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ABSTRACT Femtosecond X-ray pulse lasers are promising probes for elucidating the 

multi-conformational states of biomolecules because they enable snapshots of single 

biomolecules to be observed as coherent diffraction images. Multi-image processing 

using an X-ray free electron laser has proven to be a successful structural analysis method 

for viruses. However, some difficulties remain in single-particle analysis (SPA) for 

flexible biomolecules with sizes of 100 nm or less. Owing to the multi-conformational 

states of biomolecules and the noisy character of diffraction images, diffraction image 

improvement by multi-image processing is not always effective for such molecules. Here, 
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a single-image super-resolution (SR) model was constructed using a SR convolutional 

neural network (SRCNN). Data preparation was performed in silico to consider the actual 

observation situation with unknown molecular orientations, and fluctuation of molecular 

structure and incident X-ray intensity. It was demonstrated that the trained SRCNN model 

improved the single-particle diffraction image quality, which corresponded to an 

observed image with an incident X-ray intensity; i.e., approximately three to seven times 

higher than the original X-ray intensity, while retaining the individuality of the diffraction 

images. The feasibility of SPA for flexible biomolecules with sizes of 100 nm or less was 

dramatically increased by introducing the SRCNN improvement at the beginning of the 

variety structural analysis schemes. 

1. INTRODUCTION 

Femtosecond X-ray free electron lasers (XFELs)1,2 are attracting attention as new 

probes for elucidating the multi-conformational states of biomolecules at room 

temperature3,4 because they enable observation with low radiation damage of samples 

and short pulses. Although serial femtosecond crystallography has proven to be an 

effective method with low radiation damage,5–7 removing the limitation of sample 

crystallization in single-particle analysis (SPA) remains challenging. Owing to the low 
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scattering ability of biomolecules, it is necessary to analyze diffraction images with low 

signal-to-noise (S/N) ratios in SPA. To obtain better diffracted images for biomolecular 

imaging applications, various experimental and analytical methods have been 

proposed,8–16 such as the use of 100-nm focusing mirrors.17 Thus, three-dimensional 

(3D) assembled structures have been reconstructed by processing multiple images 

obtained from relatively large, hard, and highly symmetric viruses.18–20 However, for 

nanoscale flexible biomolecules, which are characterized by multi-conformational 

states, it is difficult to analyze a dataset of diffraction images from multi-conformational 

states and to reconstruct a clear 3D assembled structure by multi-image processing 

techniques. One of the key challenges in this area is realizing the SPA of nanoscale 

flexible biomolecules with sizes of ≤100 nm, such as ribosomes, nucleosomes, and 

membrane proteins, which are important for drug discovery. 

In SPA, a single biomolecule is injected into a vacuum with an unknown molecular 

orientation and possibly different conformations for nanoscale flexible biomolecules. 

When the X-ray hits the sample well within the appropriate beam position, a snapshot of 

the instantaneous structure of a single biomolecule is acquired as a diffraction image 

without phase information, which is observed by a two-dimensional (2D) charge-coupled 

device (CCD) detector as pixel-wise information of the photon counts of a solid angle. 
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By discretizing in units smaller than a solid angle of the reciprocal of the molecular size 

in wave number space, which is called oversampling ratio, the phase information is 

retrieved by an algorithm such as the hybrid-input–output (HIO) algorithm.21 However, 

the curvature of the Ewald sphere and noise affect the convergence of the phase retrieval 

calculation. In practical experiments, photons with detector-beam-sample relative 

geometry corresponding to a small solid angle 1/2 or less of the reciprocal of the 

molecular size are commonly measured. The high oversampling ratios required for phase 

recovery have resulted in a significant reduction in counting photons per pixel. If the 

requirement of high oversampling ratios is relaxed and observation is allowed at a larger 

solid angle, the number of achievable photons per pixel will increase significantly. 

Moreover, a noisy 2D diffraction image obtained by a single measurement is not 

sufficient to fully construct a 3D assembled structure, and in multiple measurements in 

nearly the same conformation, all possible molecular orientations are required for 3D 

assembled structure reconstruction. In the conventional scheme,22 multiple diffraction 

images are used for S/N ratio improvement, orientation recovery, and phase recovery to 

reconstruct the 3D assembled structure. Moreover, because the multi-image processing 

technique loses the individuality of diffraction images that reflect the various 

conformational states of flexible biomolecules, only the average structure of the major 
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conformational states will be obtained. It is essential to elucidate the multi-

conformational states of nanoscale flexible biomolecules expressed in individual noisy 

2D diffraction images.  

 In image processing, in addition to general image complementation methods, super-

resolution (SR) imaging, which estimates high resolution (HR) images from low 

resolution (LR) images, has been proposed. Two typical SR imaging strategies have been 

established: SR image reconstruction and example-based SR image reconstruction.23 The 

former is often used as a multi-image processing technique, in which a HR image is 

composed of a set of LR images. The latter is a method of estimating a HR image by 

searching the database prepared in advance and is often used as a single-image SR 

approach. In recent years, research on single-image SR using convolutional neural 

networks (CNNs) has remarkably advanced. Dong et al.24 developed a method called 

Super-Resolution Convolutional Neural Network (SRCNN), which employed CNN 

layers, and succeeded in achieving SR with higher accuracy than previous methods. Since 

SRCNN, various methods have been proposed, such as deeper network architectures,25,26 

methods for speeding-up,27 improvements on loss functions such as perceptual loss and 

training strategies,28 and generative adversarial network (GAN)-based methods.29,30 Most 

of these methods are based on the framework of supervised learning, where an artificially 
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reduced LR image is created from a given grand truth high resolution (GTHR) image, 

and the system is trained to recover the original GTHR image from the LR image. 

Although these proposed methods have improved the performance of SR, it has been 

pointed out that neural network-based methods, especially GANs, do not necessarily 

reproduce the original image and generate artifacts.31,32 Recently, unsupervised or weakly 

unsupervised learning,33,34 where SR models are trained without corresponding HR 

images, or SR on few images,35 have also been proposed. 

In the 3D assembled structure reconstruction of viruses,18–20 improvement of the S/N 

ratio of the diffraction images and orientation recovery were realized simultaneously by 

using the expand-maximize-compression algorithm,36–38 which is a statistical algorithm 

for maximizing posterior probability as a multi-image processing technique. Pioneering 

techniques for X-ray diffraction image denoising were devised by Jin et al.,39 whose 

method based on Poisson image denoising was previously applied to single-particle X-

ray diffraction imaging, and piecewise principal component analysis was applied to the 

simulated single-particle X-ray diffraction image with an elongation factor of 2; the effect 

of denoising could be recognized by filtering the images with a low calculation cost. As 

conventional 3D reconstruction methods use many images to estimate an assembled 3D 

structure with resolution higher than that provided by a single 2D diffraction image, and 
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SRCNN has shown promising results in computer vision for a variety of single images, 

single-image SRCNN may be effective in single-particle biomolecular analysis. It is 

expected to improve the quality of single 2D diffraction images from LR to HR, and 

simultaneously solve the problems of noisy observation data and multi-conformational 

states of nanoscale flexible biomolecules. However, a practical problem is incomplete 

and chaotic experimental data with unknown molecular orientations exist from different 

conformations for nanoscale flexible biomolecules, which makes CNN training difficult. 

Preparation of large-scale annotated data in real-world space is essential for supervised 

learning.  

This study is the first investigation of the possibility of using single-image SR techniques 

for X-ray diffraction image improvement to overcome the difficulties associated with the 

SPA of flexible biomolecules with sizes of 100 nm or less. To compensate for the 

incomplete and chaotic experimental data describing nanoscale flexible biomolecules, we 

propose using synthetically-generated labeled data in silico by using molecular dynamics 

simulations and virtual X-ray diffraction image simulator. These virtual diffraction image 

data enable us to employ various SR methods based on the supervised learning framework. 

To avoid excessive artifacts here,31,32 we use the SRCNN model, which is a relatively 

simple network. Training network models using labeled synthetic data has been adapted 
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to a variety of methods and has been reported to improve performance, increase 

generalization performance, and reduce the amount of real-world data used in training.40–

42 If an improved diffraction image is obtained from an individual noisy diffraction image 

by the trained SRCNN model in silico, the applicability of SPA to nanoscale flexible 

biomolecules is dramatically increased. For example, the number of necessary diffraction 

images for the 3D assembled structure reconstruction is reduced. Moreover, the multi-

conformational states of nanoscale flexible biomolecules is evaluated by using improved 

individual 2D diffraction images, which reflect the instantaneous structures of 

biomolecules, as input data of a pipeline for flexible 100-nm biomolecule structural 

analysis schemes, such as the HIO method for 2D real-image reconstruction and the 

diffraction template matching method for estimating plausible 3D structural models (see 

Figure 1).43,44 

In the diffraction template matching method, we retrieve a plausible 3D structural 

model based on a single noisy 2D diffraction pattern by data assimilation concept. The 

basic idea is to compensate for the incompleteness of a single diffraction image to 

reconstruct a 3D structure in virtual space. First, various candidate structural models will 

be prepared by “conformational sampling.” Second, “image matching” will be conducted 

using candidate diffraction images simulated in possible molecular orientations from each 
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candidate structural model. Third, a “plausible” 3D structural model will be selected 

according to image similarity between the experimental diffraction image and syncretic 

candidate diffraction images using a similarity detection algorithm. In this method, the 

estimation accuracy depends on the improvement of the similarity detection of a pair of 

diffraction images. Improving similarity detection performance is one of the most 

important factors contributing to the attainable structural resolution. Then, we focus on 

the demonstration of two key technologies, the similarity detection, and the phase 

recovery to verify the effectiveness of SRCNN in contributing to multi conformational 

analysis here. 

Section 2 describes methods for constructing SRCNN models with data preparation in 

silico and for quantitative evaluation of image improvement. Section 3 presents the main 

results of the diffraction image improvement achieved by the constructed SRCNN model, 

effects of the structural and incident X-ray intensity fluctuations on diffraction image 

improvement, real image analysis by a phase retrieval algorithm, and generalization 

achievable by the constructed SRCNN model. Section 4 discusses the main contributions 

and the limitations of this work and topics for future research.  
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Figure 1. Schematic of a pipeline for 100-nm biomolecule structural analysis with single-

image SRCNN. Data preparation with synthetically generated labeled data between grand 

truth high-resolution (GTHR) images and low-resolution (LR) images are performed in 

silico space using molecular dynamics simulation and diffraction image simulator. 

Training of the SRCNN model is performed using GTHR images and LR images prepared 

in silico space considering shot noise, molecular orientations, multi-conformation, and 

X-ray intensity fluctuations. A SRCNN image will be predicted using a trained SRCNN 

model from the single-particle experimental image. Many kinds of structural analysis 

could be performed using the SRCNN image, such as the template matching method and 
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the HIO method.    

2. METHODS 

To avoid a practical problem for supervised learning of data labeling between LR images 

and HR images, data preparation in silico was actively used here. Two types of synthetic 

diffraction images, the expected mean value (EMV) image as the GTHR images and 

experiment image as the LR images, are prepared using molecular dynamics simulation 

and a diffraction image simulator. Through this ingenuity, we constructed a trained 

SRCNN model that significantly improved the X-ray diffraction image quality for 

nanoscale flexible biomolecules. Then, we conducted studies on X-ray diffraction image 

improvement for ribosome molecules as a test case. A mixed dataset considering realistic 

experimental conditions,45,46 incident X-ray intensity fluctuations, structural fluctuations, 

and various molecular orientations during observation was created in silico and data 

labeling and training was performed by linking with the EMV image and the experiment 

diffraction images (virtual). Supervised learning depended on the training data. For 

example, in a real experiment, the distance between the sample and detector might change. 

If one wanted to consider distance fluctuations, it was better to prepare images with 

different oversampling ratios in advance. Moreover, Gaussian noise from the detector 

might be added. Depending on the individual experimental situation, it was also possible 
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to incorporate factors other than those considered here when preparing data in silico. 

Additionally, the present training model was suitable as a pre-training network model for 

advance training more detailed individual experimental data and to train other molecule 

species. Biomolecules consisted of 20 types of amino acids and had several typical 

packing patterns. When we looked at a small patch of the diffraction image, we saw the 

similarity of the speckle pattern. When implementing patch learning as described later we 

expected some generalization performance, which would be specifically investigated in 

the section on generalization performance. 

2.1. Data preparation and image dataset 

 Here, all diffraction image datasets were prepared by simulation as the following 

procedure. We simulated two types of X-ray diffraction images: EMV images as GTHR 

images and virtual experimental diffraction images as LR images, in which the quantum 

noise effect was considered. The latter were termed the experimental images. These 

diffraction images were prepared using the diffraction image simulator considering the 

curvature of the Ewald sphere described below using the structural model from the 

structural database of PDB. The EMV of photons arriving at a detector pixel of s(k), were 

as follows: 
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𝑠(𝐤) = 𝑠(𝐀𝐡) = 𝑠(𝐀; 𝜉, 𝜑) = 𝐼!𝑟"#$𝜔(𝜉)|𝐹(𝐤)|$.   (1) 

Here, Ii was the incident X-ray intensity and was expressed in photons pulse–1 μm–2, 

rce was the classical electron radius, and F (k) was the structure factor. The k and h 

were the momentum transfer vectors in the molecular fixed coordinate system 

(MFCS) and the detector fixed coordinate system (DFCS), respectively. A was the 

3 × 3 matrix describing the molecular orientation of the sample molecule to the 

incident X-ray beam, which was given in the Eulerian angle (α, β, γ) by the following 

expression: 

𝐀 = 𝐀𝟑(−𝛶)𝐀𝟐(−𝛽)𝐀𝟑(−𝛼)	    (2) 

𝐀𝟑(𝛼) = 8
cos𝛼 −sin𝛼 0
sin𝛼 cos𝛼 0
0 0 1

@ , 𝐀𝟐(𝛽) = 8
cos𝛽 0 sin𝛽
0 1 0

−sin𝛽 0 cos𝛽
@  (3) 

The surface vector of the Ewald sphere 𝐡(𝜉, 𝜑) in DFCS was as follows: 

𝐡(𝜉, 𝜑) = λ'([𝐄 − 𝐀)(𝜑 + π)𝐀$(𝜉)]𝐞) 

= 𝜆'((sin𝜉cos𝜑, sin𝜉sin𝜑, 1 − cos𝜉)*, 𝐞) = (0,0,1)*,   (4) 

where (𝜉, 𝜑) was a polar coordinate. Here, h became 0 at the origin 𝜉 = 0 and 𝜑 =

0. The magnitude of momentum transfer of k was determined by the scattering angle 

of 𝜉 and the incident X-ray wavelength of 𝜆, and the wave number k = |k| Å-1 was 

given by the following equation using ξ = 2θ, where θ was the scattering angle: 
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𝑘 = $
+
sin ,

$
.                 (5) 

𝜔 was the solid angle per pixel and is expressed by the following equation using the 

incident X-ray wavelength λ, molecular length L, scattering angle 𝜉 , and linear 

oversampling ratio σ:  

ω(𝜉) = K +
-.
L
$
cos)𝜉.               (6) 

The EMV diffraction images were simulated with the EMV of s(k) itself without any 

noise effect. For the experiment diffraction images, we simulated the probability of an 

integral number of photons given in the pixel by replacing the function 𝑠(𝐤) with a 

stochastic function 𝑠/(𝐤) that assumed only integral value according to the Poisson 

distribution, because in real experiments, what is measured is an integral number of 

photons, given by the quantum mechanical probability. 

In fact, here, λ = 1 Å corresponds to X-ray energy with 12.4 keV, σ = 1 or 2, and L = 270 

Å. Additionally, the maximum wave number of each simulated diffraction image was set 

to 0.2 Å–1, and the diffraction images corresponding to a 5 Å structural resolution were 

calculated. The EMV diffraction images from 5,120 different molecular orientations, 

which filled the possible molecular orientations evenly, were prepared with an image size 

of 220 × 220 pixels for one structure and used as the EMV image dataset. The experiment 

diffraction images were prepared by adding Poisson noise corresponding to the scattered 
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X-ray intensity to the EMV diffraction images. Noise sources that presented in the actual 

experiment diffraction images, such as inelastic scattering, beam stopping, and detector 

reading noise, were not considered here. 

Considering the wide dynamic range of the diffraction images, as well as possible zero 

values at some pixels, we added one to each pixel value and took the logarithm as a 

preprocessing to obtain tractable numbers. The SRCNN output data were post-processed 

to obtain a normal diffraction image by inverse conversion. 

For systematic model training and evaluation, we employed several subsets of the 

virtual images. The experiment images and EMV images were divided into three non-

overlapping subsets: the training set was used to update network model weight factors 

through back-propagation during the iteration, the validation set was used to monitor the 

loss function in each epoch and stop the iteration, and the test set was used to evaluate 

the trained model based on the Rc score, which is described in detail in a later section. We 

adopted hold-out validation with a ratio of training data to validation data of 2:1. Details 

of these data sets are as follows:  

Training data: EMV images as the GTHR images were created from a set of N = 640 

molecular orientations for each molecular structure. Considering structural fluctuations, 

diffraction images of N molecular orientations were prepared for each conformation with 
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S types; i.e., we prepared N × S EMV images in total. Meanwhile, we prepared 

N × S × I × 5 experiment images as LR images, where I was the number of X-ray 

intensities and 5 the number of randomly generated noise patterns.  

Validation data: The validation data, which were used to monitor the training process 

of each epoch, were prepared similar to the training data, with another set of N = 320 

molecular orientations.  

Test data: Test data were used to evaluate the trained model. The test data were created 

from yet another set of N = 320 orientations (which did not appear in the training process) 

with varying intensities and a single noise pattern.  

In training the SRCNN model, partial images with 44 × 44 pixels were cropped from 

the training and validation images. From the training images, K = 64 patches were 

periodically taken from each image. For the validation images, K = 30 partial images were 

randomly selected from each image.  

 Here, we trained the SRCNN model using various combinations of training and 

validation sets. These combinations of training/validation sets were indexed by Dataset 

ID. Table 1 lists 18 datasets employed here. Dataset 18 was used for hyper-parameter 

optimization. 

2.2. Adopted network model and SRCNN training 
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The SRCNN technique was a method that achieved high accuracy by replacing 

dictionary-based SR with a CNN. Figure 2 provides a diagram of an SRCNN. The 

network was composed of three convolution layers. We examined two different 

architectures: the single-channel (1ch) and the two-channel (2ch) models. The 1ch model 

took gray-scale diffraction image data as an input and output another gray-scale image. 

The 2ch model took a two-channel image as an input. In the first channel in the input, a 

gray-scale image data was stored. In the second channel, the incident X-ray intensity 

value was stored. While there were several ways to define the value of input channel 2 in 

the 2ch model, we used Ii in Eq. (1) here. Our preliminary calculations revealed that the 

1ch model exhibited larger losses than the 2ch model and the loss function of the 

validation data tended to remain high after the loss function of the training data became 

small. Therefore, we employed the 2ch model here. The first layer (f1 × f1 convolution) 

of the SRCNN model corresponded to the operation of “patch extraction of LR image and 

representation,” the second layer (f2 × f2 convolution) corresponded to the operation of 

“embedding a partial image of LR image into the feature vector,” and the third layer 

(f3 × f3 convolution) corresponded to the operation of “searching for the corresponding 

GSHR image from the feature vector of the patch image of LR image.” The network was 

implemented using Keras (ver2.2.4),47 which was a framework for constructing deep 
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learning models. 

 

Figure 2. Two-channel SRCNN model. In the training phase, the partial images extracted 

from a whole diffraction image are used as data-augmentation. LR images with the 

incident X-ray intensity data and the EMV images as GTHR images are used for training 

using mean square error with respect to EMV images for the loss function. In the first 

layer, patch extraction (yellow square) and representation of the LR image is conducted. 

In the second layer, nonlinear mapping from the LR image to the HR image is conducted. 

In the third layer, reconstruction of the HR image is conducted. In the test phase, the 
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whole experiment image is input to the trained SRCNN model together with the intensity 

data, and the whole SRCNN-predicted HR image will be obtained.  

 

The training/validation/test data were prepared as described above and used to train 

and evaluate the SRCNN model using the hold-out method. The mean square error (MSE) 

with respect to the EMV images was adopted for the loss function. For the convolution 

of the intermediate layer, zero-padding was adopted to ensure that the input and output 

image sizes were the same, and a rectified linear unit was used for the activation function 

in the convolution layers. Mini-batch training with a batch size of 128 was performed for 

up to 100 epochs using the early stopping method. The Adam optimizer48 with a learning 

rate of 0.0003 was used for the parameter update. The iteration was terminated when the 

loss function did not improve five times in a row. Once the iteration was terminated, the 

parameter set with the lowest loss value of the validation data was adopted as the trained 

model. In the test phase, an experimental image was given as the input to the trained 

network model, and the SRCNN image as the predicted HR image was obtained as the 

output. Then, the obtained SRCNN images were evaluated by the Rc with respect to the 

corresponding EMV images calculated using the similarity detection algorithm, which 

was described in detail in the next section. 
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2.4 Similarity detection algorithm  

The similarity of a pair of diffraction images was evaluated using the following 

similarity determination algorithm49,50 based on the correlation function.22,51 We 

introduced a noise reduction mechanism to reduce the influence of quantum noise by the 

integral correlation patterns 𝐼",!1(𝑘, 𝛼) in 𝑘 = $
+
sin ,

$
, and α. Here, s was the number of 

observed photons described in Eq. (1), 𝑠̅ was the expected photon number, 𝑁,  was the 

discrete number of pixels on the concentric circles, ξ = 2θ represented the scattering angle, 

and λ was the incident X-ray wavelength. The rotation α of the molecule with respect to 

the incident X-ray axis appeared as a rotation around the center of the diffraction intensity 

image. By considering α, the correlation pattern was obtained immediately to acquire 

360° rotating correlation coefficients to the 2D plane. Here, the correlation pattern cij (ξ, 

α) of a pair of diffraction images I and j was defined by the following equations:  

𝑐!1(𝜉, 𝛼) =
2!"(,,4)

6̅!(,)6"̅(,)
− 1,                 (4) 

𝛹!1(𝜉, 𝛼) =
(
8#
∑ 𝑠! S𝜉,

$9:
8#
T8#'(

:;< 𝑠1 S𝜉,
$9:
8#
+ 𝛼T,         (5) 

𝑠!̅(𝜉) =
(
8#
∑ 𝑠! S𝜉,

$9:
8#
T8#'(

:;< .            (6) 

Furthermore, we defined an integral correlation pattern using the following equations:  

𝐼",!1U𝑘=>, 𝛼V = ∫ 𝑖",!1(𝜉, 𝛼)
,$%
< 𝑠𝑖𝑛𝜉𝑑𝜉 = 𝜆$ ∫ 𝑖",!1(𝑘, 𝛼)𝑘𝑑𝑘

?$%
< ,        (7) 

𝑖",!1(𝑘, 𝛼) =
$9
8#
∑ 𝑐!1(𝜉, 𝛼 + 𝛥𝛼)
$?& ?⁄
A4;'$?& ?⁄ .         (8) 
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By performing normalization with the autocorrelation term of each diffraction image, 

the similarity of the pair of diffraction images was quantified as the 𝑅",!1(𝑘]!1 , �̂�!1) score: 

𝑅",!1(𝑘]!1 , �̂�!1) =
B&,!"(?C !",4D!")

EB&,!!(?C !!,4D!!)EB&,""(?C "",4D"")
.           (9) 

Here, 𝑅",!1(𝑘]!1 , �̂�!1) was denoted as 𝑅" for simplicity. In particular, when image j 

was the corresponding EMV image of image i, we called 𝑅",!1(𝑘]!1 , �̂�!1) the	𝑅" score of 

image i. 

2.5. Gaussian Blur images 

Gaussian Blur (GB) images were created by applying the GB filter to the experiment 

images using the GB function in the OpenCV library. The output image B obtained by 

applying a GB filter Gs(k,l) with kernel 𝑛 × 𝑛 and standard deviation 𝜎 to an input 

image A was written as follows: 

𝐵(𝑖, 𝑗) = ∑ 𝐺-(𝑘, 𝑙)𝐴(𝑖 + 𝑘, 𝑗 + 𝑙)<F|?|F()*+ .

<F|:|F()*+

          (10) 

where 

𝐺-(𝑘, 𝑙) =
(

$9-+
exp K− ?+I:+

$-+
L.                (11) 

The kernel size n and standard deviation s were set to 5 and 1.0, respectively. 
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2.6. Real-space analysis by the HIO method  

Phase retrieval calculation using the HIO method was performed on a 2D diffraction 

image prepared using the following procedure. In this method, the Fourier transform was 

repeatedly performed under real-space and wavenumber space constraints. For an ideal 

diffraction image that satisfied the oversampling condition, the phase was retrieved in the 

wavenumber space, and the real image was reconstructed by performing the above 

iterative calculation. When applied to an actual experimental diffraction image, the 

convergence of the solution was affected by the sphericity of the Ewald sphere and the 

influence of noise. The experiment diffraction images with dimensions of 55×55 pixels 

at σ = 1 were upscaled to 110×110 pixels at σ = 2 using the nearest neighborhood 

interpolation while maintaining the patterns, and phase retrieval was performed using the 

upscaled images. The SRCNN image was predicted by the trained SRCNN model using 

σ = 2 EMV images and upscaled experiment images with dimensions of 110 × 110 pixels. 

A phase retrieval calculation was performed using an SRCNN image as the predicted HR 

image. In each phase retrieval calculation, the support size was set to 55 × 55 pixels in 

the image’s center, 10,000 iterations were performed, and the real image with the 

minimum wavenumber space error was adopted as the reconstructed real-space image. 

Considering the initial phase dependence of the convergent solution, 100 phase retrieval 
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calculations were performed by changing the initial phase. 

3. RESULTS AND DISCUSSION 

3.1. Hyperparameter optimization 

Hyperparameter optimization was performed using the experimental design. To 

improve the generalization performance, using mixed intensity data of various incident 

X-ray densities (dataset 18 in Table 2), 108 combinations of five hyperparameters were 

examined (see Table 1), for the 2ch model by using the hold-out method (300 images for 

training, 60 images for validation, and 100 images for testing). The Rc values of the 

experiment and SRCNN were calculated for each hyperparameter set, and the average Rc 

score 𝑅i"  was calculated for each incident X-ray intensity. To select optimal 

hyperparameter values, ∆𝑅"iii = (𝑅"iii	of	SRCNN) − (𝑅"iii	of	Experiment) was calculated. 

Hyperparameter Searched value 

Filter size: f1 5, 9, 17 

Filter size: f2 1, 3 

Filter size: f3 3, 5, 9 

Set of feature map: n1 64, 128, 256 

Set of feature map: n2 32, 64 
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Table 1. Searched hyperparameter values based on the experimental design. 

Figure S1 presents the hyperparameter optimization results, where the points above 

and below the diagonal line indicate that the diffraction image was improved and 

degraded by the SR model, respectively. The maximum value of ∆𝑅"iii was 0.1598 for f1 

= 5, f2 = 1, f3 = 3, n1 = 256, and n2 = 64. All the results represented in the following 

sections were obtained using these parameter values. 

3.2. Diffraction image improvement by SRCNN 

To evaluate the diffraction image improvement achievable by using an SRCNN, training 

was conducted using various training datasets with different molecular orientations and 

incident X-ray intensities (A: 5×1012, C: 1×1013, E: 5×1013, F: 1×1014 photons pulse–1 

μm–2, corresponding to datasets 1, 3, 5, and 7, respectively, in Table 2). As an example, 

the learning curve for the intensity of 1×1013 photons pulse–1 is shown in Figure S2, 

which confirms that the loss function sufficiently converges during both validation and 

training. Figure 3 presents the results obtained in the test cases at four different incident 

X-ray intensities. The experiment, SRCNN, EMV, and GB images were shown at each 

incident X-ray intensity. Here, the images created in the simulation considering the 

quantum shot-noise effect were called the experiment images. Because the diffraction 

X-ray intensity was a function of the wavenumber with considerable attenuation (i.e., it 
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took a very wide range of values with a long tail), all diffraction images were displayed 

on a log scale. Focusing on the high wavenumber region, the experiment diffraction 

images had zero or single photon counts for most pixels because of insufficient 

diffraction intensity. Moreover, in the experiment images, the continuous speckle 

pattern could not be observed in most areas, except for the central regions of the images. 

However, in the diffraction images improved by the SRCNN, continuous speckle 

patterns could be seen from near the centers of the images, where the diffraction 

intensity was relatively high in the middle depending on the intensity. Moreover, in the 

GB images, continuous speckle patterns were observed near the images’ centers. 

However, the speckle patterns in the GB images appeared to be different from those in 

the EMV images as GTHR images. This suggested that a simple image processing of 

Gaussian blur was not sufficient for structural analysis.  

Data

set 

RMSD [Å]: 

Training/validation

/testing 

Number of 

orientations: 

Training/validation

/testing 

X-ray incident 

intensity  

 Ii [photons pulse–

1 μm–2]: 

Training/validation

/testing 

Number of 

total partial 

images: 

Training/vali

dation  
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1 0/0/0 640/320/320 A/A/A 204,800/48,0

00 

2 5, 10/5, 10/0 640/320/320 A/A/A 409,600/96,0

00 

3 0/0/0 640/320/320 C/C/C 204,800/48,0

00 

4 5, 10/5, 10/0 640/320/320 C/C/C 409,600/96,0

00 

5 0/0/0 640/320/320 E/E/E 204,800/48,0

00 

6 5, 10/5, 10/0 640/320/320 E/E/E 409,600/96,0

00 

7 0/0/0 640/320/320 F/F/F 204,800/48,0

00 

8 5, 10/5, 10/0 640/320/320 F/F/F 409,600/96,0

00 

9 0/0/0 640/320/320 A, B/A, B/A, B 409,600/96,0

00 
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10 5, 10/5, 10/0 640/320/320 A, B/A, B/A, B 819,200/192,

000 

11 0/0/0 640/320/320 C, D/C, D/C, D 409,600/96,0

00 

12 5, 10/5, 10/0 640/320/320 C, D/C, D/C, D 819,200/192,

000 

13 0/0/0 640/320/320 A, C/A, C/A, C 409,600/96,0

00 

14 5, 10 /5, 10/0 640/320/320 A, C/A, C /A, C 819,200/192,

000 

15 0/0/0 640/320/320 E, F/E, F/E, F 409,600/96,0

00 

16 5, 10/5, 10/0 640/320/320 E, F/E, F/E, F 819,200/192,

000 

17 0/0/0 640/320/320 A, C, E/A, C, E/A, 

B, C, D, E, F 

614,400/144,

000 

18 0/0/0 300/60/100 A, C, F, G/A, C, F, 

G/A, B, C, D, E, F, 

384,000/36,0

00 
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G 

A: 5×1012, B: 8×1012, C: 1×1013, D: 3×1013, E: 5×1013, F: 1×1014, G: 1×1015 

Table 2. Diffraction image datasets for the training/validation/test data were prepared for 

the SRCNN model. We prepared a variety of annotated synthetic datasets for 

training/validation/testing. Three different conformations with root mean square 

deviation (RMSD) of 0, 5, 10 Å were prepared. Diffraction images in 640 and 320 

different molecular orientations were prepared for each case. Seven data sets with 

different X-ray incident intensity with A: 5×1012, B: 8×1012, C: 1×1013, D: 3×1013, E: 

5×1013, F: 1×1014, and G: 1×1015 photons pulse–1 μm–2 were prepared. We also show the 

number of partial images for training/validation.
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Figure 3. Diffraction images at incident X-ray intensities of 5×1012, 1×1013, 5×1013, and 

1×1014 photons pulse–1 μm–2 and in different molecular orientations. The experiment 

images, images improved by the SRCNN, EMV images, and GB images are shown, from 

left to right. 

To evaluate the degree of diffraction image improvement quantitatively, the integral 

correlation pattern based on an EMV image was calculated using the similarity detection 

algorithm49,50 and Figure 4 displays the results. Comparing the integral correlation 

patterns of the experiment (i.e., between the experiment and EMV images) and SRCNN 
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images (i.e., between the SRCNN and EMV images), a high correlation line clearly 

appeared in the SRCNN results for all incident intensities. The Rc score, which 

corresponded to the similarity of a pair of diffraction images described in Section 2.4.1, 

was evaluated. The results indicated that the Rc score of SRCNN was higher than that of 

the experiment images at all intensities: 5×1012 (Rc of experiment: 0.0387, Rc of SRCNN: 

0.265, Rc of GB: 0.0898), 1×1013 (Rc of experiment: 0.0830, Rc of SRCNN: 0.327, Rc of 

GB: 0.159), 5×1013 (Rc of experiment: 0.242, Rc of SRCNN: 0.491, Rc of GB: 0.356), and 

1×1014 (Rc of experiment: 0.348, Rc of SRCNN: 0.588, Rc of GB: 0.479). This finding 

indicated that the improved diffraction images obtained by using the SRCNN had patterns 

more similar to the corresponding EMV images than the experiment images to the EMV 

images. Focusing on the GB improvement, the Rc scores of the GB images were higher 

than those of the experiment images. However, they were lower than those of the SRCNN 

images, and the degree of improvement was not high compared to that achieved using the 

SRCNN. 
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Figure 4. Integral correlation patterns at various incident X-ray intensities, from those 

above 5×1012, 1×1013, 5×1013, and 1×1014 photons pulse–1 μm–2, and in different 

molecular orientations between diffraction images. The experiment vs. EMV, SRCNN vs. 

EMV, and GB vs. EMV images are shown from left to right. 

Next, to investigate the molecular orientation dependency of the image improvement, 
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a test was performed on diffraction images of 320 orientations for each intensity using 

the trained SRCNN model. Figure 5 presents the results for four different incident X-ray 

intensities (A: 5×1012, C: 1×1013, E: 5×1013, and F: 1×1014 photons pulse–1 μm–2, 

corresponding to datasets 1, 3, 5, and 7, respectively, in Table 2). Figure 5-A shows the 

Rc scores of the SRCNN images were all higher than those of the experiment images. In 

addition, the Rc scores of the SRCNN images were higher than those of the GB images 

(Figure 5-B). From these results, it was confirmed that the present SRCNN model was 

effective for improving diffraction images with various molecular orientations. 

 

Figure 5. (A) Similarity improvement by SRCNN model. X: Rc score of experiment. Y: 

Rc score of SRCNN. (B) Similarity improvement by GB model. X: Rc score of experiment. 

Y: Rc score of experiment. 

3.3. Effects of structural and incident X-ray intensity fluctuations on diffraction image 

improvement  
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We investigated the effects of the structural fluctuations of the sample biomolecules 

and incident X-ray intensity fluctuations, both of which should be considered in single-

particle experiments, on the diffraction image improvement achieved using the SRCNN. 

First, we studied the effects of structural fluctuations on the diffraction image 

improvement. Structural-mixed training was performed using the diffraction image 

datasets (datasets 2, 4, 6, and 8 in Table 2) that involved two types of structures that 

differed from the reference structure by approximately 5 and 10 Å in root-mean-square 

deviation (RMSD). Subsequently, a test was performed using diffraction images of the 

reference structure (RMSD = 0 Å) that were not used in the training. Figures 5-A and 5-

B show the results of the structurally mixed training at incident X-ray intensities of 5×1012 

photons pulse–1 μm–2 and 1×1013 photons pulse–1 μm–2. Structurally mixed training was 

conducted at all intensities, and the Rc score of the SRCNN was higher than that of the 

experiment. Thus, it was concluded that the constructed SRCNN model was tolerant of 

structural fluctuations to some extent at a resolution of 5 Å.  
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Figure 6. Results of learning considering structural and incident X-ray intensity 

fluctuations. X: Rc score of experiment. Y: Rc score of SRCNN. (A) Test of structural 

fluctuation using dataset 2, which contained mixed data of RMSD = 5 and 10 Å to 

improve the diffraction image of RMSD = 0 Å at 5×1012 photons pulse–1 μm–2. (B) Test 

of structural fluctuation using dataset 4, which contained mixed data having RMSD = 5 

and 10 Å, to improve the diffraction image of RMSD = 0 Å at 5×1013 photons pulse–1 

μm–2. (C) Test of incident X-ray intensity fluctuation using dataset 13, which was a mixed 

dataset of diffraction images at 5×1012 and 1×1013 photons pulse–1 μm–2. (D) Test of 

structural and intensity fluctuations using dataset 14, which was a mixed dataset of RMSD 

= 5 and 10 Å to improve the diffraction image of an RMSD to 0 Å at 5×1012 photons 
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pulse–1 μm–2 and 5×1013 photons pulse–1 μm–2. 

Next, we investigated the effects of the incident X-ray intensity fluctuations on the 

diffraction image improvement. X-ray intensity-mixed training was performed using the 

diffraction image datasets (datasets 9, 11, 13, and 15 in Table 2) that differed in incident 

X-ray intensity by at most three times. Figure 6-C presents the results of tests performed 

with two different intensities using a mixed-intensity SRCNN training model. At each 

intensity, the Rc scores with all 320 different orientations were improved. The same 

tendency was observed in the training of mixed intensity data at other intensities (datasets 

9, 11, and 15 in Table 2). The above results indicated that the SRCNN model constructed 

in the presence of various incident X-ray intensities was effective for improving images 

regardless of the molecular orientation. 

Finally, we investigated the effects of a more realistic experiment situation in which 

both structural and incident X-ray intensity fluctuations existed simultaneously. The 

structural/incident X-ray intensity fluctuation mixing diffraction image datasets (datasets 

10, 12, 14, and 16 in Table 2) were used to perform the structural/incident X-ray intensity-

mixing training. Figure 6-D depicted the results of testing for two different intensities 

using a mixed training model. At all intensities, the Rc scores were improved at all 

molecular orientations of the reference structure, which was not used in the training.  
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In summary, an effective single-image SRCNN model was constructed in the presence 

of structural and incident X-ray intensity fluctuations by using simulation data that reflect 

the actual situation of single-particle experiments. 

3.4. Improvement of intermediate-intensity diffraction images not included in training 

Because the incident X-ray intensity continuously changed by up to three orders of 

magnitude in an actual experiment, this section addresses whether the SRCNN model 

constructed for an intermediate-intensity diffraction image not included in the training 

data was effective. The intermediate-intensity diffraction image improvement was 

performed using the incident X-ray mixed-intensity dataset that did not include some 

intensity data (dataset 18 in Table 2), which mimicked the actual XFEL experimental 

situation. The training data included intensities A: 5×1012, C: 1×1013, and E: 5×1013 

photons pulse–1 μm–2 but did not include intensities B: 8×1012, D: 3×1013, and F: 1×1014 

photons pulse–1 μm–2. Figure 7 shows the results of testing all incident X-ray intensities 

using a training model in which missing mixed-intensity data training was performed. 

The images with intensities B, D, and E, which were not involved in the training data, 

were improved by the trained SRCNN model to the same extent as those with intensities 

A, C, and E. Thus, the constructed SRCNN model was effective for improving 

intermediate-intensity diffraction images not included in the training. We demonstrated 
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that the SRCNN model constructed in this manner was effective for X-ray diffraction 

image improvement under actual experimental conditions. 

 

Figure 7 Similarity improvement of the intermediate X-ray intensity data set not included 

in the training. X: Rc score of experiment. Y: Rc score of SRCNN. The X-ray incident 

intensity contained in the training data set is 5×1012, 1×1013, and 5×1013 photons pulse–1 

μm–2, whereas that not contained in the training data set is 8×1012, 3×1013, and 1×1014 

photons pulse–1 μm–2. 

3.5. Conversion of diffraction image improvement into incident X-ray intensity 

The trained SRCNN model’s performance was evaluated by converting the diffraction 

image improvement into a comparable incident X-ray intensity. Figure 7 shows the 
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constructed SRCNN model increased Rc for various incident X-ray intensities. The 

increase in Rc indicated that the noise in the observed diffraction images was reduced by 

the SRCNN and that the improved images were closer to the corresponding EMV images. 

The degree of noise in the observed diffraction images depended on the diffraction image 

intensity, which in turn depended on the molecular size and incident X-ray intensity.52 

The following analysis was conducted to convert the increase in Rc into an increase in 

incident X-ray intensity. The averages and variances of the Rc scores of the experiment 

images were calculated for 320 different molecular orientations at various incident X-ray 

intensities. Then, the Rc versus incident X-ray intensity conversion curve was constructed 

(see Figure 8-A), which also included the standard deviation with error bars centered on 

the mean Rc score of the experiment. For the Rc versus incident X-ray intensity conversion 

curve, the regression curve was obtained by fourth-order polynomial fitting using the 

function f(x) = ax4 + bx3 + cx2 + dx + e. The fitting parameters were obtained as a = –

0.011959, b = 0.64769, c = –13.042, d = 115.95, and e = –384.65. 
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Figure 8. (A) Conversion between Rc vs. incident X-ray intensity with Ii on a log scale. 

X: Log10(Ii). Y: Rc score of SRCNN. (B) Improvement ratio of the incident X-ray intensity 

between the SRCNN and Experimental results. X: Log10(Ii): Experiment; Y1: Log10(Ii): 

SRCNN; Y2: SR/EX ratio, which is Ii: SRCNN/Ii: Experiment. 

Using the X-ray mixed-intensity training results (see Figure 7), 𝑅i", which was the 

average Rc obtained using the SRCNN, was calculated for each intensity. Subsequently, 

𝑅i" was converted into the incident X-ray intensity using the Rc versus incident X-ray 
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intensity conversion curve. Figure 8-B presents the resulting improvement ratios with 

black dots and Ii of SRCNN/Ii of the experiment = SR/EX shown by the red bar as a 

function of the X-ray intensity of the experiment image. According to SR/EX, the lower 

the incident X-ray intensity, the higher the improvement rate. Focusing on the intensities 

of 5×1012 to 1×1013 photons pulse–1 μm–2 (three red columns from the left in Figure 8-B), 

which could be obtained in the current XFEL facilities, the improvement rate was 

comparable to an incident X-ray intensity of five to seven times that observed in the 

context of experimental observations, which was approximately an order of magnitude 

higher. The constructed SRCNN model proved capable of improving image quality to the 

extent that the obtained images were comparable in quality to diffraction images with an 

intensity approximately an order of magnitude higher than that of the original images. 

Thus, we succeeded in demonstrating the effectiveness of the proposed method on the 

similarity detection between diffraction images for nanoscale flexible biomolecules, 

whose analysis was at the limit of what was achievable through XFEL experiments 

currently. By using the predicted SRCNN image in the template matching method, it was 

expected that the more accurate 3D structural model was estimated. 

3.6. Improvement of the oversampling ratio and real image analysis 

We investigated whether the oversampling ratios of diffraction images could be 



 42 

improved by the SRCNN model and whether the real images could be recovered using 

the HIO algorithm for phase retrieval. In single-particle coherent diffraction imaging, a 

real image was obtained by conducting oversampling and phase-retrieval calculations. 

However, a major issue in single-particle structure analysis of nanoscale flexible 

biomolecules was the insufficient diffracted X-ray intensity per pixel solid angle. 

Oversampling was the process of sampling at a frequency that was higher than the 

Nyquist frequency in the diffraction image. To perform phase retrieval calculations for an 

experiment diffraction image, it was necessary to measure the diffraction image with a 

high oversampling ratio (linear oversampling ratio σ = 4), and this rigorous experiment 

condition accelerated the lack of diffraction intensity per pixel solid angle. If a finer 

diffraction image that satisfied the oversampling condition was obtained by the SRCNN 

model from an experiment diffraction image at a low oversampling ratio, i.e., σ = 1, it 

would dramatically relax the strict experiment conditions. The SRCNN model was trained 

by using the experiment diffraction images at σ = 2, which were obtained by upscaling 

the size of the experiment diffraction images at σ = 1 twice, which did not satisfy the 

phase retrieval condition, using the nearest neighborhood interpolation while retaining 

the patterns of the original images. The EMV images as GTHR images at σ = 2, which 

satisfied the phase retrieval condition, were used as supervisory data.  
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Figure 9. Upper row of A-F: diffraction images used as inputs for the phase retrieval 

calculations in the EMV, SRCNN, Projection image, and experiment approach, from 

upper left to lower right. Lower row of A-F: real-space images obtained by phase retrieval 

calculation, which have the maximum real-space C. values compared with G of the 
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electron density projection image, as shown in the electron density plots. The error values 

in k-space and real-space obtained by HIO method are also shown for the cases of (H) 

1×1014 photons pulse–1 μm–2 and (I) 5×1012 photons pulse–1 μm–2. 

Figure 9 shows the results of the phase retrieval calculations using four types of 

diffraction images, the EMV image, the SRCNN image, the experiment image and the 

projection image, which was FT image of the 2D electron density map. The projection 

image in k-space had perfect point symmetry due to the lack of curvature of Ewald sphere 

(Figure 9-D). The phase retrieval analysis was performed 100 times using the HIO 

method with different initial phase, each consisting of 10,000 iterations. The lower parts 

in Figures 9-A, B, C, D, E, and F present the best real-space images obtained by the phase-

retrieval calculation for each case. In the case of the projection image (see Figure 9-D), 

we obtained the reconstructed real-space image, which was almost equal to the electron 

density plots (Figure 9-G). However, in the case of the EMV image, the reconstructed 

real-space image was blurred (see Figure 9-A) compared with the electron density image 

if there was no noise. These results indicated that it was inferred that the effect of the 

curvature of the Ewald sphere affected the phase retrieval calculation in the EMV, 

SRCNN, and experiment in this condition. Moreover, this tendency was confirmed from 

the error values obtained by HIO calculations (see Figures 9-H and I). 
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We look at the results of the SRCNN images and the experiment images, keeping in 

mind that it included the effects of the curvature of the Ewald sphere on the HIO method. 

Figure 9-B, E and 9-C, F show the results of the phase retrieval calculations in the cases 

of 1×1014 and 5×1012 photons pulse–1 μm–2, respectively. In Figures 9-E and 9-F, the case 

of upscaled experiment diffraction images with σ = 1 clearly did not work well because 

it did not satisfy the oversampling conditions, and the molecular shape was not retrieved 

correctly. In contrast, the real-space images obtained from the SRCNN images (Figure 9-

B and 9-C) were similar to the electron density projection image, indicating that the phase 

retrieval calculation worked well.  

It was concluded that the constructed SRCNN model improved diffraction images to 

the extent that phase retrieval calculation was performed, and finer images could be 

recovered. These results indicated that it was possible to reconstruct real images by using 

the improved SRCNN image from the observed diffraction image, which did not satisfy 

the phase retrieval conditions. Consequently, it became possible to conduct experimental 

measurements with smaller oversampling ratios, which could increase the number of 

measured photons per pixel. We successfully demonstrated that it was possible to obtain 

an actual image from an observed diffraction image under the condition that σ = 1 was 

satisfied with an incident X-ray intensity of 5×1012 photons pulse–1 μm–2 through SRCNN 
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analysis in the case of ribosomes. 

 We succeeded in demonstrating that a plausible real image could be recovered by 

phase retrieval for an experiment diffraction image that did not satisfy the phase retrieval 

conditions by applying the constructed SRCNN model to the experiment diffraction 

image to estimate a finer pattern. Our proposed scheme for X-ray diffraction image 

improvement was advantageous in that the oversampling ratio could be improved because 

we used the GTHR images for supervised training of SRCNN model in silico in various 

molecular orientations and conformations.  

3.7 Generalization achievable by the SRCNN model with respect to molecular species 
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Figure 10. Improvement of the diffraction images of different molecular species by the 

constructed SRCNN model. From left to right: 70S ribosome, 80S ribosome, and β-

galactosidase. Top row: similarity improvement. X: Rc score of experiment; Y: Rc score 

of SRCNN. The EMV, SRCNN, and experiment diffraction images are also shown, from 
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top to bottom. 

Finally, we tested the constructed SRCNN model for different molecular species. The 

SRCNN model described in Section 2.5 was trained using diffraction images of the 70S 

ribosome. Then, we applied the same model to the experiment diffraction images of other 

molecular species, namely, the β-galactosidase and 80S ribosomes. Figure 10 shows the 

diffraction images were improved for all molecular species at all incident X-ray 

intensities with almost all molecular orientations. In particular, the application to the 80S 

ribosome resulted in an improved diffraction image compared to that of the 70S ribosome. 

In contrast, molecular orientation dependency was observed in the diffraction image 

improvement of β-galactosidase, and Rc was relatively broadly distributed at each 

intensity because β-galactosidase had a flat elliptical sphere. Further improvement of the 

generalization performance for molecular species is a subject of future studies. Because 

the speckle size of the diffraction image was inversely proportional to the molecular size, 

some ingenuity was required to perform training of mixed molecular species data of 

various sizes. For example, it was conceivable to learn diffraction images using images 

standardized by the reciprocal of the molecular size; alternatively, it was possible to 

perform training in which the molecular size was given as an additional input parameter 

of the model. 
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4. Conclusion 

Here, we constructed a practical SRCNN model by data augmentation in a virtual 

space by using simulation data assuming actual experimental conditions. We showed that 

the constructed SRCNN model could be applied to diffraction images of all molecular 

orientations with three-fold X-ray intensity fluctuations and 10 Å structural fluctuations. 

The constructed SRCNN model improved the quality of single noisy X-ray diffraction 

image under actual experimental conditions, i.e., if the sample molecule had various 

conformational states and the incident X-ray intensity changed with each measurement. 

The diffraction image improvement rate was quantitatively evaluated using the similarity 

with the EMV diffraction image as a standard. We showed that the diffraction image 

improvement by the present SRCNN model corresponded to an increase in the incident 

X-ray intensity by three to seven times in the context of experimental observations.  

We also confirmed that the SRCNN model not only contributes to noise reduction, but 

is also effective at improving the oversampling ratio. The real-space image analysis shows 

that the proposed SRCNN model not only amplifies the intensity, similar to the GB 

approach, but is also effective at reproducing the fine pattern of the diffraction image. It 

is expected that improving the oversampling ratio is a powerful approach because it 



 50 

enables relaxation of the experimental conditions by the Nyquist frequency observation. 

Because this method alleviated the harsh experimental conditions required by the phase 

retrieval algorithm, it facilitated elucidation of the structures and dynamics of nanoscale 

flexible biomolecules and accelerated drug discovery. 

In conclusion, single-image SR was an effective method for improving X-ray coherent 

diffraction image quality while maintaining the individuality of diffraction images that 

reflected the multi-conformational states of biomolecules. Because the proposed method 

enabled the measurement of low oversampling ratios, it relaxed the rigorous experiment 

conditions and expanded the applicability of SPA to nanoscale flexible biomolecules. By 

introducing the SRCNN model at the beginning of the structural analysis pipeline (see 

Figure 1), it was expected that the applicability of the existing SPA methods will be 

greatly expanded. 

We confirmed that the results of two key techniques, the similarity detection between 

pair of diffraction images and the phase recovery, improved its accuracy by using the 

single improved 2D images. The improvement of the similarity value led to improving 

the estimation accuracy of the plausible 3D structure by the template matching method. 

Moreover, the improved oversampling ratio allowed observations at the Nyquist 

frequency and relaxed the harsh experimental conditions. The improvement of the 
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diffraction image by SRCNN dramatically enhanced the effectiveness of one diffraction 

image in which the individuality of biomolecules appeared. 

Regarding the limitations of this work, the constructed SRCNN model depended on 

the training datasets because of supervised learning. We believed that we needed to 

further augment our training data considering a variety of molecular species and 

realistically-simulated experimental data. Although the current SRCNN model was not 

sufficient, we expected that the pre-trained SRCNN model conducting supervised 

learning in silico could be applied to real experimental data by combining it with real-

world data. For example, we believe it was necessary to incorporate the beam stop region 

of the detector, Gaussian-like electronics noise of the detector, and fluctuations in the 

geometry of the detector and the sample into the learning process. Also, it would be 

necessary to examine the difference in performance of the methods other than SRCNN, 

including unsupervised methods, to see which methods were effective in improving 

XFEL images. Additionally, it was necessary to develop a workflow in which various 

structural analysis methods were organically combined to construct a structural analysis 

pipeline for flexible 100-nm biomolecules. Therefore, high-performance computing 

could be used with parallel processing for an artificial intelligence-driven big data 

analysis system linked with single-particle experimental measurements. 
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Supporting Information 

The Supporting Information is available free of charge. The contents are 

"Hyperparameter optimization results", "learning curve of single intensity training", and 

"Protocol for the MD simulation of 70s ribosome". 

Data and Software Availability 

The software GROMACS is publicly available under academic license for research 

(https://www.gromacs.org). Keras is publicly available under open source software 

(https://github.com/keras-team/keras/releases/tag/2.4.0). The molecular operating 

environment is available as paid software   

(https://www.chemcomp.com/Products.htm) All relevant data are shown in figures, 

listed in tables, or included in the Supporting Information. The datasets of 18 in table2 

and the constructing model that is presented in Figure7 can also be accessed at 

https://github.com/TokuhisaAtsushi/Improvement-of-X-ray-diffraction-image-using-

SRCNN.  
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