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Abstract

Molecular dynamics (MD) simulations facilitate the study of physical
and chemical processes of interest. Traditional classical MD models lack
reactivity to explore several important phenomena; while quantum me-
chanical (QM) models can be used for this purpose, they come with steep
computational costs. The reactive force field (ReaxFF) model bridges
the gap between these approaches by incorporating dynamic bonding and
polarizability. To achieve realistic simulations using ReaxFF, model pa-
rameters must be optimized against high fidelity training data, typically
with QM accuracy. Existing parameter optimization methods for ReaxFF
consist of black-box techniques using genetic algorithms or Monte-Carlo
methods. Due to the stochastic behavior of these methods, the optimiza-
tion process can require millions of error evaluations for complex param-
eter fitting tasks, significantly hampering the rapid development of high
quality parameter sets. In this work, we present JAX-ReaxFF, a novel
software tool that leverages modern machine learning infrastructure to en-
able extremely fast optimization of ReaxFF parameters. By calculating
gradients of the loss function using the JAX library, we are able to utilize
highly effective local optimization methods, such as the limited Broy-
den–Fletcher–Goldfarb–Shanno (LBFGS) and Sequential Least Squares
Programming (SLSQP) methods. As a result of the performance porta-
bility of JAX, JAX-ReaxFF can execute efficiently on multi-core CPUs,
GPUs (or even TPUs). By leveraging the gradient information and mod-
ern hardware accelerators, we are able to decrease parameter optimization
time for ReaxFF from days to mere minutes. JAX-ReaxFF framework
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can also serve as a sandbox environment for domain scientists to explore
customizing the ReaxFF functional form for more accurate modeling.

1 Introduction

Molecular dynamics (MD) is a widely adopted method to study physical and
chemical processes at an atomistic level in a number of fields ranging from bio-
physics to chemistry to materials science [10]. Quantum mechanical (QM) sim-
ulations allow the geometries and energies to be predicted accurately by solving
the Schrödinger’s equation. However, the computational complexity and cost of
the QM based methods make them only viable for simulating small systems for
rather short periods of timeframes. Molecular dynamics (MD) simulations, on
the other hand, enable the study of large systems for relatively long timeframes
through a number of approximations. In this approach, atomic nucleus together
with its electrons is treated as a unit particle and interactions between atoms
are governed by a force field (FF), which is essentially a set of parameterized
mathematical equations aimd at capturing well-known atomic interactions such
as bonds, valence angles, torsion, van der Waals, and Coulomb interactions.
These simplifications greatly reduce the overall computational cost, but an im-
portant measure of the predictive power of force fields is their fidelity, i.e., how
well they can reproduce the results of QM calculations and experimental stud-
ies. Development of high fidelity force fields relies heavily on optimization of
various force field parameters based on carefully selected quantum-chemical and
experimental reference data. With the help of these approximations and care-
ful training, MD methods have proven to be successful in atomistic simulations
with billions of degrees of freedom [19].

Classical MD models as implemented in highly popular MD software such
as Amber [5], LAMMPS [38], GROMACS [15] and NAMD [29] are based on the
assumption of static chemical bonds and, in general, static charges. Therefore,
they are not applicable to study phenomena where chemical reactions and charge
polarization effects play a significant role. To address this gap, reactive force
fields (e.g., ReaxFF [40], REBO [4], Tersoff [37]) have been developed. These
bond order potentials allow bonds to form and break throughout the simula-
tion and they can dynamically assign partial charges to atoms using suitable
charge models such as the electronegativity equalization method (EEM) [24].
The functional forms for reactive potentials are significantly more complex than
their classical counterparts due to the presence of dynamic bonds and charges.
For instance, ReaxFF has a formulation that contains more than 100 param-
eters for a simulation with 3 elements, and is about two orders of magnitude
more expensive than a typical Lennard-Jones potential. Consequently, training
reactive force fields is an even more difficult task due to the need to capture
complex phenomena such as charge distributions and reactions, and due to the
large number of parameters involved.

We focus on the ReaxFF method, which is one of the most impactful reactive
force fields, if not the most impactful one [40, 33]. If there is an existing Reax
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force field for a similar purpose, it could be sufficient to fine-tune that for the
new target application. When a new force field needs to be developed from
scratch, multiple passes over the training data may be necessary, i.e., based on
the quality of the resulting force field, the training data itself may need to go
through revisions. In both scenarios, the training speed is crucial. As such,
development of high-quality and fast optimization methods for ReaxFF has
been an active research topic, first starting with the sequential one-parameter
parabolic interpolation method (SOPPI) by van Duin [8], and then continuing
with various global optimization methods such as genetic algorithms (GAs) [7,
18, 23], simulated annealing (SA) [16, 17], evolutionary algorithms (EAs) [39],
particle swarm optimization (PSO) [12]. More recently, machine learning based
search methods have been employed for this purpose [6, 14, 27].

Inspired by developments in machine learning, specifically in the field of
automatic differentiation, we present a new software called JAX-ReaxFF that
enables extremely fast optimization of Reax force field parameters 1. JAX is an
auto-differentitation software by Google for high performance machine learn-
ing research [3], it can automatically differentiate native Python and NumPy
functions. Leveraging this capability, JAX-ReaxFF automatically calculates
the derivative of a given fitness function, which essentially measures the root
mean squared deviation (RMSD) of a force field against a reference dataset,
from Python-based implementation of the ReaxFF potential energy terms with
respect to the set of force field parameters to be optimized. By learning the
gradient information of the high dimensional optimization space (which gener-
ally includes tens to over a hundred parameters), JAX-ReaxFF can employ the
highly effective local optimization methods such as the Limited Memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [41] and Sequential Least
Squares Programming (SLSQP) [20] optimizer. The gradient information alone
is obviously not sufficient to prevent the local optimizers from getting stuck in
a local minima, but when combined with a multi-start approach, JAX-ReaxFF
can greatly improve the training efficiency (measured in terms of the number of
fitness function evaluations performed) and significantly reduce the time spent
on optimizing ReaxFF parameters.

Another important advantage of JAX is its architectural portability en-
abled by the XLA technology [32] used under the hood. Hence, JAX-ReaxFF
can run efficiently on various architectures, including graphics procesing units
(GPU) and tensor processing units (TPU), through automatic thread paral-
lelization and vector processing. As we demonstrate through extensive tests,
JAX-ReaxFF can reduce the overall training time by up to three orders of mag-
nitude compared to the existing global optimization schemes, while achieving
similar (or better) fitness scores and yielding accurate simulation results.

Beyond speeding up force field optimization, the Python based JAX-ReaxFF
software provides an ideal sandbox environment for domain scientists, as they
can go beyond parameter optimization and start experimenting with the func-
tional forms of the ReaxFF interactions, or add/remove interactions as desired.

1The code is available on GitHub: https://github.com/cagrikymk/JAX-ReaxFF
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Since evaluating the gradient of the new functional forms with respect to atom
positions gives forces, scientists are freed from the burden of coding the lengthy
and bug-prone force calculation parts. Through automatic differentiation of the
fitness function as explained above, parameter optimization for the new set of
functional forms can be performed without any additional effort by the domain
scientists. After parameter optimization, they can readily start running MD
simulations to test the macro-scale properties predicted by the modified set of
functional forms as a further validation test before production-scale simulations,
or go back to editing the functional forms if desired results cannot be confirmed
in this sandbox evironment provided by JAX-ReaxFF. As such, we anticipate
JAX-ReaxFF to be an indispensible tool for reactive molecular modeling and
simulation.

2 Background and Related Work

Before going into the details of JAX-ReaxFF, we provide some background on
ReaxFF and existing software for ReaxFF parameter optimizations.

2.1 ReaxFF Overview

ReaxFF divides the total potential energy into various parts, including bonded
and non-bonded interactions as shown in Eq. (1). The model takes atom co-
ordinates and required force field parameters for the set of elements present in
the system as input, and calculates all terms constituting the potential energy
together with the corresponding forces. The derivative of each potential energy
term with respect to atom positions gives forces that are fundamental to the
MD simulation. There is a number of ReaxFF implementations with different
features and architectural support such as the original Fortran Reax code [40],
PuReMD [1, 2, 21], GULP [13] and LAMMPS [30].

Esystem = Ebond + Elone-pair + Eover + Eunder + Eval + Epen

+ Etors + Econj + EHbond + EvdWaals + ECoulomb . (1)

An important aspect of ReaxFF that separates it from classical MD models are
the notions of bond orders and dynamic partial charges (not shown in Eq. (1)).
The bond order concept is used to determine the bond strength between pairs of
atoms given their element types and distances. These pairwise bond orders are
then subjected to corrections that take into account the information about all
atoms surrounding each atom to obtain the predicted bonding information in a
system. The corrected bond order constitutes the main input for common poten-
tial energy terms such as bond energy (Ebond), valence angle energy (Eval), and
torsion angle energy (Etors). However, in a dynamic bonding model, since atoms
may not attain their optimal coordinations, additional terms such as lone pair
(Elone-pair), over/under-coordination (Eover, Eunder), three-body penalty (Epen)
and four-body conjugation (Econj) energies are needed. For systems with Hy-
drogen bonds, a special energy term (EHbond) is used. The van der Waals energy
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Figure 1: ReaxFF Model

(EvdWaals), which is based on the Morse potential, and the electrostatic energy
term (ECoulomb), which uses shielded and range-limited interactions based on
dynamic charges calculated from charge models such as EEM [24], constitute
the non-bonded terms in ReaxFF. Typically, bonded interactions are truncated
at 5Å, hydrogen bonds are effective up to 7.5Å and non-bonded interactions
are range limited to 10-12Å depending on the system. Fig. 1 summarizes the
calculations performed within a ReaxFF step.

2.2 ReaxFF Training

ReaxFF parameters are grouped by the number of atoms involved in the inter-
action (e.g., single-body, two-body, three-body and four-body) in addition to
the system-wide global parameters. Based on the distances and angles between
atoms and corresponding model parameters, bonded, 3-body, 4-body, H-bond
and non-bonded interaction lists are formed dynamically at each timestep. For
every interaction, corresponding parameters from the parameter set based on
the element types of the atoms involved are used to calculate the Esystem. As
described in detail in [33], there exist parameter sets for different kinds of sim-
ulations such as combustion, aqueous systems, metals and biological systems.
Even if there already is a parameter set for a simulation, it might require further
tuning for a particular application. In some cases, the model needs to be trained
from scratch which is a complex task. In general, as the number of elements in
a parameter set increases, force field optimization becomes harder due to the
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Table 1: Examples for commonly used training items. Identifiers (e.g., ID1)
refer to structures/molecules.

Type Training Item Target Description
Charge ID1 1 0.5 Charge for atom 1 (in elementary charge)

Energy
ID1 - ID2/2 - ID3/3 50

Energy difference (in kcal/mol)ID1 -150
ID3/2 - ID1/3 30

Geometry
ID1 1 2 1.25 Distance between atom 1 and 2 (in Å)
ID2 1 2 3 120 Valence angle between atom 1, 2 and 3 (in degree)
ID3 1 2 3 4 170 Torsion angle between atom 1, 2, 3 and 4 (in degree)

Force
ID1 1 0.5 0.5 0.5 Forces on atom 1 (in kcal/mol Å)
ID2 1.0 RMSG (in kcal/mol Å)

increasing number of parameters involved.
ReaxFF training procedure requires three different inputs: i) geometries,

a set of atom clusters crucial in describing the system of interest (e.g., bond
stretching, angle and torsion scans, reaction transition states, crystal structures,
etc.), ii) training data, properties of these atom clusters (such as energy mini-
mized structures, relative energies for bond/angle/torsion scans, partial charges
and forces) calculated using high-fidelity QM models, iii) model parameters
to be optimized along with a fitness function that combines different types of
training items as follows:

Error(m) =

N∑
i=1

(
xi − yi

σi

)2

. (2)

In Eq. (2), m is the model with a given set of force field parameters, xi is the
prediction by model m, yi is the ground truth as calculated by QM, and σ−1

i is
the weight assigned to each training item.

Table 1 summarizes commonly used training data types and provides some
examples. An energy-based training data item uses a linear relationship of
different molecules (expressed through their identifiers) because relative energies
rather than the absolute energies drive the chemical and physical processes. For
structural items, geometries must be energy minimized as accurate prediction
of the lowest energy states is crucial. For other training item types, energy
minimization is optional but usually preferred.

2.3 Related Work

Existing force field optimization methods for ReaxFF employ gradient-free black-
box optimization methods such as Genetic Algorithms (GA) and Evolutionary
Algorithms (EA). These methods perform a global search in a high dimensional
space and come with a high computational cost because they do not utilize any
gradient information, but rather rely on error evaluations at different points in
the search space.

The earliest ReaxFF optimization tool is the sequential parabolic parameter
interpolation method (SOPPI) [8]. SOPPI uses a one-parameter-at-a-time ap-
proach where consecutive single parameter searches are performed until a certain
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convergence criteria is met. The algorithm is simple, but as the number of pa-
rameters increases, the number of one-parameter optimization steps needed for
convergence increases drastically. Also, the success of this method is very depen-
dent on the initial guess and the order of the parameters to be optimized. Due to
these drawbacks of SOPPI, various global methods such as genetic algorithms
(GAs) [7, 18, 23], simulated annealing (SA) [16, 17], evolutionary algorithms
(EAs) [39], particle swarm optimization (PSO) [12] and machine learning based
search methods [6, 14, 27, 34] have been investigated for ReaxFF optimization.
For an explanation and evaluation of the most promising of these methods, we
refer readers to the prior work by Shchygol et al. [35, 36]. These methods have
been proven to be successful for ReaxFF optimization. However, due to the
absence of any gradient information, these global search methods require a high
number of potential energy evaluations, as such they can be very costly.

With the emergence of optimized tools for machine learning to calculate gra-
dients of complex functions automatically, a method called Intelligent-ReaxFF
has been proposed to leverage these tools to train Reax force fields [14]. They
use the TensorFlow library to calculate the gradients and optimize a force field.
However, the method does not have the flexibility of the previously mentioned
methods in terms of the training data. The force field only can be trained
to match the ReaxFF energies to the absolute energies in the reference data;
relative energies, charges or forces cannot be used in the training, essentially
limiting its usability. Also since it does not filter out the unnecessary 2-body,
3-body and 4-body interactions before the optimization step, it is significantly
slower than JAX-ReaxFF.

3 Proposed Method

3.1 Overview

JAX library performs auto-differentiation on native Python code. As such im-
plementation of the ReaxFF energy expressions (see Eq. (1)) in Python forms
the core of JAX-ReaxFF. Once the individual energy expressions and the train-
ing error function are provided, JAX can easily calculate the gradient of the
training error function with respect to the ReaxFF parameters to be optimized.
As mentioned earlier, atomic forces can also be part of the training dataset,
these can be calculated using the gradients of ReaxFF energy expressions with
respect to atom positions, too.

Molecular systems used for force field training tend to have a small number
of atoms compared to regular MD runs. Using a software designed for running
simulations with thousands of atoms (such as PuReMD or LAMMPS/ReaxFF)
to run several small scale simulations introduces overheads. Optimizations in
these software (such as optimized sparse solvers for atomic charges, fast neighbor
list generation algorithms and distributed computation) would actually increase
the overall run-time for small systems and result in unnecessarily complex code.
Even though vanilla Python code tends to be slower than optimized Fortran or
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Figure 2: JAX-ReaxFF execution flow graph.

C code, when the auto-diff functionality, benefits of targeting small geometries
and the just-in-compiled XLA support (discussed in Section 3.3 are considered,
the advantages of JAX-ReaxFF outweighs the performance loss from not using
Fortran or C.

While gradient-based optimization functionality is straight-forward to achieve
using JAX as described above, there are a number of important considerations
to realize an efficient (from a runtime point-of-view) and a scalable (from a mem-
ory utilization perspective) parameter optimization framework. Fig. 2 gives an
overview of the task-flow in JAX-ReaxFF. After the neighbor list and interac-
tions lists are calculated for the input geometries (Section 3.2, we cluster the
inputs based on the size of their interaction lists and align them properly in
memory to ensure efficient single instruction multiple data (SIMD) paralleliza-
tion (Section 3.3). After these preparation steps, the main optimization loop is
executed until convergence or the maximum number of optimization steps are
reached (which typically takes only tens of iterations). During the parameter
optimization loop, some molecules might require energy minimization before the
final calculation to prevent overfitting and also to tune the parameters based on
more likely states of the atom clusters as the lower energy states are more likely
to be observed. Hence, the main optimization loop contains a “gradient-based
optimization” step followed by a “geometry optimization” step. We discuss each
step in more detail in the ensuing subsections.

3.2 ReaxFF Model Implementation

In ReaxFF implementations for MD simulations, neighbor and interaction lists
are created based on the atom positions and the fixed force field parameters. Due
to the dynamic nature of interactions in ReaxFF, accurate and fast calculation of
energy terms (especially the higher order ones such as valence angle and torsion)

8



is critical. Differently from regular ReaxFF MD simulations, the force field is
also dynamic during parameter optimization, hence adding to the challenges of
developing an efficient implementation.

Pair-wise bonded interactions: We illustrate the challenges using bond
order calculations as an example. As shown in Fig. 1, all bonded interactions
depend on the corrected bond order term. Initially, if the distance between two
atoms is less than a given cutoff, typically 5 Å, the uncorrected bond orders
(BO) are calculated according to Eq. (3), where rij is the distance between the
atom pair i-j, and pbo1−6, r

σ
o , r

π
o , and rππo are the corresponding parameters.

BO′
ij = BOσ

ij +BOπ
ij +BOππ

ij = exp

[
pbo1

(
rij
rσo

)pbo2
]

+ exp

[
pbo3

(
rij
rπo

)pbo4
]
+ exp

[
pbo5

(
rij
rππo

)pbo6
]

(3)

Normally, if the uncorrected bond order is greater than a certain threshold,
it is added to the initial bond list and subsequently bond order corrections
are applied based on the neighborhood of the atoms forming the bond. In
the context of parameter optimization though, whether the pair i-j will form
a bond above the given threshold also depends on the values of those parame-
ters. Furthermore, if a given molecular structure in the training dataset requires
geometry optimization (as is needed for most structural properties), atom posi-
tions change as well. JAX requires an expensive recompilation if the interaction
list sizes change. Therefore we create the interaction lists once before the op-
timization starts and use masks to ignore the unwanted elements throughout
the parameter and/or geometry optimization steps. For this purpose, for every
unique element pair, the maximum possible distance where a given pair can
have a valid bond order is found. If some BO related parameters are included
in the optimization, values which maximize the BO term are selected from the
specified parameter ranges. Then through a distance scan, the maximum pos-
sible distance is determined as the cutoff for inclusion of bond orders between
that pair of elements. For geometries that require minimization, the maximum
calculated distance is extended by a buffer distance to be able to accommodate
potential atom position changes.

Higher Order Bonded Interactions: Similar logic is applied for other types
of interactions. In a given molecule with N atoms, when there is no trimming,
there will be O(N3) 3-body and O(N4) 4-body interactions. Trimming these
interaction lists is required to decrease the computational and memory costs.
3-body and 4-body interaction lists are built using the corrected BO term. An-
other threshold is applied to the bonds forming the 3-body and 4-body inter-
action lists. Since the higher order bonded interactions are built using the
corrected BO terms, the thresholds are also based on the previously described
maximum possible BO terms. Further trimming of the lists is possible by scan-
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ning multiple distances and angles, but due to the increased computational
complexity, only BO term based trimming is employed.

Non-bonded Interactions: It is assumed that there is a non-bonded in-
teraction between every atom in the system since the non-bonded interaction
cutoff (which is typically 10 Å) is much larger than the size of molecular/crystal
structures used for training. Therefore, non-bonded interactions form an N ∗N
matrix. If the system has periodic boundary conditions, the box dimensions are
a, b and c, and non-bonded interaction cutoff is r, then the size of the tensor for
non-bonded interactions will becomeN∗N∗(2∗

⌈
r
a

⌉
+1)∗(2∗

⌈
r
b

⌉
+1)∗(2∗

⌈
r
c

⌉
+1).

The part after N ∗N accounts for the periodic boundaries.

Evaluation of the Potential Energy: Once interaction lists are created as
described above, they stay constant throughout the optimization with unwanted
interactions simply being masked out. Although masking wastes some compu-
tational power, it avoids the expensive reneighboring, interaction list recreation
and recompilation steps as force field parameters evolve. It also leads to a sim-
plified codebase, because the interaction list generation part can be separated
from the force field optimization process. The interaction list creation is always
performed on the CPU using multiprocessing, regardless of whether a hardware
accelerator is used for the optimization part or not.

To calculate the potential energy, a similar approach to the standalone
ReaxFF code is followed with the exception of charge equilibration. The Elec-
tronegativity Equalization Method (EEM) used for distributing partial charges
requires the solution of a system of linear equations (for details see [24]) which
is solved using preconditioned iterative solvers for large systems [28]. However,
since the number of atoms is small for the training set structures, we use a direct
LU factorization that is easier to implement and auto-differentiate.

3.3 Clustering and Alignment for SIMD Parallelization

JAX uses Accelerated Linear Algebra (XLA), a domain specific compiler for
linear algebra, to achieve hardware portability. Using XLA, JAX-ReaxFF can
easily run on multi-core CPUs, GPUs or TPUs without any code changes. JAX
offers vectorization (vmap) and parallelization (pmap) support to take full ad-
vantage of the underlying architecture. While vmap is aimed at Single Instruc-
tion Multiple Data (SIMD) parallelism using which multiple small computations
can be merged into batches to achieve high device utilization; pmap targets Mul-
tiple Instruction Multiple Data (MIMD) parallelism.

Our target architecture has been GPUs as they provide significant perfor-
mance advantages over multi-core CPUs and have become the mainstream hard-
ware accelerators. However, attaining high performance on GPUs requires some
important considerations. Since parameter optimization requires efficient exe-
cution of several small atomic structures as opposed to running one big MD
simulation in parallel, JAX-ReaxFF leverages the vmap support to acceler-
ate the energy and gradient calculations. The keys for efficient vectorization
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in JAX-ReaxFF are the pre-calculation of interaction lists that remain static
throughout optimization (as described in the previous subsection), clustering
of input geometries with similar computational demands together (explained
below) and alignment of the interaction lists of geometries in the same cluster
(by padding as necessary) for efficient memory accesses. As mentioned before,
unwanted/unnecessary interactions in these static lists are masked during the
energy and gradient calculations so that they do not affect the results.

To cluster the input geometries for efficient vectorization, a modified version
of the K-Means algorithm is used. The distance formula for geometry x and
cluster center y with size sy is

Dist (x, y) = sy ·
(
c1 ·max

(
n{2,x}, n{2,y}

)
+ c2 ·max

(
n{3,x}, n{3,y}

)
+ c3 ·max

(
n{4,x}, n{4,y}

)
+ c4 ·max

(
n{5,x}n

2
{1,x}, n{5,x}n

2
{1,y}

))
(4)

where n1, n2, n3, n4 and n5 are the numbers of atoms, 2-body interactions, 3-
body interactions, 4-body interactions and periodic boxes within the long range
cutoff, respectively. The coefficients c1 through c4 are indicators of the relative
computational cost of their corresponding ReaxFF kernels. They can be deter-
mined empirically to accurately represent the computational costs in a given
training set for a particular architecture. The cost of each cluster is determined
by the computationally most expensive geometry within the cluster. This is de-
termined by the max value between the current cluster center y and geometry
x.

After initializing k cluster centers randomly, each geometry is assigned to
these clusters based on the unique distance metric where the distance is an indi-
cator of the change in computational load after assigning geometry x to cluster
center y as shown in Eq. (4). The new center for each cluster is determined by
the computationally most expensive geometry within the cluster; cluster centers
determine the amount of padding needed for memory alignment of interaction
lists for all geometries in their cluster. After centers are updated, a new iteration
is performed where each geometry is reassigned to the closest cluster. Unlike the
original K-Means algorithm, the order of geometries affects the result, therefore
input geometries are shuffled after each iteration for randomization. The pro-
cess continues until the cluster centers do not change anymore. Also to ensure
high performance, the clustering algorithm is executed multiple times starting
from different random initial cluster centers and the one where the total wasted
computation (which can be determined by the total amount of padding) is min-
imal is chosen as the final clustering of the geometries. Although the algorithm
does not guarantee optimality, empirical results are satisfactory.

The compilation time of JAX increases drastically with the number of clus-
ters because JAX unrolls the loop that iterates through the clusters during
compilation. Also, if the wasted computation does not increase significantly, a
smaller number of clusters is more preferable for GPUs since improving SIMD
parallelism is easier within clusters. For these reasons, the number of clusters
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Algorithm 1 Clustering Algorithm

1: Cbest ← Keep track of the best so far
2: for r = 1, 2, . . . R do
3: Ccur ← Initialize the cluster centers by selecting a random geometry as

the center for each cluster
4: for i = 1, 2, . . . I do
5: Cprev ← Ccur

6: Shuffle G
7: for each g ∈ G do
8: Assign g to ci where Dist(g, ci) is minimum
9: Update the cluster centers

10: end for
11: if Ccur == Cprev then
12: Break
13: end if
14: end for
15: if Cost(Ccur) < Cost(Cbest) then
16: Cbest ← Ccur

17: end if
18: end for

is selected automatically based on Algorithm 2. Unless the computational gain
from a higher number of cluster centers is not significant, smaller number of
clusters is preferred.

Algorithm 2 Clustering Algorithm 2

1: kmax ← Maximum number of clusters
2: R← Number of repetitions for the clustering algorithm
3: I ← Number of iterations for the clustering algorithm
4: Cselected ← Selected clustering of the geometries
5: for k = 1, 2, . . . kmax do
6: Costk, Ck ← Clustering(G, k, I, R)
7: if |Costk − Costk−1|/Costk−1 < tolerance or k == kmax then
8: Cselected ← Ck

9: Break
10: end if
11: end for

3.4 Gradient Based Local Optimization

After the final clusters are formed, parameter optimization is performed using
gradient based local optimizers with multi-start as depicted in Fig. 2. Vectoriza-
tion based parallelism is employed for both energy minimization and parameter
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optimization steps shown in this figure.
For gradient based optimization to work, JAX traces the error function from

Eq. (2) and computes the gradients of the parameters. However, since typically
many geometries require geometry optimization, tracing the gradients through
the optimization step is more error prone due to the complex functional form of
the ReaxFF. To remedy this problem, we separate the geometry optimization
from the error minimization. The error function without the geometry optimiza-
tion can be thought as a surrogate model since it is a fast way to approximate
the true error where the geometry optimization is done as well. The approach
accelerates the training and does not require tracing the gradients through the
geometry optimization step.

The optimization algorithm starts from the initial geometries (Geoinit) and
the initial force field (FFinit) then the force field is iteratively improved. For
each iteration of the training loop shown in Algorithm 3, two different local
optimizations are performed, one being local geometry optimization using the
steepest descent method and the main one being minimization of the fitness er-
ror on the energy minimized geometries by updating the force field parameters
using various local optimization method such as L-BFGS-B and SLSQP. Both
of these methods are classified as quasi-Newton methods where the Hessian
matrix is approximated by successive gradient calculations [20, 41]. Error min-
imization step uses the Geomin and the optimized force field (FFcur) from the
last iteration and after applying the selected gradient-based algorithm, FFcur

gets updated with the newly trained force field. This step uses the surrogate
model where the error is calculated with only the single step calculations. After
that the geometry optimization step starts from Geoinit and yields optimized
geometries (Geomin) using FFcur. The true error is calculated right after the
geometry optimization, if there are any geometries that require it. After each
iteration, the true error (Ecur) for FFcur on the training data is calculated. If
Ecur is lower than the lowest error so far (Ebest), FFcur is saved as the best
force field (FFbest). The error on the surrogate gets closer to the true error
as parameters converge because changes in parameters become minimal. One
disadvantage of separating the energy minimization from the local optimization
is that the fitness score for the geometry items will be be ignored by the local
optimization since the atom positions will not change. This introduces a dis-
crepancy between the true error and the surrogate one. However, if the training
data has multiple items related to the geometry based items as a result of po-
tential energy surface scans (PES), the discrepancy could be minimized. As it
is demonstrated through numerical experiments, the surrogate approach works
well in practice for a variety of training tasks which have geometry based items.

4 Evaluation

We evaluate the performance of JAX-ReaxFF, as well as the quality of the
resulting force fields using published datasets with different characteristics.
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Algorithm 3 Gradient Based Local Optimization

1: FF cur ← FF init

2: for iteration = 1, 2, . . . do
3: FF cur ← Locally minimize the error through the selected gradient-based

algorithm using Geomin and starting from FFcur. Geomin is fixed.
4: Geomin ← Geometry optimize the structures starting from the initial

geometries Geoinit with the current model FFcur

5: Ecur ← Calculate the current error using Geomin and FFcur

6: if Ecur < Ebest then
7: Ebest ← Ecur

8: FFbest ← FFcur

9: end if
10: if |Ecur − Eprev|/Eprev < 0.001 then
11: FF cur ← Add small uniform noise to FF best

12: end if
13: Eprev ← Ecur

14: end for

4.1 Experimental Setup

Training Tasks We identified three training tasks2 that form a well-rounded
test bench with their varying degrees of complexity. These tasks include dif-
ferent system types (Cobalt, a metal; Silica, an amorphous material; Disul-
fide, a molecular system), different types and numbers of items in the training
datasets, and different number of parameters with their respective ranges to be
optimized. While structures in the Cobalt and Silica datasets mostly require
energy minimization, those in the Disulfide case mostly require single-step en-
ergy evaluations. Table 2 summarizes the specifications of the selected training
tasks. JAX-ReaxFF currently does not support training items with simulation
cell optimization, as such these are ignored. This only affects the Silica dataset
which has 5 of them (out of 296 cases).

Hardware Setup All the CPU experiments reported here were conducted on
a computer with two Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz (2x14 cores)
CPU processors, 128 GB 2133 MHz DDR4 Ram. The GPU experiments were
conducted on a computer with Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz,
16 GB 3000 MHz DDR4 Ram and single 1080-TI GPU card (11 GB GDDR5X
memory). For the baseline methods, OGOLEM version 1.0with sPuReMD back-
end is used. The proposed method is implemented in Python 3.7 and utilizes
JAX version 0.1.76 and NumPy version 1.16.4.

2The datasets which are provided in the Supplementary Information of [35] can be down-
loaded from https://ndownloader.figstatic.com/files/18698201.
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Table 2: Datasets. Npar is the number of parameters to optimize, Nstrc is
the number of structures in the training dataset and Nminim is the number of
geometries to be energy minimized. C, G, F, P and E are the number of charge
based training items, geometry based items, force based items, cell parameter
based items and energy based items, respectively.

Training Data Npar Nstrc Nminim C G F P E

Cobalt [22] 12 146 130 0 0 0 0 144
Silica [9] 67 302 221 5 26 0 6 265

Disulfide [26] 87 231 10 0 255 4401 0 219

Baseline Results We compare the performance and training accuracy of
JAX-ReaxFF to those of methods by Shchygol et al. [35], namely the Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES), Monte Carlo Force Field
(MCFF) optimizer and Genetic Algorithm (GA) techniques described therein.
MCFF optimizer utilizes the simulated annealing approach to slowly modify
the parameters and act based on the change in the error value. The remaining
two approaches are population based and are inspired by the basic principles
of biological evolution. In GA, a population of candidate solutions for a given
optimization problem is evolved towards better solutions. Typically, evolution
happens through random mutations and cross-overs between selected candidate
solutions. In CMA-ES, new solutions are sampled from a multivariate normal
distribution. The pairwise dependencies between the parameters are captured
by the covariance matrix and as the search progresses, CMA-ES updates the
covariance matrix. All three approaches use ReaxFF model as a black box and
find the direction solely from the function evaluations. Shchygol et al. [35] has
compared these methods on different training tasks without focusing on tuning
them and repeated the experiments multiple times with different starting con-
ditions. Since they have provided an important test bench to compare different
optimizers for ReaxFF, we follow the same approach to evaluate JAX-ReaxFF.

Since the exact software and hardware from [35] are not accessible, execution
times for the baseline methods are approximated on the hardware described
before.We have calculated the time per true error evaluation for each training
task using OGOLEM with sPuReMD backend and multiplied this by the total
number of error evaluations presented in [35]. This approximation is a lower
bound for CMA-ES and MCFF since they have a lower level of parallelism unlike
genetic algorithm where each evaluation is independent from each other.

The initial guess is an important factor which could change the results dras-
tically. It is especially important for gradient based optimizations because these
methods cannot move through the space freely as they need to follow the direc-
tion of the gradients. To show the capabilities of JAX-ReaxFF, we experimented
with all three initialization methods from Shchygol et al. [35], namely random,
educated and literature based initial guesses. For random initial guesses, initial
values are sampled from a uniform distribution based on the given parameter
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ranges. To produce educated guesses, prior information from the previous re-
lated force fields is used as it is described further in [35]. For the literature based
initial guesses, the force fields developed previously using the same training data
are used. To give more reliable results, each initialization method is repeated
ten times. For the educated and literature based initial guesses, small amount
of uniform random noise is added to the parameters without violating the range
restrictions. For each parameter p, the noise value is sampled from [−1k

10 , 1k
10 ]

where k is the length of the given range for parameter p. For the random initial
guesses, uniform sampling is done ten times to produce the guesses.

4.2 Runtime and Training Evaluation

In JAX-ReaxFF, as mentioned above, two different gradient based optimiza-
tion algorithms are available, L-BFGS-B and SLSQP. For both L-BFGS-B and
SLSQP, the maximum number iterations is set to 100. This iteration number
is for the step 3 of Algorithm 3. For L-BFGS-B, the maximum number of it-
erations for the line search is set to 20 and the maximum number of variable
matrix corrections to approximate the Hessian matrix is set to 20. For the rest
of the control parameters, the default values from the SciPy library are used.
The iteration count for the main optimization loop of Algorithm 3 is set to
20 where the local error minimization and the geometry optimization steps are
iteratively repeated this many times. Therefore, for all of the experiments for
Jax-ReaxFF, the true error calculation with geometry optimization is done 20
times since the local error minimization only uses single step calculations.

4.2.1 Cobalt Training

Cobalt testcase has only energy-based training items. About 90% of these items
require energy minimization, yet the training error does not fluctuate as shown
in Fig. 3. This shows that the surrogate error is close to the true error for
this dataset. Otherwise, the error would fluctuate between iterations since the
surrogate error is used for the error minimization in each iteration. For some
of the random runs, SLSQP does not show any progress initially. One possible
explanation is that when the initial parameters are from a non-smooth part
of the optimization space that cause high gradients, the optimizer fails to es-
cape (Fig. 3b). Small noise that is added when a stall in progress is detected
stimulates progress as expected.

In Table 3, we compare the convergence of JAX-ReaxFF against the black
box approaches. We observe significantly faster convergence in terms of both
the number of evaluations required as well as the time taken, while obtaining
similar or better training errors as measured by best and median scores. The
entire optimization process takes slightly more than a minute on the GPU.
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Figure 3: Convergence of the local optimizers for the Cobalt dataset

Table 3: Cobalt training results.

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

# True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B
rand 1368 2334 480

20 23.5 1.2edu 1352 1499 418
lit 1366 1446 450

SLSQP
rand 1191 2253 513

20 24.8 1.3edu 1168 1188 618
lit 1187 1189 637

Genetic
Algorithm

rand 1346 1645
- 200k 3913 -edu 1349 1424

lit 1345 1483

CMA-ES
rand 1150 1894

- 45k 880 -edu 1159 1491
lit 1180 2320

MCFF
rand 1422 2104

- 45k 880 -edu 1532 2092
lit 1360 1405

4.2.2 Silica

The silica training set includes energy, charge and geometry matching based
items. 73% of the items require energy minimization. As shown in Fig. 4, unlike
the Cobalt case, the error fluctuates more between iterations, possibly because
of unstable geometries as parameters are converging (note that here the number
of parameters to be optimized are significantly higher than the Cobalt case) and
the presence of geometry matching items in the training set. Although the single
point evaluation based surrogate model ignores the simulation cell optimization
items, the proposed method is able to minimize the error comparable to that of
black box methods, while taking a fraction of their execution times.
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Figure 4: Convergence of the local optimizers for the Silica dataset

Table 4: Silica training results.

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

# True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B
rand 3901 5214 1865

20 25.0 1.6edu 4143 4467 1385
lit 4315 5068 1929

SLSQP
rand 3870 4498 2962

20 31.9 2.0edu 3977 4540 2839
lit 3857 4534 2938

Genetic
Algorithm

rand 3577 3738
- 200k 1632 -edu 3705 3817

lit 3593 3721

CMA-ES
rand 3739 4753

- 45k 367 -edu 3747 4122
lit 3793 4298

MCFF
rand 5059 6584

- 45k 367 -edu 5632 7127
lit 4885 6126

4.2.3 Disulfide

The disulfide training data is drastically different from the previous ones since
it uses force matching for model optimization. In JAX-ReaxFF, forces are
calculated by taking the derivative of the potential energy expressions with
respect to atom positions

Fx =
∂Ep

∂x

∂(Fx − Ft)
2

∂p
=

∂(
∂Ep

∂x − Ft)
2

∂p

where Fx is the 3-dimensional force vector for atom x, Ft is the target force
vector from the training dataset and p is the model parameter to be optimized.
∂(Ft−Fx)

2

∂p gives the gradients for the force matching items in the objective func-
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Figure 5: Convergence of the local optimizers for the Disulfide dataset before
the modification

tion. However, we have observed that the final gradients for parameters from
Eq. (3) result in extremely high values, ∼ 1017, while the other gradients are
much lower. These high gradients stop the local optimizers from doing any
progress as seen in Fig. 5. Since bond order parameters form the core of the
dynamic bond concept in ReaxFF and therefore affect all types of bonded in-
teractions, highly sensitive functional form for the bond order calculation [11],
using relatively large parameter ranges and initial guesses being off of their
ideal values are likely responsible for this behaviour. While not ideal, we ex-
cluded the bond order parameters from optimization and fixed their values to
the literature ones. Among 87 parameters, 18 parameters are removed and the
optimization is performed again with the remaining 69 parameters. As shown
in Fig. 6, this improves results drastically, and JAX-ReaxFF can attain better
scores than the baseline methods in significantly shorter time, but it should be
noted that the comparison cases include all 87 parameters. This situation shows
that gradient-based optimization is prone to failures for parameters with a large
influence on the objective function like the bond order parameters. However, in
practice training items for bond order optimization are easy to construct and
their optimization can be performed independently prior to the actual optimiza-
tion task. For this reason, we do not see this issue to be a major limitation for
JAX-ReaxFF’s practical use.

4.3 Force Field Evaluation

Fitness scores of optimized parameters can be seen as proxies, but the quality of
the resulting force field parameter sets ultimately need to be validated through
actual MD simulations and comparisons against experimental and/or QM data.
These results show that the newly trained force fields are on par with those
from the literature [35], while their training is 1-3 orders of magnitude faster.
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Figure 6: Convergence of the local optimizers for the Disulfide dataset after the
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Table 5: Disulfide training results. *The results are from the modified version
of the training.

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

# True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B*
rand 10198 10920 1660

20 9.7 0.9edu 10313 10631 1600
lit 10438 10803 1503

SLSQP*
rand 6986 9488 1187

20 8.9 0.8edu 9306 9635 1234
lit 10304 10494 1901

Genetic
Algorithm

rand 19285 20384
- 340k 878 -edu 18054 20150

lit 18524 21206

CMA-ES
rand 8052 11371

- 45k 116 -edu 8727 11105
lit 9284 11120

MCFF
rand 8507 11893

- 45k 116 -edu 9608 13393
lit 10605 13625

5 Force Field Evaluation

MD simulations in this work are performed using Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) that is a molecular dynamics program
from Sandia National Laboratories [30]. A relatively short time step of 0.5 fs
was used in all the simulations. This is the recommended setting for ReaxFF
simulations of systems that don’t include light atoms like Hydrogen. All NVT
ensemble (constant number of atoms, volume and temperature) simulations were
performed using Nose-Hoover thermostat to control the temperature with a
temperature damping parameter of 100 fs which determines how rapidly the
temperature is relaxed. All NPT ensemble (constant number of atoms, pressure
and temperature) simulations were performed using Nose-Hoover thermostat
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Figure 7: Variations in pure Cobalt single fcc crystal cohesive energy by varia-
tions of the lattice constant.

to control the temperature with a temperature damping parameter of 100 fs
and Nose-Hoover barostat to control the pressure with a temperature damping
parameter of 1000 fs.

5.1 Molecular dynamics simulations of pure Cobalt struc-
ture

We investigated the crystal lattice constant correlation with cohesive energy in
crystals of fcc Cobalt for validation. The lattice constant was changed from
3Å to 5Å and the associated lattice cohesive energies were recorded (Fig. 7).
The results of the fitted force field with the best fitness score were compared
to two previously trained ReaxFF force fields for Cobalt [22, 35] and embedded
atom method (EAM) force field [31]. To validate the quality of the force field
in capturing the dynamics behavior, the annealing loop was generated for a
pure Cobalt crystal structure and was compared to the available force fields.
A cubic simulation box of 5x5x5 ideal fcc Cobalt unit cells was generated for
annealing simulations using NPT ensemble between 1000K-3000K. After the
NPT equilibration of the pure Cobalt crystal at 1000K, the system was subjected
to NPT ensemble annealing between 1000K-3000K by 10 K/ps heating and
cooling rate. A time step of 0.5 fs was used for the simulations. The changes
in the system energy during this annealing loop is shown in Fig. 8. Three
ReaxFF force fields showed similar dynamic evolution behavior for the pure
Cobalt structure while the EAM force field showed a different dynamic evolution
(Fig. 9).
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Figure 8: Annealing loop of a 5x5x5 fcc Cobalt crystal including 500 atoms
using fitted ReaxFF force field with heating and cooling rate of 10 K/ps.

Figure 9: Annealing loop of a 5x5x5 fcc Cobalt crystal including 500 atoms
using EAM force field with heating and cooling rate of 10 K/ps.

After completion of the annealing loop, structural evaluation showed that
using the ReaxFF force fields resulted a considerable recrystallization in the pure
Cobalt structure, while recrystallization was not observed when EAM force field
was utilized (Fig. 10).
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Figure 11: The amorphous silica structure including 2000 SiO2 molecules and
total of 6000 atoms. Silicon atoms are shown with yellow color and Oxygen
atoms are shown with red color.

Figure 10: Final configurations of pure Co fcc crystals after annealing loop with
1000K-3000K temperature range.

5.2 Molecular dynamics simulations of pure Silica struc-
ture

To evaluate the quality of the silica optimized force field with the best fitness
score, the amorphous silica structure introduced in the Fogarty et al. [9] was re-
constructed. The amorphous silica system included 2000 SiO2 molecules with an
initial density of 2.2 g/cm3 (Fig. 11). The amorphous silica system was energy-
minimized to eliminate initial bad contacts. The system was then annealed
twice between 300K and 4000K. The first annealing loop was performed using
NVT ensemble with heating and cooling rate of 37 K/ps. The second annealing
loop was performed in NPT ensemble between 300K-4000K using Nose–Hoover
thermostat and barostat 1.01325 bar pressure. Similar to the NVT annealing,
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Figure 12: Radial distribution function of silicon-oxygen, oxygen-oxygen, and
silicon-silicon for silica structure at the end of annealing and equilibration.

the heating and cooling rate was 37 K/ps. Finally, the silica system was equili-
brated in NPT ensemble using T=300K and P=1.01325 bar for additional 200
ps as the production run. These calculations were performed using our fitted
force field and two previous ReaxFF force fields introduced for such systems.
The properties of the final configuration of these silica structures are compared
in Table 6. The radial distributions of the final configuration of silica structure
equilibrated using our fitted force field for Si-O, O-O and Si-Si are shown in
Fig. 12. These results show good force field quality for silica structure using
JAX-ReaxFF.

Table 6: Silica properties calculated using three different force fields. The ex-
perimental value reported for silica density is 2.2 g/cm3 [25]

Property 2010 FF [9] 2019 FF [35] New FF

Density (g/cm3) 2.19 2.31 2.23
Si coordination 3.99 3.94 3.97
O coordination 1.99 1.97 1.99

5.3 Molecular dynamics simulations of molecules with Sul-
fur bonds

As the validation data is provided besides the training data for this task [26], the
force field with the best fitness score on both the training and validation data
is selected to limit overfitting. To test the validity of the force field containing
Sulfur parameters updated using our proposed training method, we performed
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minimum energy structure search for single molecules with different restraints.
The results of the fitted force field were compared to two previously trained
ReaxFF force fields[35, 26]. The restraints are applied on S-S bond of dimethyl
disulfide (DMDS), S-C bond of dimethyl thioether (DMTE), H-S-H angle of Hy-
drogen sulfide (H2S) and H-S-S-H torsion angle of Hydrogen disulfide (H2S2).
These potential energy graphs are shown in Fig. 13.
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Figure 13: Potential energy graphs of energy minimized molecules including
Sulfur bonds with different restraints, calculated with the updated force field
and previously trained force fields.

6 Conclusion

We presented a new software called JAX-ReaxFF that enables extremely fast
optimization of Reax force field parameters by leveraging recent advances in
machine learning. JAX-ReaxFF uses several innovative techniques for high per-
formance on architectures with GPUs. Clustering similar geometries together
to maximize the SIMD parallelism while limiting the padding for alignment
yields high parallelism, especially for single step evaluations. As it is described
in Algorithm 3, by using single step energy evaluation based approximations
to the error function and gradient information about the search space, we are
able to decrease the convergence time significantly with the help of GPU accel-
eration. We have empirically showed that even though the local optimizer is
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not fully aware of the geometry optimization, the overall algorithm converges
with changes in parameter space becoming minimal as the algorithm progresses.
Based on extensive experiments, we demonstrated that even if the starting ini-
tial guess is a poor one, gradient based local optimizers are able to improve the
fitness of the force field drastically (with one exception being the core bond or-
der parameters). Combined together, these innovations allow users to optimize
Reax force fields in mere minutes. This is notable because existing methods
require several days for obtaining essentially same quality force fields. Finally,
JAX-ReaxFF provides a utility not available in other similar tools; its auto-diff
functionality enables the study of the new functional forms for the interactions
of the ReaxFF model without explicitly implementing the force calculations and
the optimizer, since both forces and parameter gradients can automatically be
calculated by JAX.
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