared to other theoretical and experimental values. In this work

we have shown the key role of polarized and diffuse basis functions (up to d-functions) in the

calculation of uracil anion resonances, resulting with cc-pVTZ+2s2p2d as our optimal basis

set. In addition, we present the calculated complex transition dipoles between the different

resonance states. These properties are essential in studying light-matter interaction within

the uracil anion, which may lead to progress in understanding the mechanism and even

minimize DNA/RNA damage.

Methods

The resonances energies are calculated with the RVP method. This method uses Hermitian

electronic structure calculations and anaytically continues it into the Non-Hermitian regime

via the Padé approximant. In practice, the method uses the stable part of the stabilization

graph as input, and produces as an output the relevant complex energy of the corresponding
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resonance.

In this study, we started by generating the stabilization graphs, using standard Hermitian

electronic structure formalism.19–21 To generate such graphs, we scaled a finite Gaussian basis

set by a real factor (α), i.e., we divided the exponent of the most diffuse basis functions by α.

For α < 1 the space spanned by the basis set compresses and for α > 1 it expands. The plot of

the eigenvalues (energies) as function of the α is known as a stabilization graph. Continuum,

resonance and bound states behave differently upon scaling due to the different nature of

their associated wave-functions. The continuum states are associated with a delocalized

wave-function, whereas the bound states are localized in the interaction region and the

resonance states are partially localized.7 Consequently, bound eigenvalues would not depend

on the scaling parameter and the resonance eigenvalues will have small dependency on the

scaling parameter. Contrary, continuum eigenvalues will strongly depend on the scaling

factor. For the resonance eigenvalues, unlike for the bound ones, we expect crossing attempts

by continuum eigenvalues, also known as, avoided crossings. This behaviour of the resonance

states translated to stable region in the stabilization graphs, which is know to be an analytic

region.22,40,54

To calculate the resonances position as well as its decay rate, we used analytical contin-

uation of the real data (stabilization graphs) to the complex plane. In practice, we used the

Padé approximant (the Schlessinger point method54) to fit the stable part of the stabilization

graph two polynomials:

E(α) =
P (α)

Q(α)
. (1)

Next, we substituted a complex parameter η = αeiθ into the fitted energy function and the

resonances are identified as stationary points (SPs) in the complex plane, i.e., they satisfy:

∂E(η)

∂η

∣∣∣
ηSP

= 0 (2)
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Graphically, these stationary points are associated with cusps in the α-and θ-trajectories. A

θ-trajectory is generated by fixing α and varying θ over a range of values, the opposite is

true for the α trajectory. Convergence is achieved when those two trajectories from cusps

that meet.55 Finally, we checked the stability of the complex resonance energies with respect

to small modifications of the Padé input data set using a statistical approach.23 We choose

many input data sets for the Padé fitting and we are looking for clusters in the complex

energy space, these clusters are associated with resonance plotted as a function the Padé

input. That is, the average of the clusters with the smallest deviation is the reported result.

Notice that those chosen data sets successfully reproduced the original stabilization curve;

we consider this as a numerical proof for the analiticity of the selected stable region.22,56
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Narevicius, J.; Narevicius, E. Observation of the isotope effect in sub-kelvin reactions.

Nature Chemistry 2014, 6, 332–335.

18



(27) Shagam, Y.; Klein, A.; Skomorowski, W.; Yun, R.; Averbukh, V.; Koch, C. P.; Nare-

vicius, E. Molecular hydrogen interacts more strongly when rotationally excited at low

temperatures leading to faster reactions. Nature Chemistry 2015, 7, 921–926.

(28) Bhattacharya, D.; Ben-Asher, A.; Haritan, I.; Pawlak, M.; Landau, A.; Moiseyev, N.

Polyatomic ab initio complex potential energy surfaces: Illustration of ultracold colli-

sions. Journal of Chemical Theory and Computation 2017, 13, 1682–1690.

(29) Bhattacharya, D.; Pawlak, M.; Ben-Asher, A.; Landau, A.; Haritan, I.; Narevicius, E.;

Moiseyev, N. Quantum effects in cold molecular collisions from spatial polarization of

electronic wave function. The Journal of Physical Chemistry Letters 2019, 10, 855–863.

(30) Landau, A.; Ben-Asher, A.; Gokhberg, K.; Cederbaum, L. S.; Moiseyev, N. Ab initio

complex potential energy curves of the He*(1 s 2 p 1P)–Li dimer. The Journal of

Chemical Physics 2020, 152, 184303.

(31) Ben-Asher, A.; Landau, A.; Cederbaum, L. S.; Moiseyev, N. Quantum Effects Dominat-

ing the Interatomic Coulombic Decay of an Extreme System. The Journal of Physical

Chemistry Letters 2020, 11, 6600–6605.

(32) Gonzalez-Ramirez, I.; Segarra-Marti, J.; Serrano-Andres, L.; Merchan, M.; Rubio, M.;

Roca-Sanjuan, D. On the N1–H and N3–H Bond dissociation in uracil by low energy

electrons: a CASSCF/CASPT2 study. Journal of Chemical Theory and Computation

2012, 8, 2769–2776.

(33) Sommerfeld, T. Intramolecular electron transfer from dipole-bound to valence orbitals:

Uracil and 5-chlorouracil. The Journal of Physical Chemistry A 2004, 108, 9150–9154.

(34) Cheng, H.-Y.; Chen, C.-W. Energy and lifetime of temporary anion states of uracil by

stabilization method. The Journal of Physical Chemistry A 2011, 115, 10113–10121.

19



(35) Dora, A.; Tennyson, J.; Bryjko, L.; van Mourik, T. R-matrix calculation of low-energy

electron collisions with uracil. The Journal of Chemical Physics 2009, 130, 164307.

(36) Gianturco, F.; Lucchese, R. Radiation damage of biosystems mediated by secondary

electrons: Resonant precursors for uracil molecules. The Journal of Chemical Physics

2004, 120, 7446–7455.

(37) Kossoski, F.; Bettega, M.; Varella, M. d. N. Shape resonance spectra of uracil, 5-

fluorouracil, and 5-chlorouracil. The Journal of chemical physics 2014, 140, 024317.

(38) Thodika, M.; Fennimore, M.; Karsili, T. N.; Matsika, S. Comparative study of method-

ologies for calculating metastable states of small to medium-sized molecules. The Jour-

nal of Chemical Physics 2019, 151, 244104.

(39) Kanazawa, Y.; Ehara, M.; Sommerfeld, T. Low-lying π* resonances of standard and

rare DNA and RNA bases studied by the projected CAP/SAC–CI method. The Journal

of Physical Chemistry A 2016, 120, 1545–1553.

(40) Haritan, I.; Moiseyev, N. On the calculation of resonances by analytic continuation of

eigenvalues from the stabilization graph. The Journal of Chemical Physics 2017, 147,

014101.

(41) Bhattacharya, D.; Landau, A.; Moiseyev, N. Ab Initio Complex Transition Dipoles

between Autoionizing Resonance States from Real Stabilization Graphs. The Journal

of Physical Chemistry Letters 2020, 11, 5601–5609.
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