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ABSTRACT:  Aqueous direct air capture (DAC) is a key technology toward a carbon 

negative infrastructure. Developing sorbent molecules with water- and oxygen-tolerance 

and high CO2 binding capacity is therefore highly desired. In this work, we analyze the 

CO2 absorption chemistries on amines, alkoxides, and phenoxides with density functional 

theory (DFT) calculations and search for the optimal sorbent using an inverse molecular 

design strategy. The alkoxides and phenoxides are found to be more suitable for aqueous 

DAC than amines thanks to their water-tolerance and capture stoichiometry of 1:1 (2:1 

for amines). All three molecular systems are found to obey the same linear scaling 

relationship (LSR) between p𝐾CO2
 and p𝐾a, since both CO2 and proton are bonded to the 

nucleophilic binding site through a majorly 𝜎 bonding orbital. Several high-performance 

alkoxides are proposed from the computational screening. In contrast, phenoxides have 

relatively poor correlation between p𝐾CO2
 and p𝐾a, showing promise for optimization. We 



apply genetic algorithm (GA) to search the chemical space of substituted phenoxides for 

the optimal sorbent. Several promising candidates that break the LSR are discovered. The 

most promising off-LSR candidate phenoxides feature bulky ortho substituents forcing the 

CO2 adduct into a perpendicular configuration with respect to the aromatic ring. In this 

configuration, CO2 utilizes a different molecular orbital for binding than does the proton, 

and the p𝐾CO2
 and p𝐾a are thus decoupled. The p𝐾CO2

− p𝐾a trend and off-LSR behaviors 

are then confirmed by experiments, validating the inverse molecular design framework. 

This work not only extensively studies the chemistry of the aqueous DAC, but also 

presents a transferrable computational workflow for understanding and optimization of 

other functional molecules. 

 

  



INTRODUCTION 

The climbing concentration of atmospheric CO2 has presented tremendous challenges in 

aspects of environment, climate, and biodiversity.(1) Various technologies have been 

developed to convert CO2 into value-added chemicals with energy input from clean and 

renewable resources, such as photo- and electro-catalytic CO2 reduction(2) and water gas 

shift reactions.(3) However, the scalability of such approaches is heavily limited by the 

input side, as CO2 input with high purity or concentration is need. Carbon dioxide 

Capture and Concentration (CCC), from industrial waste gas, vehicle emissions, or 

directly from air, is therefore a highly nontrivial rate-determining step for achieving net-

zero, or ultimately negative, carbon emissions.(4) 

The efficiency of CCC is dependent on a proper carrier molecule which can selectively 

bind CO2 under one condition and release under another. The release method can include 

heat treatment (thermal cycle), electrochemical redox swing, electrochemical pH swings, 

photo-switches, and ligand exchange in metal-organic frameworks..(5–8) To date, the most 

industrially successful carrier family have been the amines which are able to bind CO2 

through the bicarbonate pathway and the carbamate pathway (vide infra). The captured 

CO2 can then be released by heating up the solution in a thermal cycle system or by 

addition of metal cations in a metal-amine system.(9) However, the application of amines 

has been largely limited to treat industrial flue gas (8-12 % CO2) instead of direct air 

capture (DAC) (0.4 % CO2). The latter contains extremely dilute CO2 but  relatively high 

concentration of O2 and H2O. Uptaking CO2 from a such dilute gas mixture is 



thermodynamically challenging and requires a favorable and selective CO2 binding 

energetics on the sorbent molecules. In addition, O2 could oxidize functional groups such 

as the amino group, and H2O could protonate the CO2 binding site of the sorbent to 

render it inactive. Therefore, sorbent that is air- or water- stable with high CO2 binding 

capabilities is highly desirable for aqueous DAC applications.  

Since the sorbent are water soluble molecules, one could approach the optimal molecular 

candidate by two different strategies, bottom-up or top-down. For molecular systems 

where the relationship between the electronic structure and desired property is well 

understood, one could make modifications to the parent molecule accordingly to tune the 

molecular property based on the design principles, i.e., direct design or molecular 

engineering. If there is insufficient insight into the structure-activity relationship, the pool 

of possible candidates can be screened, or molecular design can be treated as an 

optimization task and evolutionary algorithms can be applied to efficiently optimize the 

desired property in a predefined chemical subspace, i.e., inverse design. Both strategies 

have proven successful in optimizing functional molecules for various applications, 

including solar cell,(10) redox flow cell,(11) solar heat battery,(12) molecular 

photocatalysis,(13) and electrocatalysis.(14–17) 

Here, we focus on aqueous DAC and search for the optimal sorbent molecule from various 

molecular systems with a combination of inverse design strategies and modern 

computational methods. The bonding nature and energetics of CO2 binding and 

protonation on substituted amines, alkoxides, and phenoxides are investigated using 



density functional theory (DFT) calculations. We discovered that all three sorbent families 

obey a linear scaling relationship (LSR) between p𝐾CO2
 and p𝐾a which originates in the 

same bonding nature of proton and CO2 on the binding site. To exploit the off-LSR 

behavior of phenoxides, a genetic algorithm (GA) searcher combined with semiempirical 

quantum mechanical (SQM) calculations is performed to efficiently search for the air- and 

water- stable alkoxide species with optimal CO2 binding capabilities. The top-scoring 

candidates are further refined with DFT calculations and analyzed computationally, to 

provide insights and design principles based on the search results. The data generated 

from the GA search can be further used to train predictive machine learning (ML) models 

for low-cost prediction of MO energy levels and binding free energies. For validation, 

several simple synthetically accessible substituted phenoxide and alkoxide molecules were 

selected to evaluate theirCO2 absorption capacity. The overall p𝐾CO2
- p𝐾a trend and off-

LSR behaviour of specific molecules are observed in the experiments, consistent with 

theoretical predictions. The inverse molecular design workflow not only provides trends 

and design principles, with minimal prior knowledge, but also is readily generalizable to 

explore and optimize other functional molecules for various applications. 

 

 

RESULT AND DISCUSSION 

Amines for aqueous DAC. 



Amines are the current leading CO2 sorbent family for post combustion capture.(5, 18) 

Amines are usually divided into groups based on the number of hydrogens on the nitrogen, 

namely primary, secondary, and tertiary. In aqueous solution, tertiary amines (R1R2R3N) 

hydrolyze to produce hydroxide which acts as the capture agent: 

R1R2R3N + H2O → R1R2R3NH+ + OH- 

CO2 + OH- → HCO3
- 

HCO3
- + OH- → H2O + CO3

2- 

In these cases, the tertiary amino group function solely as a weak base instead of the 

direct binding site for CO2. This makes tertiary amines a less interesting and promising 

system from the perspective of molecular design: substituents can only affect the basicity 

but not the CO2 binding energetics. 

 



 

Figure 1. (a) Potential energy profile of CO2 binding of the four species from a relaxed 

PES scan, referenced to the energy of free molecules (marked by dotted line). (b) 

Optimized geometries of CO2 binding on MeNH2, MeNH-, MeO-, and PhO-, with the d(X-

C) distances (X represent N for amine and O for alkoxide/phenoxide) labeled in Angstrom. 

(c) Scatter plot of DFT-calculated 𝐺𝑏𝑖𝑛𝑑 versus 𝐺𝑎𝑢𝑡𝑜−𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 for investigated primary 

and secondary amine molecules. (d) Scatter plot of DFT-calculated p𝐾CO2
 values versus 

the p𝐾a1 and p𝐾a2 for investigated primary and secondary amine molecules. 

 



CO2 capture using primary and secondary amines has been investigated extensively 

experimentally; however, a clear relation that could guide molecular design has not yet 

been proposed.(19, 20) Figure 1a shows the potential energy surface (PES) of CO2 binding 

on MeNH2 and its deprotonated form MeNH- obtained from relaxed scan at B3LYP-

D3(BJ)/def2-TZVP. Despite some older reports that the primary and secondary amines 

could capture CO2 via a zwitterionic (i.e. carbamic acid intermediate) pathway,(21, 22) 

our DFT calculation (Figure 1a) shows that the neutral amino group in MeNH2 could 

only non-covalently physi-sorb a CO2 molecule, as is evidenced by the N-C distance of 

2.82 Å (Figure 1b). Only after deprotonation can a primary or secondary amino group 

bind CO2 covalently into a carbamate intermediate, with a binding energy of -53.1 

kcal/mol and a N-C bond length of 1.43 Å. Since the neutral amino groups are always 

more basic than water, the deprotonated amino group can only form from an 

autoionization process: 

2 R1R2NH → R1R2NH2
+ + R1R2N- 

The deprotonated amine group R1R2N- then readily capture a dissolved CO2 molecule to 

form carbamate: 

R1R2N- + CO2 → R1R2NCOO- 

which in turn promotes the auto-ionization by consumption of the deprotonated species, 

until the system reaches equilibrium. In the meanwhile, the R1R2NH2
+ produced in the 

auto-ionization step serves no absorbing function and remains in the protonated form 



thereafter. Therefore, the primary and secondary amines bind CO2 in an overall 

stoichiometry of 2:1, i.e., one mole of amine is “wasted” for each mole of CO2 captured. 

Since the air is a dilute stream of CO2, to achieve optimal absorption capacity, a sorbent 

needs favorable thermodynamics in both auto-ionization and CO2 binding. To investigate 

the energetic trend, we perform DFT calculations on a library of mono-substituted 

primary and secondary amines, and Figure 1c shows the scatter plot of their CO2 binding 

free energy 𝐺bind  versus auto-ionization free energy 𝐺auto−ionization . Unfortunately, 

𝐺auto−ionization lies between 39.5 and 60.9 kcal/mol, suggesting difficult autoionization and 

hence a low concentration of available species for CO2 binding. In addition, no clear 

relation can be observed between the two reaction energies. As 𝐺auto−ionization increases, 

the 𝐺𝑏𝑖𝑛𝑑 decreases until 𝐺auto−ionization reaches c.a. 52 kcal/mol and increases thereafter, 

forming a convex hull. Since the unsubstituted methylamine (𝐺𝑏𝑖𝑛𝑑 = 46.6 kcal/mol, 

𝐺auto−ionization = −51.1 kcal/mol) is already located near the top of the “inversed volcano”, 

the intrinsic limit leaves little room for further optimization of both auto-ionization and 

CO2 binding. 

To gain deeper insight into the energetic trends, we calculated the p𝐾a1 (R1R2NH2
+→ 

R1R2NH), p𝐾a2 (R1R2NH→R1R2N-), and p𝐾CO2
 of the primary and secondary amines via 

the linear free energy relation (LFER)(23) and plotted them in Figure 1d. Note that p𝐾a1 

is usually reported as p𝐾a due to experimental difficulty in determining p𝐾a2. Previous 

experimental studies have reported a weak positive correlation between the p𝐾a1 and CO2 

absorption capacity,(20) which is also observed in our calculations where p𝐾a1 correlates 



poorly with p𝐾CO2
 with a R2 of 0.22 (Figure S2a). However, p𝐾a2 is found to correlate 

much better with p𝐾CO2
 in a linear manner, with a R2 of 0.86 (Figure S2b). The linear 

correlation is attributed to the similar bonding mode through which proton and CO2 act 

as electrophile and bind to the nucleophilic anionic nitrogen site. The similar bonding 

characteristics results in coupling of the 𝐺bind and 𝐺deprot, i.e., linear scaling relationship 

(LSR).(24) The poor correlation between p𝐾CO2
 and p𝐾a1  originates in the poor 

correlation between p𝐾a2 and p𝐾a1 (Figure S2c). The nitrogen in neutral or deprotonated 

amino groups has different types of hybridization and hence is influenced to different 

extents by substituent effects. In addition, the first and the second proton to be attached 

to the anionic nitrogen is impacted by different steric effects from nearby groups. This is 

also the cause of the 𝐺bind-𝐺auto−ionization convex hull observed in Figure 1c. 

 

Alkoxides for aqueous DAC 

Despite the favorable CO2 binding energetics of amine, the stoichiometry of 2:1 for the 

capturing agents and CO2 caps the absorption capacity. The p𝐾a2  of primary and 

secondary amines lies above 20, which makes them unsuitable for aqueous DAC due to 

susceptibility to protonation by water (p𝐾a=15.7) and blocking of the CO2 binding site. 

In addition, primary and secondary amines could suffer from oxidation when in contact 

with air. In contrast, alkoxides are a promising family of CO2 capturing agents that are 

more O2-insensitive and can directly bind CO2 to form a carbonate with 1:1 stoichiometry: 

RO- + CO2 → ROCO2
- 



 

Figure 2. (a) The localized molecular orbitals with highest contribution to the Mayer 

bond order of the X-C bond (X represents N for amine and O for alkoxide/phenoxide), 

with the percentage contributions labeled below each orbital. (b) Scatter plot of DFT-

calculated p𝐾CO2
 values versus the p𝐾a for all investigated molecules. The orange dashed 

line and the blue dotted line represent the data points of phenoxide and methoxide, 

respectively. (c) The top-10 water-insensitive alkoxide candidates for CO2 binding, with 

the p𝐾a and p𝐾CO2
 labeled under each structural formula. 

 

The CO2 binding on alkoxide has the same bonding characteristics as on a deprotonated 

amino group. Figure 2a shows the two localized molecular orbitals (LMOs) with the 



highest contribution to the Mayer bond order between CO2 and the capturing agent. It 

can be seen that the major bonding orbital of amine- and phenoxide-CO2 adduct both 

have s-pattern, accounting for 84.7% and 78.4% of the Mayer bond order, respectively. 

The LMO with the second highest bonding contribution has p-pattern for both amine and 

alkoxides, with a minor contribution of 19.0% and 19.6%, respectively. The analysis 

reveals the similar bonding pattern of CO2 binding to an alkoxide as to an amine. 

To explore the p𝐾CO2
-p𝐾a relation of alkoxide, the binding constants are calculated using 

DFT and plotted in Figure 2b for the library of mono-substituted methoxide and ethoxides, 

together with the datapoints of amines. The p𝐾CO2
 of the majority of the alkoxides lie in 

the range of -10 to -20, suggesting less favorable CO2 binding energetics compared to 

amines. However, most of the alkoxides have their p𝐾a  below 15.7, which prevents 

deactivation from protonation by water. This could be attributed to the weaker 

nucleophilicity of the O in alkoxide (Hirshfeld charge: -0.84 e) than the N in amine 

(Hirshfeld charge: -1.12 e). As can be expected from the chemical bonding analysis, there 

also exists a LSR between p𝐾CO2
 and p𝐾a of alkoxides that is similar to the case of amines. 

More intriguingly, the LSRs of alkoxides and amines lie in the same straight line, with a 

R2 of 0.97 on the combined dataset. The shared LSR demonstrates that the weakening of 

CO2 binding on alkoxide compared to on amine is just a compromise in exchange for 

water-tolerance. Alkoxides are not systematically inferior to amines, and since they follow 

the exact same p𝐾CO2
-p𝐾a curve we can access the upper left region that is inaccessible 

for amine via functional group substitution. Since the p𝐾a of ethanol (exp. p𝐾a=16) is 



slightly higher than that of water, a straightforward approach is to move toward the upper 

left direction along the LSR by attaching weak electron withdrawing group (EWG) to the 

alkoxide. At the same time, the tradeoff must be kept small enough so that CO2 binding 

capability is not excessively weakened. The top-10 water-tolerant alkoxide candidates 

ranked by p𝐾CO2
 are listed in Figure 2c. 

 

Optimizing Phenoxides with Genetic Algor ithm Search 

The LSR provides a clear correlation along which we could tune the binding energetics, 

however, it also imposes an intrinsic limitation that prevents optimization of both p𝐾a 

and p𝐾CO2
. This is similar to the activity volcano in catalysis.(25) Hence, we further 

extend the study to phenoxides whose distinct sterics and electronic structure 

characteristics (aromaticity) from alkoxides could span a different chemical space. The 

bonding nature of CO2 on phenoxide is found to be similar to that on amines and alkoxide: 

major s-characteristics and minor p-characteristics (Figure 2a). A relatively low p-

contribution could be attributed to the slightly out-of-plane CO2 binding configuration 

(156.7° dihedral angle between the CO2 plane and the benzene plane) and the lack of 

hyperconjugation effects by alkyl groups. Because the phenyl group is an inductive EWG, 

it also results in a less nucleophilic O in phenoxide (Hirshfeld charge: -0.58 e) compared 

to the alkoxide case, and that is also the reason why phenol is more acidic than alcohol. 

Therefore, phenoxides show a weaker CO2 binding than alkoxides or amines, in terms of 

both energetics and bond length (Figure 1a, b). In Figure 2b, the datapoints of mono- and 



di-substituted phenoxides lie in the upper left region in the p𝐾CO2
- p𝐾a plot, which means 

weak basicity (not prone to protonation by water) but small CO2 adsorption capacity. 

 

Figure 3. Scatter plot of DFT-calculated p𝐾CO2
values versus the p𝐾a of (a) substituted 

alkoxides and (b) substituted phenoxides, with the R2 value and the formula of the LSR 

fitting labeled above each plot. The green dashed line and the blue dotted line represent 

the data points of phenoxide and methoxide, respectively. 

 

A closer inspection of the phenoxide datapoints could reveal a p𝐾CO2
- p𝐾a distribution 

pattern that is distinct from that of the alkoxides. In Figure 3a, the datapoints of alkoxides 

closely obey a linear correlation with an R2 of 0.86. However, the datapoints of phenoxides, 

although roughly showing a consistent trend with the LSR of alkoxides, are much more 

dispersed and have a lower R2 of 0.67, suggesting a weak correlation between p𝐾CO2
 and 

p𝐾a of phenoxides. This can be attributed to the rigidness of the phenyl group: the C-C 

in the phenyl ring cannot rotate as freely as C-C in the alkyl chains, which prevent ortho 



substituents from adapting to configurations where their interaction with the CO2 binding 

site is minimized. The aromaticity of the phenyl ring also allows for para and meta 

substituents to influence the electronic structure of the CO2 binding site via the 

conjugated Π system, whereas the substituent effects in alkoxide tend to die out beyond 

the 𝛽 carbon atom due to the saturated sp3 hybridization. In addition, the unsubstituted 

phenoxide is at about the middle of the distribution, unlike the case of alkoxides where 

the unsubstituted methoxide is at the lower-left end. To sum up, the phenoxides have 

greater room for further optimization and, more importantly, the potential to break the 

LSR and decouple the p𝐾a and p𝐾CO2
. 

Due to a lack of insights into the origin of such off-LSR behavior, we turn to the inverse 

design strategy and expend the chemical subspace from mono- and di-substitution to all 

possible substitutions. This would include a total of c.a. 8 million unique molecules (24 

substituents, 5 sites), which is beyond the capability of brute force exhaustion. To 

efficiently explore the vast chemical space, we employ genetic algorithm (GA), an 

evolutionary algorithm that has been successfully applied to structural prediction and 

property optimization of molecular systems,(15, 26) to search for the substituted 

phenoxide with minimal Δ𝐺𝑏𝑖𝑛𝑑 on condition that its p𝐾ais lower than 15.74. To lower the 

computational cost and speed up the GA search, semi-empirical quantum mechanical 

(SQM) method GFN1-xtb, with GBSA implicit solvation, is adopted. The GFNn-xtb 

method has been reported to predict p𝐾a at semi-quantitative level and is suitable for 

trend recognition on large datasets where QM methods are unaffordable.(27) In our tests, 



the adopted SQM method could predict experimental p𝐾a via LFER with a R2 of 0.9486 

(Figure S3), which is comparable to the DFT calculations. 

 

 

Figure 4. (a) Scatter plot of SQM-calculated Δ𝐺𝑏𝑖𝑛𝑑  versus the p𝐾a  of substituted 

phenoxides from random sampling, GA search, and the final generation of the GA search. 

The histogram showing distribution of Δ𝐺𝑏𝑖𝑛𝑑 for random sampling and GA search is on 

the right panel. (b) Scatter plot of DFT-calculated p𝐾CO2
 values versus the p𝐾a of top-

scoring candidates from the GA search, together with the datapoints of simple substituted 

phenoxides (blue dots). (c) The top-10 water-insensitive phenoxide candidates for CO2 



binding from the GA search, with the p𝐾a  and p𝐾CO2
 labeled under each structural 

formula. 

 

Ten independent GA searches are performed to avoid premature convergence in local 

optima, and the evolution of lowest Δ𝐺𝑏𝑖𝑛𝑑 is shown in Figure S4. The optimal candidate 

from each individual GA search outperforms the reference species by 9~15 kcal/mol in 

terms of SQM-calculated Δ𝐺𝑏𝑖𝑛𝑑. It can be seen from Figure 4a that the GA not only 

samples sufficiently into the lower right region in the plot along the LSR but also explores 

the lower left region where the binding energies of proton and CO2 are decoupled. The 

histogram in Figure 4a could more clearly demonstrate the sampling efficiency of the GA 

compared to random sampling, with 51% of the sampled candidates outperforming the 

reference molecule, which is a significantly higher percentage than 6% in random sampling. 

To verify the GA search results, DFT calculations are performed on the top-scoring 

candidates from the GA searches at the same level of theory as in the previous sections. 

It is shown in Figure 4b that all the candidates found in GA searches outperform the 

reference molecule, with a large portion of the datapoints distributed into the lower left 

off-LSR region. The datapoint with the most negative p𝐾CO2
 is located far from the 

reference species and almost enters the regime of alkoxides. After filtering out the water-

sensitive compounds, we rank the candidates from GA searches and show their molecular 

structure and binding constants in Figure 4c.  

 



Data-dr iven design pr inciples and predictive ML models  

 

Figure 5. (a) Scatter plot of p𝐾CO2
 versus phenoxide-CO2 C-C-O-C dihedral angle of 

substituted phenoxides. The fitted line and the fitting formula are label in the plot. (b) 

Potential energy profile of phenoxide-CO2 C-C-O-C dihedral angle rotation of the 

phenoxide and 2,6-xylenoxide from relaxed PES scans. Geometry of key extrema are 

shown along the profile. (c) Potential energy profile of phenyl-OH C-C-O-H dihedral angle 

rotation of the phenoxide and 2,6-xylenoxide from relaxed PES scans. The LMO that 

contributes the most to the proton binding is shown in the profile. The energies are 

referenced relative to global minima. (d) The HOMO and HOMO-1 isosurface of 



phenoxide and 2,6-xylenoxide, and the bonding LMO isosurface that contributes the most 

to the CO2 binding on them.  

 

After obtaining and validating the optimal candidates from the inverse design strategy, 

we proceeded to study their molecular structures, aiming to understand the origin of their 

favorable and off-LSR energetics. A quick glance at Figure 4c reveals the common 

characteristics of the top-scoring and off-LSR candidates: bulky alkyl groups on the ortho 

positions. This is quite unexpected since alkyl groups are neither strong EWGs nor EDGs, 

and they are usually considered to weaken binding due to steric hinderance. During 

inspection of the DFT-optimized geometries, we notice that the CO2 binding configuration 

on the top-scoring candidates is quite different from on the simple substituted phenoxides. 

Specifically, the dihedral angle between CO2 plane and phenyl plane is c.a. 25° (noted as 

in-plane) for mono- and di-substituted phenoxides but 60~90° (noted as perpendicular) 

for the top-scoring candidates with bulky ortho groups from GA search. Moreover, as is 

shown in Figure 5a, the p𝐾CO2
 is negatively correlated with the dihedral angle, i.e., 

perpendicular binding configurations are more energetically favorable compared to in-

plane binding configurations. 

To investigate how the bulky groups at ortho positions could alter the binding energetics, 

we use phenoxide and 2,6-xylenoxide as model systems. Note that the optimal candidate 

from the GA search is not used here for clarity and controlling variables. Relaxed PES 

scans are performed to explore the energy profile as the Dih(C-C-O-C), the dihedral angle 



between phenyl plane and CO2 planes, rotates. The PES of phenoxide-CO2 adduct (Figure 

5b) is quite flat in the 0~40° region, with the global minimum configuration at c.a. 20°. 

The exact in-plane 0° configuration is a local maximum due to the steric repulsion between 

CO2 and the ortho C-H. As the Dih(C-C-O-C) increases, the phenoxide-CO2 adduct gets 

increasingly unstable until it passes through the global maximum with respect to Dih(C-

C-O-C), at 90°. However, this unstable perpendicular configuration is the global minimum 

configuration on the PES of 2,6-xylenoxide-CO2 adduct (Figure 5b). The steric effect of 

ortho methyl groups destabilizes the in-plane configuration into a local maximum. On the 

contrary, the perpendicular configuration is not affected as much and becomes the global 

minimum. 

In comparison, the PES of proton binding on phenoxides is not reshaped by bulky ortho 

groups. As is shown in Figure 5c, the in-plane configuration is the global minimum for 

proton binding on both phenoxide and 2,6-xylenoxide. The in-plane proton bindings on 

both molecules are contributed majorly by a 𝜎 bonding orbital formed from H 1s and the 

HOMO-1 of phenoxides (Figure 5d). In contrast, the perpendicular binding is contributed 

majorly by the 𝜎 bonding orbital that is formed from the HOMO of phenoxides. To sum 

up, protons bind to all substituted phenoxides through their HOMO in the same way, but 

CO2 binds to their HOMO or HOMO-1 depending on the sterics of the ortho substituents. 

For the substituted phenoxides without bulky ortho substituents, the proton and CO2 

bindings are both associated to the HOMO, which is the origin of the previously observed 

LSR between p𝐾CO2
 and p𝐾a . For the substituted phenoxides with bulky ortho 



substituents, CO2 and proton binds through different MOs whose energy level is influenced 

differently by substituents with different 𝜎 or 𝜋 characteristics (inductive or resonance). 

In addition, due to the negative electrostatic potential (ESP) around the oxygens in CO2 

(Figure S5a), the phenoxide-CO2 adduct would be less stabilized by the ortho C-H in 

phenoxide with ESP of -80 kcal/mol (Figure S5b) than by the ortho methyl in 2,6-

xylenoxide with ESP of -73 kcal/mol (Figure 5c). The stabilization effect of ortho alkyl 

groups through non-covalent interaction (NCI) could be explicitly visualized by the NCI 

map. As the ortho substituent gets bulkier from -H (Figure S6a) to methyl (Figure S6b) 

and then to tert-butyl (Figure S6c), the green isosurface representing attractive NCI 

between the bound CO2 and the ortho substituent becomes larger. As a result of the 

discussed effects, increasing the bulkiness of ortho substituents on phenoxide can decouple 

the CO2 and proton binding energies. The system will then be allowed to move beyond 

the LSR and access the regions with more favorable energetics, namely, higher water-

tolerance and stronger CO2 binding. 

Another advantage of the GA search is the large and diverse dataset it generates that 

could be utilized to train predictive machine learning (ML) models. As is shown in Figure 

S7, the neural network (NN) model trained on the GA dataset does an excellent job in 

predicting HOMO energy levels with R2 of 0.926 and mean absolute error (MAE) of 86 

meV. This could be especially helpful for scenarios where the MO energy level is a major 

descriptor of the target property, such as redox potential, excitation energies, and 

energetics of molecular binding that is associated with a specific MO. However, the NN 



model turns out to predict the binding free energies rather poorly, with R2 of 0.555 and 

MAE of 2.64 kcal/mol for Δ𝐺𝑏𝑖𝑛𝑑. To address the free energy, descriptors that contain 

information on the electronic structure and dynamics of the molecular fragments would 

be required. Still, the predictive ML model is cost-wise suited for initial screening for 

favorable energetics at the semi-quantitative level. 

 

Exper imental validation of theoretical trend and design pr inciple 

 

Figure 6. (a) Structures and experimental pKa’s of the phenoxide and alkoxide carriers 

synthesized in this work, labeled as C1-6. (b) Scatter plot of DFT-calculated p𝐾CO2
 values 

versus the p𝐾a for synthesized molecules, with datapoints in Figure 2B also plotted as 

reference. The orange dashed line and the blue dotted line represent the data points of 



phenoxide and methoxide, respectively. The experimental (c) CO2 adsorption capacity 

and (d) p𝐾CO2
 of the synthesized molecules, with datapoints of noncyclic primary and 

secondary amines from ref (19) as reference. (e) Geometry of global minimum 

configuration of the C2 and C3 molecules, and their corresponding p𝐾CO2
 calculated by 

implicit or explicit solvation methods. Solvent inaccessible regions due to alkyl sterics are 

marked by red circles. 

 

To further validate the trends and design principles obtained from computational 

screening and genetic algorithm search, we synthesized six compounds (Figure 6a) 

including lithium phenoxide (C1),(28) 2,6-dimethylphenoxide (C2), 2,6-

diisopropylphenoxide (C3), catechoxide (C4),(29) 2-nitrophenoxide (C5), and lithium 

trifluoroethoxide (C6).(30) Their corresponding DFT-calculated p𝐾CO2
 and p𝐾a  are 

plotted in Figure 6b. C2 and C3 are located in the lower right region of the phenoxide 

cluster, with slight off-scaling relationship behaviour due to the sterics-induced change in 

bonding orbital as discussed in the previous section. C4 in di-anionic form (pKa2) binds 

both proton and CO2 more strongly than regular phenoxides. C6 is moved to the upper 

left along the p𝐾CO2
− p𝐾a scaling relation of alkoxide by introducing trifluoromethyl 

(EWG), thereby trading part of the CO2 binding strength for higher water-tolerance.  

The CO2 capturing ability of the compounds are characterized by absorption capacity, 

defined as the molar ratio of absorbed CO2 to the capturing agent, determined using the 

experimental set-up (Figure S8) proposed in ref (19). For synthesized compounds in this 



work, there exists a positive relationship between pKa and absorption capacity. C2 and 

C6 have absorption capacities comparable to commercial amines (noncyclic, primary and 

secondary), and C4 outperforms all commercial amines. Notably, the time needed to reach 

the absorption equilibrium is c.a. 1 h for alkoxides and phenoxides, which is significantly 

faster than the case of amines (c.a. 3h) in previous reports.(19, 31) This can be attributed 

to the direct one-step adsorption pathway on phenoxide, unlike the amines which need to 

undergo protonation first. The facile CO2 adsorption kinetics adds to the merit of alkoxide 

and phenoxides for DAC applications. 

In Figure 6d, the absorption capacity is converted to the p𝐾CO2
, assuming the contribution 

from carbonate and bicarbonate pathways are minor. A similar p𝐾CO2
− p𝐾a relation as 

in Figure 4b can be observed of the synthesized compounds. The trend for absorbance 

capacity of amines versus pKa is less defined due to the use of pKa1 instead of pKa2 (no 

experimental values available). C4 shifts towards the lower left, away from the scaling 

relationship, probably due to the strong CO2 binding in its di-anionic form, and more 

binding sites available (2 sites per molecule). The weaker correlation for C3 compared to 

C4 can be attributed to the weakness of the implicit solvation method employed 

throughout the study. Since propyl group is bulkier, the H-bond interaction between the 

bound CO2 and its solvent environment is weaker for C3 than for C2 (Figure S9). In 

addition, the water-inaccessible regions caused by the sterics of the ortho groups are closer 

to the bound CO2 in C3 than in C2, thus lowering the solvent-accessibility of the bound 

CO2 more for C3. As the result, p𝐾CO2
 calculated considering explicit water molecule is 



lower than the implicit solvation results by 0.9 units for C3. In contrast, little change is 

observed for C2. These results suggests the overestimation of CO2 binding for phenoxide 

with highly bulky ortho groups (> methyl), due to implicit solvation model giving the 

incorrect solvation free energy. After correcting the pKa in Figure 6d using the explicit 

solvation results, C3 would shift closer to the scaling relation, while C2 stays about the 

same. The explicit solvation model, however, requires sampling hundreds of configurations 

per compound, which is not suitable for screening or global optimization search purposes. 

Hence, we use it only in the final refinement step after narrowing down the candidate pool 

using lower level methods. Possible approaches to incorporate evaluation of more realistic 

solvation free energy into the screening process includes QM/MM Monte Carlo (or other 

advanced sampling techniques)(32) and machine learning models trained on all-QM 

datasets.(33)  

Although C2 is still not as good as C4, we note that it has been improved by 76.5% in 

absorption capacity (from 0.17 to 0.30) compared to the unsubstituted phenoxide C1, and 

its meta/para sites are still available for further substitution. Meanwhile, the catechoxide 

(C4) may also be further improved by introducing ortho bulky groups to exploit the steric 

effect which we are currently pursuing. In this work, we focus on presenting the 

computational workflow for inverse molecular design, hence compounds with relatively 

simple synthetic route are chosen mainly for the purpose of validation. 

 

CONCLUSIONS 



In conclusion, we explored amines, alkoxides, and phenoxides with a series of theoretical 

and computational methods in search of the optimal sorbent for aqueous DAC of CO2. 

DFT calculations are first performed to study the bonding nature and energetics of auto-

ionization, CO2 binding, and deprotonation on substituted amines. The anionic 

deprotonated amino group is found to be the species that binds CO2. We discovered a 

convex hull relationship that prohibits optimization of both Δ𝐺𝑏𝑖𝑛𝑑 (binding strength) and 

Δ𝐺𝑎𝑢𝑡𝑜−𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (concentration of the binding species), and a LSR between p𝐾CO2
 and 

p𝐾a2 of amines. Alkoxides and phenoxides are then proposed as better sorbents for their 

improved water-tolerance and more favorable capture stoichiometry. All three molecular 

systems are found to bind CO2 in a primarily s-fashion and follow the same p𝐾CO2
- p𝐾a 

LSR. Several high-performance alkoxides are proposed from the computational screening. 

Since there is an opportunity of p𝐾CO2
- p𝐾a decoupling on phenoxides, we apply GA global 

optimization combined with SQM calculations to explore the large chemical space of 

substituted phenoxides. Several promising molecules with off-LSR energetics are 

discovered from the GA searches and validated by DFT calculations. The top-scoring 

molecules are then studied by bonding analysis and PES scan to understand the origin of 

the off-LSR behavior: bulky ortho substituents force the CO2 adduct into a perpendicular 

configuration that binds through HOMO, while the proton still binds through HOMO-1 

in the in-plane configuration, thus decoupling the p𝐾CO2
 and p𝐾a. Several substituted 

phenoxide and alkoxide molecules are synthesized for CO2 absorption capacity 

measurement to validate the computational results. The overall p𝐾CO2
- p𝐾a trend and off-



LSR behaviour of specific molecules (bulky groups or hydroxyl on ortho positions) is 

observed in the experiments, consistent with theory. The inverse molecular design 

workflow presented in this work is highly generalizable and can be readily adapted for 

optimizing other functional molecules for various applications. 

 

METHODS 

Computational Methods 

Geometry optimization, vibrational analysis, and implicit solvation model calculations are 

performed using the Gaussian 16 program(34) (Revision C.01). The geometry 

optimizations and potential energy surface (PES) scans are performed using B3LYP 

functional(35, 36) with def2-TZVP basis sets(37) and D3 correction (Becke-Johnson 

damping)(38) to better account for the dispersion interactions. Harmonic vibrational 

frequencies are computed on each optimized geometry to make sure that all reaction 

intermediates have no imaginary frequency. The entropic and thermo-statistical 

contributions (𝛿𝐺𝑅𝑅𝐻𝑂) are calculated by the rigid rotor harmonic oscillator (RRHO) 

approximation on optimized geometries at 298.15 K and 1 atm. To account for the aqueous 

environment, solvation free energies (𝛿𝐺𝑠𝑜𝑙𝑣)  are calculated by the implicit SMD model(39) 

with M05-2X functional(40) and 6-31G* basis set, which is the level of theory where the 

SMD is parameterized against experimental datasets.(41) The accurate electronic energies 

(𝐸el)  are computed at PWPB95 double hybrid functional(42) with def2-QZVPP basis 



sets(37) and D3 correction using ORCA program(43) (Version 4.2.1). The Gibbs free 

energy of solvated species at 298.15 K and 1 M can then be calculated by: 

𝐺 = 𝐸𝑒𝑙 + 𝛿𝐺𝑅𝑅𝐻𝑂 + 𝛿𝐺𝑠𝑜𝑙𝑣 + 𝛿𝐺1 atm→1 M 

where the 𝛿𝐺1 atm→1 M term is the needed free energy to increase concentration of the 

species from gas phase (4.088×10-2 mol/L) to 1 M in solution, which is 1.89 kcal/mol at 

298.15 K and 1 atm pressure. The Gibbs free energy of proton, although cannot be 

calculated quantum mechanically, can be derived using thermodynamics and the Sackur-

Tetrode equation, giving 𝐻𝑔𝑎𝑠
𝑜 (H+)=5/2 RT=1.48 kcal/mol and 𝑆𝑔𝑎𝑠

𝑜 =26.5 cal/(mol⋅K) at 

298.15 K and 1 atm. The value of experimentally determined 𝛿𝐺𝑠𝑜𝑙𝑣  is taken from 

reference (44). 

The free energy change of the proton dissociation process of HA can then be calculated 

by: 

Δ𝐺𝑑𝑒𝑝𝑟𝑜𝑡 = 𝐺(H+) + 𝐺(A−) − 𝐺(HA) 

The acidity constant p𝐾a  can be calculated from Δ𝐺𝑑𝑒𝑝𝑟𝑜𝑡  via the linear free energy 

relationship (LFER):(23) 

p𝐾a = 𝑐0 ⋅
Δ𝐺𝑑𝑒𝑝𝑟𝑜𝑡

ln(10) RT
+ 𝑐1 

where RT is the ideal gas constant times the temperature (298.15 K). The 𝑐0 and 𝑐1 

parameters are fitted to experimental data obtained from the iBonD database 

(http://ibond.chem.tsinghua.edu.cn). For amines, the p𝐾a1 and p𝐾a2 are related to the 

http://ibond.chem.tsinghua.edu.cn/


first and second deprotonation of the corresponding protonated primary or secondary 

amino group, respectively. 

The CO2 binding constant p𝐾CO2
 of a capturing agent A- is calculated similarly from the 

free energy change of the CO2 binding process (LFER parameters for p𝐾CO2
 are set to 

𝑐0 = 1 and 𝑐1 = 0 due to lack of available experimental data): 

Δ𝐺𝑏𝑖𝑛𝑑 = 𝐺(A− ∗ CO2) − 𝐺(A−) − 𝐺(CO2) 

p𝐾CO2
= 𝑐0 ⋅

Δ𝐺𝑏𝑖𝑛𝑑

ln(10) RT
+ 𝑐1 

According to our test, the DFT protocol of this work outperforms DLPNO-

CCSD(T)/def2-QZVPP(45) and quantum chemistry composite method  CBS-QB3(46) in 

reproducing experimental p𝐾a of alkoxides (Figure S1). 

Molecular orbital analysis, Hirshfeld population analysis, non-covalent interaction analysis, 

and electrostatic potential mapping are performed using the Multiwfn program on the 

converged wavefunctions from DFT calculation.(47) The configurational sampling under 

explicit solvation is performed using genmer module in the Molclus program.(48) 

In the computational screening section, the substituent pool includes (24 in total): -H, -

OCH3, -CN, -CH3, -C2H5, -CH(CH3)2, -CHCH2, -CCH, -CH2Cl, -CF3, -CHO, -COCH3, -

COOCH3, -OCOCH3, F, Cl, Br, -OC2H5, -OCHO, -SO2CH3, -SO2OCH3, -SOCH3, -NO2, -

CHNH. Note that the hydroxyl and amino groups are not included in the pool to avoid 

difficulty in p𝐾a determination of polyamines and alkanolamines. 



Each molecule is represented by a 1D vector with 5 (number of substitution sites) elements, 

each representing a substituent. The representation (noted as gene representation of 

molecules) can reversibly interconvert into or from a SMILES representation.(49) The 

SMILES string is converted to XYZ coordinate using Open Babel package,(50) and 

sufficient stochastic conformational search is performed at MMFF94 level to obtain the 

most stable conformation.(51) 

Connectivity is checked after geometry optimization to make sure there is no unexpected 

bond dissociation which suggests instability of the molecule under certain charge states. 

A data point is discarded if any of the involved species (neutral, deprotonated, CO2 adduct) 

is found unstable. 

Semiempirical quantum mechanical (SQM) calculations are performed using the xTB 

package(52) for the geometry optimization and energy evaluation throughout the genetic 

algorithm search. GFN1-xTB tight binding method with GBSA model for describing 

implicit solvation by water is employed in the high-throughput computational screening 

section for its low computational cost and comparable accuracy to DFT methods in terms 

of geometry and thermochemistry.(53) The p𝐾a and p𝐾CO2
 values are calculated following 

the fitting and LFER procedure as described in the DFT section. 

The genetic algorithm search is performed using an adapted version of the molGA code.(15) 

The population size, mutation rate, and convergence criterion are set to 100 candidates, 

33%, and 100 generations, respectively. The search goal is set to minimize the Δ𝐺𝑏𝑖𝑛𝑑 

while keeping the Δ𝐺𝑑𝑒𝑝𝑟𝑜𝑡 higher than that of OH-. Ten independent GA searches are 



performed, and the top-scoring candidates are collected from the final populations. DFT 

calculations are performed on those candidates thereafter to obtain more accurate 

energetics. 

The machine learning (ML) model for fast prediction of molecular properties is a multi-

layer perceptron neural network (NN) with four rectified linear units (ReLU) and two 

hidden linear layers, implemented using pyTorch library.(54) Each phenoxide molecule is 

converted into a 1D vector with 24 (number of substituents) ×5 (number of substitution 

sites)=120 binary elements via positional one-hot encoding (Scheme S1). The NN is 

trained on the dataset of sampled substituted phenoxides labeled with SQM-calculated 

properties, with 80% of the data as training set and 20% of the data as test set. Data 

augmentation is achieved by “flipping” the molecule to generate two equivalent 

representations for each data point. 

Exper imental Methods 

Synthesis and manipulation of compounds were carried out in open air unless otherwise 

mentioned. For air- and moisture-sensitive procedures, manipulations were carried out in 

a glovebox or using standard Schlenk techniques under inert atmosphere of nitrogen. 

Solvents used during inert atmosphere synthesis and/or manipulations were degassed by 

sparging with argon and dried by passing through columns of neutral alumina or molecular 

sieves. All deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. 

Deuterated methanol was degassed and stored over activated 3 Å molecular sieves prior 

to use. All solvents and reagents were purchased from commercial vendors and used 



without further purification unless otherwise noted. The compounds in Figure 6a are 

synthesized using two routes: 

Synthesis using LiOH: This synthetic route was used for deprotonation of trifluoroethanol, 

hexafluoropropanol, 2-nitrophenol, and 2,6-dimethylphenol. Under an N2 atmosphere, 25 

mmol of alcohol was combined with 25 mmol of lithium hydroxide in 20 mL dry methanol. 

The reaction was refluxed overnight then dried under vacuum to give solid. 

Synthesis using n-butyl lithium: This synthetic route was used to deprotonate phenol, 2,6-

diisopropylphenol, and catechol. In a rigorously dried N2 atmosphere with 50 mL dried 

pentane from the solvent system and 25 mmol of dried alcohol, 25 mmol (or 50 mmol for 

catechol) 1.6 M n-butyl lithium in hexane was added dropwise at -78°C. The mixture was  

stirred at -78°C for one hour, and then stirred for an additional 24 hours at room 

temperature. Solvent was removed under reduced pressure to leave a colorless solid. 

NMR spectroscopy was used to confirm the identity and purity of the synthesized 

compounds. 1H NMR spectroscopy was performed on a 500MHz Bruker Avance GN500 

with a BBO probe or on a 500 MHz Bruker DRX 500 spectrometer with a TCI cryoprobe. 

13C{1H} NMR spectra were recorded on a 500MHz Bruker DRX 500 fitted with a TCI 

cryoprobe. All NMR spectra were acquired at room temperature and referenced to residual 

1H or 13C resonances of the deuterated solvent (1H: CD3OD, δ 3.31; D2O, δ 4.79; DMSO-

D6, δ 2.50) (13C: CD3OD, δ 49.00; D2O, δ -; DMSO-D6, δ 39.52). Electrospray ionization 

mass spectrometry was preformed using an ESI LC-TOF Micromass LCT. Infrared 

spectroscopy was performed using a Thermo Scientific Nicolet iS5 spectrophotometer with 



an iD5 ATR attachment. UV-Visible absorption spectra were collected in methanol using 

an Agilent Technologies Cary 60 UV-Vis.  

The CO2 absorption capacity measurements were made following the procedure previously 

described in ref 19 by Puxty et al. 10 mL 0.5 M alkoxide solution was placed in weighed 

20 mL vial with septum screw top and stir bar (Figure S8a). First, the mass change due 

to evaporation was recorded by placing the vial in 40 °C bath and sparging with N2.  The 

inlet needle was never placed directly into solution, only the headspace. The change in 

mass was measured 8 times over a period of 20 minutes. Next, the gas inlet was changed 

to 10% CO2. The change in mass was measured every minute for the first 10 minutes, and 

then every 5 minutes for an hour. To determine the overall CO2 absorption, the mass 

change due to evaporation alone was subtracted from mass change when 10% CO2 was 

used to give the total mass gained due to CO2 absorption (Figure S8b). This method was 

validated against the original data from Puxty et al. using ethylenediamine as the 

standard.(19)  
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