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Hybrid or “extended” symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT’s
treatment of dispersion with better-performing alternatives, while at the same time extending
two-body (dimer) SAPT to a many-body treatment of polarization using a self-consistent charge-
embedding procedure. The present work presents a systematic study of how XSAPT interaction
energies and energy components converge with respect to the choice of Gaussian basis set. Although
errors can be reduced in a systematic way using correlation-consistent basis sets, similar performance
at lower cost is obtained using Karlsruhe basis sets, and we introduce new versions with limited
augmentation (diffuse functions) that are even more efficient. Pople-style basis sets, which are even
more efficient, often afford good results if a large number of polarization functions are included.
The dispersion models used in XSAPT afford much faster basis-set convergence as compared to
the perturbative description of dispersion in conventional SAPT, meaning that “compromise” basis
sets (such as jun-cc-pVDZ) are no longer required and benchmark-quality results can be obtained
using basis sets of triple-ζ quality. The use of diffuse functions proves to be essential, especially for
the description of hydrogen bonds. The “δ(Hartree-Fock)” correction that accounts for high-order
induction can be performed in double-ζ basis sets without significant loss of accuracy, leading to a
mixed-basis approach that offers 4× speedup over the existing (cubic-scaling) XSAPT approach.

1 Introduction

Noncovalent interactions are ubiquitous in nature and
drive important chemical processes including crystal
packing,1–5 protein folding,6–10 and host–guest binding in
pharmaceuticals,11–14 and are important to soft materials
of interest in materials science applications.15–17 Despite
their prevalence, noncovalent forces are often misunder-
stood by chemists.18–20 The framework of symmetry-
adapted perturbation theory (SAPT)20–26 offers an ac-
curate and systematic ab initio approach to noncova-
lent interaction energies, including an energy decomposi-
tion into physically-meaningful components: electrostat-
ics, Pauli repulsion, induction, and dispersion.27–29 This
decomposition is useful for obtaining physical insight that
is backed by reliable calculations.11,19,20,30–36 The SAPT
energy decomposition is inherently better separable than
methods based on supramolecular density functional the-
ory (DFT)37–39 and can be used to develop physically
meaningful force fields.1,14,40,41

The most widely used variant of SAPT, known as
SAPT0,25,42 combines Hartree-Fock (HF) wave functions
for the isolated monomers (as zeroth-order states) with
second-order perturbation theory for the intermolecu-
lar Coulomb potentials.22,25 When used in conjunction
with Kohn-Sham (KS) density functionals with correct
asymptotic behavior, intramolecular electron correlation
can be incorporated by substituting the KS determi-
nant for the HF one, in a method that we have called
SAPT0(KS).20,42 The use of asymptotically-correct func-
tionals is crucial and the SAPT0 formalism should not be
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used with arbitrary density functionals.42–44 With that
caveat, both traditional SAPT0 and SAPT0(KS) afford
semiquantitative results at O(N5) cost.25,42 The accu-
racy of both methods is limited by the accuracy of the
dispersion interactions, which are not quantitative within
the “uncoupled” second-order approximation that char-
acterizes SAPT0,45–47 and which is similar to second-
order Møller-Plesset perturbation theory (MP2).48,49

To obtain quantitative accuracy, second-order disper-
sion must be replaced by better-performing alternatives.
This has led to development of MP2 variants including
MP2C46 and MP2D,47 as well as DFT-SAPT.23,24 These
methods are much more accurate than SAPT0 but retain
that method’s O(N5) cost. For MP2C and DFT-SAPT,
a density fitting approximation is required in order to
obtain fifth-order scaling.50,51

The “extended” (X)SAPT approach follows a some-
what similar strategy,20 replacing second-order dis-
persion with either ab initio dispersion potentials
(XSAPT + aiD)48,52–54 or else with a many-body disper-
sion model (XSAPT + MBD).55,56 The latter approach
is currently the best-performing variant of XSAPT,20,55

and is the one used herein. Unlike any of the aforemen-
tioned methods, XSAPT incurs only O(N3) cost, and it
can furthermore be extended to clusters of molecules us-
ing a self-consistent charge embedding to capture non-
additive polarization effects.54,56–59 For large systems,
the monomer-based nature of XSAPT calculations makes
this approach more affordable even than supramolecular
DFT.52,54,55

Some limited basis-set testing of XSAPT methods has
been reported in previous work,42,54,55,60 but only for to-
tal interaction energies. Herein, we also examine con-
vergence of individual energy components, which allows
us to consider whether earlier tests may have benefited
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from error cancellation amongst energy components that
might exhibit different convergence behavior. The basis-
set dependence of traditional SAPT has also been care-
fully evaluated,25 but the especially slow convergence of
the dispersion energy in the traditional approach means
that those tests are not directly applicable to XSAPT.
Moreover, because XSAPT was designed for large sys-
tems, we want to test Pople and Karlsruhe basis sets
that are commonly used for large systems, whereas small-
molecule SAPT calculations have generally been limited
to Dunning correlation-consistent basis sets. These tests
allow us to consider whether hybrid basis-set combina-
tions (in which different energy components are evaluated
in different basis sets) might further improve the efficacy
of XSAPT calculations. Such hybrid approaches take
advantage of the inherent separability of the (X)SAPT
interaction energy

2 Theory

The XSAPT formalism48,57,58 and the XSAPT + MBD
method55,56 have been described in previous work, in-
cluding a recent review.20 For completeness, these meth-
ods are briefly summarized below.

2.1. SAPT0(KS). The starting point for XSAPT is
second-order SAPT0(KS) for a dimer, for which the total
interaction energy (Eint) is expressed as48,54

ESAPT0
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+ E
(2)
disp + E

(2)
exch-disp + δEHF

(1)

Superscripts indicate orders in intermolecular perturba-
tion theory but we drop these henceforth, setting Eelst ≡
E

(1)
elst (electrostatics) and Eexch ≡ E

(1)
exch (exchange or

Pauli repulsion). The total induction and dispersion en-
ergies are defined, respectively, as

Eind = E
(2)
ind + E

(2)
ind-disp + δEHF (2)

and

Edisp = E
(2)
disp + E

(2)
exch-disp . (3)

The final term in eq. 1, which appears also in eq. 2, is
a so-called “δHF” correction for higher-order induction
effects,20,22 defined as

δEHF = ∆EHF
int −

(
E

(1)
elst + E

(1)
exch + E

(2)
ind,resp

+ E
(2)
exch-ind,resp

)
.

(4)

Here, ∆EHF
int is the counterpoise-corrected HF interac-

tion energy. The two second-order quantities in eq. 4 are
response (“resp”) analogues of the second-order terms in
eq. 2, and these require the solution of coupled-perturbed

HF equations.61 For SAPT0(KS) calculations, the first-
and second-order SAPT terms in eq. 4 should be com-
puted at the HF level even if the corresponding terms
in eq. 1 are computed based on KS orbitals.42 Notably,
δEHF is the only term in eq. 1 that requires self-consistent
field (SCF) iterations in a dimer basis set, which becomes
a bottleneck for large monomers.

The accuracy of SAPT0(KS) interaction energies de-
pends critically on the use of asymptotically-correct
exchange-correlation functionals.20,42,43 Long-range cor-
rected (LRC) functionals62–65 offer a simple means to
enforce this constraint but the range separation pa-
rameter must be tuned separately for each monomer,
in order to obtain correct asymptotics.42–44 To this
end, we use the LRC-ωPBE functional64 combined
with the “global density-dependent” (GDD) tuning
procedure.42,66 As compared to tuning based on the ion-
ization energy criterion,43 GDD-tuned SAPT0(KS) and
XSAPT + MBD results are essentially identical.42

2.2. XSAPT. The XSAPT approach uses a self-
consistent charge embedding procedure based on the vari-
ational “explicit polarization” (XPol) formalism.56–58,67

In this approach, SCF wave functions for the monomers
are computed in the presence of wave function-derived
atomic point charges. For this purpose we use Charge
Model 5 (CM5),68 whose efficient implementation for
XSAPT calculations is described in Ref. 56. CM5 charges
are based on the Hirshfeld atomic charge model proce-
dure but introduce parameters in an effort to obtain more
accurate dipole moments.

The XSAPT + MBD approach method starts from the
charge-embedded XPol version of SAPT0(KS) but re-
places the second-order dispersion energy (eq. 3) with
a variant of the range-separated and self-consistently
screened MBD (or “MBD@rsSCS”) model developed by
Tkatchenko and co-workers,69,70 although the original
approach must be modified at short range for use with
SAPT.55,56 For a dimer system, this completes the spec-
ification of the XSAPT + MBD method.

For a system composed of more than two monomers,
the XSAPT interaction energy is20

EXSAPT
int =

∑
A,B>A

(
EAB

elst + EAB
exch + EAB

disp + EAB
ind

+ δEAB
HF

)
+ EPW

pol + EMB
pol

(5)

where the summand in parentheses is the SAPT0(KS) in-
teraction energy for dimer AB, meaning eq. 1 (with MBD
replacing second-order dispersion) but without charge
embedding. The final two terms in eq. 5, EPW

pol +EMB
pol , are

the pairwise and many-body polarization energies. The
pairwise polarization energy is defined as

EPW
pol =

∑
A,B>A

[
EXSAPT

AB (AB)− ESAPT
AB

]
(6)
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where the term in square brackets is the difference be-
tween the charge-embedded energy for dimer AB and
the SAPT energy computed without charge embedding.
The many-body polarization energy is

EMB
pol =

∑
A,B>A

[
EXSAPT

AB (AB · · ·N)−EXSAPT
AB (AB)

]
(7)

where EXSAPT
AB (AB · · ·N) is the energy of dimer AB

embedded in an environment of atomic charges corre-
sponding to the entire supersystem AB · · ·N , whereas
EXSAPT

AB (AB) is the same dimer’s energy when embed-
ding charges are included only on monomers A and B.
Thus EXSAPT

AB (AB) is no different from a dimer XSAPT
calculation performed on AB in isolation from the rest
of the supersystem.

3 Computational Details

3.1. XSAPT Methods. All calculations were per-

formed using Q-Chem v. 5.71 Integral and shell-pair
thresholds were set to 10−12 a.u., the SCF convergence
threshold was set to 10−7 Ha, and the SAPT and XSAPT
calculations use the “projected” basis set.57,58 The lat-
ter is an alternative to the dimer basis set that is tra-
ditionally used to compute monomer wave functions for
SAPT,72 but in clusters with more than two monomers
this would entail a pairwise SCF cost. In the projected-
basis approach, each monomer’s SCF wave function is
computed in the monomer basis but then a pseudocanon-
icalized dimer basis is used for the subsequent pairwise
SAPT calculations.57,58

Most calculations reported here are performed at the
XSAPT + MBD level of theory55 but some tests will be
reported using XSAPT + aiD3,48,54 where “aiD3” de-
notes the third-generation ab initio dispersion poten-
tial developed by Lao and Herbert.54 The performance
of XSAPT + aiD3 is marginally better than that of
the second-generation version (XSAPT + aiD2),53 with
slightly better coverage of π-stacking in the training
set used to parameterize aiD3. These methods out-
perform the first-generation version,52 which we do not
recommend.53,54

3.2. Density Functionals. For SAPT0(KS) and
XSAPT calculations, the range separation parameter in
the LRC-ωPBE functional must be tuned individually
for each monomer.42–44 We do this at the LRC-ωPBE/
def2-TZVP level, then use that value in all subsequent
calculations regardless of basis set. (The GDD-tuned
values of ω, for each of the systems considered in this
work, can be found in Tables S1–S7 of the Supporting
information.) Previous work has shown that tuned val-
ues of ω are sensitive to the fraction of short-range exact
exchange but for a given density functional, these values
are rather insensitive to the choice of basis set.73 The

SG-1 quadrature grid74 is used for LRC-ωPBE.

3.3. Basis Sets. A standard complement of Pople-
style basis sets is tested, ranging in quality up to 6-
311++G(3df,2pd).75 In modern electronic structure the-
ory these are often regarded as low-quality basis sets yet
they are still widely used, in part because certain quan-
tum chemistry programs (including Q-Chem) have been
optimized to take advantage the use of sp functions in
Pople basis sets (i.e., s and p functions with a common
exponent). If so, then Pople basis sets are considerably
more efficient per unit basis function as compared to
other alternatives. Karlsruhe (Ahlrichs) “def2” basis sets
are also tested,76,77 up to quadruple-ζ quality, as are the
correlation-consistent basis sets cc-pVXZ78 and aug-cc-
pVXZ,79 for X = D, T, and Q.

In addition to these well-established families of basis
sets, we also tested “calendar” versions of the correlation-
consistent basis sets,80 in which diffuse functions are sys-
tematically removed starting from aug-cc-pVXZ. (These
basis sets were added to Q-Chem as part of the present
work.) The jul-cc-pVXZ basis sets (for X = D, T, or Q)
consist of cc-pVXZ for hydrogen and aug-cc-pVXZ for
other atoms, meaning that there are no diffuse functions
on hydrogen. The jun-cc-pVXZ basis sets additionally
remove the diffuse functions with highest angular mo-
ment from each non-hydrogen atom. We note that jun-
cc-pVDZ has been suggested as a compromise basis set
for SAPT0 calculations,25,42 exploiting the slow basis-set
convergence of the dispersion energy to limit the intrinsic
overestimation of dispersion by second-order perturba-
tion theory. This is a compromise because electrostatics
is not generally converged at the double-ζ level,42,54 but
overall errors in SAPT0 interaction energies are worse
in aug-cc-pVDZ and larger basis sets, as compared to
jun-cc-pVDZ,25 suggesting that it is more important to
control the error in second-order dispersion rather than
to converge the electrostatics.

We also modified the Karlsruhe basis sets to delete dif-
fuse functions in an analogous manner. As compared to
the correlation-consistent basis sets, the Karlsruhe basis
sets contain fewer diffuse functions; for example, def2-
SVPD contains a diffuse s function and a set of diffuse
d functions for second-row atoms, but no diffuse p func-
tion, and for hydrogen there is a set of diffuse p func-
tions but no diffuse s function.77 As a first truncation,
and in analogy to to jul-cc-pVXZ, we delete all of the
diffuse functions on hydrogen, forming what is tradition-
ally called a “heavy-augmented” (“ha”) basis set. The
basis set consisting of def2-SVP for hydrogen and def2-
SVPD for other atoms will therefore be denoted def2-ha-
SVP. As a second step, and in analogy to jun-cc-pVXZ,
we delete the highest angular momentum set of diffuse
functions on each non-hydrogen atom. For second-row
atoms, this leaves only minimal augmentation (“ma”)
with a diffuse s function, so we refer to these basis sets
as “def2-ma-”, e.g., def2-ma-SVP. This paradigm is sim-
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ilar in spirit to partially-augmented Karlsruhe basis sets
tested previously by Zheng et al.,81 although the diffuse
exponents differ from that work because Ref. 81 did not
start from the standardized Karlsruhe diffuse exponents
that were introduced in Ref. 77. The latter serve as the
starting point for our def2-ha and def2-ma basis sets. Ex-
ponents and contraction coefficients for these new basis
sets are provided in the Supporting Information.

3.4. Data Sets. We will use the S66 data set of non-

covalent dimers82 for high-throughput evaluation of a
wide variety of basis sets. This database was developed
to sample various types of noncovalent interactions and
benchmark interaction energies were reported in Ref. 82
at the level of coupled-cluster theory with single, double,
and perturbative triple excitations [CCSD(T)], extrap-
olated to the complete basis set (CBS) limit. Per the
analysis in Ref. 82, the 66 dimers in this test set are di-
vided into three subsets: hydrogen-bonded dimers, which
are characterized by the condition |Eelst| ≥ 2|Edisp|;
dispersion-dominated dimers, for which |Edisp| ≥ 2|Eelst|;
and dimers of mixed-influence interactions, where nei-
ther of these conditions is met. It is useful to group
the complexes in this way because the hydrogen-bonded
subset (containing 23 dimers involving water, methanol,
acetic acid, and other polar monomers) places stringent
demands on the basis set as compared to the other S66
systems. The dispersion-bound subset contains 23 dimers
involving monomers such as benzene, pyridine, and ethy-
lene.

We will also consider three data sets containing ions:83

AHB21, which consists of 21 anion–neutral hydrogen-
bonded complexes with ions including F−, Cl−, N−

3 ,
and SH−; CHB6, consisting of cation–molecule com-
plexes of Na+, Li+, and K+ with water and benzene;
and finally IL16,83 which is a set of 16 ion pairs rep-
resenting constituent molecules or constituent moieties
of ionic liquids.84 Benchmark interaction energies at the
CCSD(T)/CBS level are taken from Ref. 83, for all three
of these ion-containing data sets.

4 Results and Discussion

4.1. Tests of Traditional SAPT0 Using S66. The
basis-set convergence of traditional SAPT methods, in-
cluding SAPT0 but also higher-order methods, has
been reported previously for several small-molecule data
sets.25 Nevertheless we include our own SAPT0 conver-
gence tests here, because they establish a baseline to
which we can later compare the XSAPT methods, whose
alternative descriptions of dispersion lead to accelerated
basis-set convergence. Table 1 provides the mean abso-
lute errors (MAEs) for the S66 database at SAPT0/cal-
cc-pVXZ levels of theory, where X = D, T, or Q and cal
= jun, jul, or aug. As previously reported,25 the jun-cc-

Table 1: Error Statistics for SAPT0 Applied to the S66 Data
Set.

Basis Set
Error (kcal/mol)

MAE Max

jun-cc-pVDZ 0.51 1.55

jul-cc-pVDZ 0.64 2.34

aug-cc-pVDZ 0.67 2.49

jun-cc-pVTZ 0.81 3.34

jul-cc-pVTZ 0.93 3.56

aug-cc-pVTZ 1.01 3.70

jun-cc-pVQZ 1.05 3.91

jul-cc-pVQZ 1.09 3.98

pVDZ basis set affords the smallest errors, with a MAE
of 0.5 kcal/mol and a maximum error of 1.6 kcal/mol.
We are unable to complete the SAPT0/aug-cc-pVQZ cal-
culations due to memory limitations on our hardware,
but previous results for other smaller dimers suggest that
MAEs at the SAPT0/aug-cc-pVQZ level are only slightly
larger than those at the SAPT0/aug-cc-pVTZ level, by
. 0.2 kcal/mol.25

SAPT0 errors increase both with increasing cardinal-
ity of the basis set (double-, triple-, or quadruple-ζ) and
with increasing augmentation. The reason for this be-
havior is that the MP2-like second-order approximation
that is used in SAPT0 tends to overestimate dispersion
significantly, yet dispersion in particular converges very
slowly to the CBS limit. More complete basis sets there-
fore afford increasingly poor dispersion energies and the
use of jun-cc-pVDZ represents something of a “Pauling
point”,85 balancing slow convergence against overestima-
tion of the result. It is a remarkably robust compro-
mise in small molecules,25,42 although it may fare worse
in larger systems.48 For example, in the L7 set of large
dispersion-bound complexes,86 the MAE for SAPT0/jun-
cc-pVDZ interaction energies is 4.8 kcal/mol, and the
maximum error is 10.3 kcal/mol.48

SAPT0 dispersion energies for all of the S66 dimers are
plotted in Fig. 1 using the jun-cc-pVXZ basis sets for X
= D, T, and Q. These data make it clear that the triple-ζ
dispersion energies are systematically much larger than
double-ζ values, and quadruple-ζ dispersion energies are
a bit larger still. As will become clear from the XSAPT
data that are presented below, energy components other
than dispersion are essentially converged at the triple-ζ
level.

4.2. Survey of Basis Sets for XSAPT + MBD Us-
ing S66. We next consider the performance of the
hybrid XSAPT + MBD method as applied to the S66
dimers. These systems are small, with the largest being
pentane dimer, and thereby facilitate high-throughput
testing. XSAPT + MBD errors for each of the S66 dimers
are plotted in Fig. 2 across a wide range of Pople, Karls-
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Fig. 1: Dispersion energies for the S66 dimers computed
at the SAPT0/jun-cc-pVXZ level. Shaded regions delineate
the three subsets of S66: hydrogen-bonded dimers (1–23),
dispersion-dominated complexes (24–46), and dimers with
mixed-influence interactions (47–66).

ruhe, and Dunning basis sets, and these various basis
set families are analyzed separately in the subsections
that follow. A statistical survey of the results is pre-
sented in Table 2, broken down into the three subsets that
were described in Section 3 .4, namely, hydrogen-bonded
complexes, dispersion-bound complexes, and dimers with
mixed-influence interactions. As with the SAPT0 as-
sessment in Section 4 .1, error is measured relative to
CCSD(T)/CBS benchmarks.82

4.2.1. Karlsruhe Basis Sets. Errors for
XSAPT + MBD using the Karlsruhe “def2” basis
sets are plotted in Fig. 2a, where the double-, triple-,
and quadruple-ζ basis sets have been grouped together
by color. Clearly, the double-ζ errors are much larger,
exceeding 1 kcal/mol in many cases and typically
1–3 kcal/mol larger than what is obtained in more
complete basis sets.

These data also clearly demonstrate the importance
of including diffuse functions when calculating interac-
tion energies. This can be seen most clearly from the
double-ζ data but is true in triple- and quadruple-ζ ba-
sis sets as well, although the magnitude of the effect di-
minishes with the cardinality of the basis set. For the
double-ζ basis sets, errors increase in a consistent way
as the diffuse orbitals are trimmed, going from def2-
SVPD (with a full complement of diffuse functions) to
the “heavy-augmented” def2-ha-SVP basis set, to the
“minimally-augmented” def2-ma-SVP basis, and finally
to def2-SVP that contains no diffuse functions at all. The
importance of diffuse basis functions is most significant
in the hydrogen-bonded subset, where induction effects
are important and where the aforementioned truncations
of def2-SVPD increase the MAE from 1.2 kcal/mol (def2-
SVPD) to 3.7 kcal/mol (def2-SVP), with an increase in
the maximum error from 3.8 kcal/mol (def2-SVPD) to
8.6 kcal/mol (def2-SVP). Removal of the diffuse functions

has a much smaller effect in systems that are dominated
by dispersion.

Removal of the diffuse functions also has a smaller ef-
fect at the triple- and quadruple-ζ levels. Whereas in
the double-ζ case the use of diffuse functions is are abso-
lutely essential in order to obtain even semi-quantitative
results, at the triple- or quadruple-ζ level it appears that
minimal augmentation is sufficient. We conclude that
diffuse functions added to double-ζ basis sets are par-
tially compensating for the overall incompleteness of the
monomer basis set, which becomes much less of an is-
sue at the triple-ζ level. We will carefully document the
importance of diffuse functions throughout this work, be-
cause in our experience many quantum chemistry users
are extremely reluctant to include these functions, pre-
sumably for reasons of cost.

Examining the error statistics for the Karlsruhe ba-
sis sets in Table 2, it appears that absolute errors con-
verge at the triple-ζ level. Difference between triple- and
quadruple-ζ interaction energies are uniformly smaller
than 1 kcal/mol and on average these differences are no
more than 0.2–0.3 kcal/mol. The largest differences (ap-
proaching 1 kcal/mol) are for systems with very strong
hydrogen bonds, such as acetic acid dimer, and in those
cases the quadruple-ζ errors are actually larger than the
triple-ζ errors, albeit by a very small amount.

4.2.2. Dunning Basis Sets. Errors for correlation-
consistent basis sets and “calendar” variants thereof are
provided in Fig. 2b, with statistics compiled in Ta-
ble 2. Again we find that some augmentation with diffuse
functions is necessary to obtain high-quality results for
hydrogen-bonded systems, despite the fact that all of the
monomers in S66 are charge-neutral. In the absence of
any diffuse functions at all, even the cc-pVTZ basis set
affords unacceptably large errors (up to 5.7 kcal/mol),
specifically for the hydrogen-bonded complexes. These
errors are substantially reduced, even at the double-ζ
level, by minimal augmentation, e.g., jun-cc-pVDZ or
jun-cc-pVTZ, although some of the errors for hydrogen-
bonded complexes remain larger than 1 kcal/mol even
at the aug-cc-pVTZ level, where the average error is
0.5 kcal/mol but there are outliers up to 2.6 kcal/mol for
hydrogen-bonded complexes. In terms of the diffuse func-
tions that are required, the use of jun-cc-pVXZ (for X =
D, T, or Q) affords very similar results to aug-cc-pVXZ,
indicating that the full complement of diffuse functions is
not required even for hydrogen-bonded complexes. This
is an extremely useful observation because jun-cc-pVXZ
is more scalable to large systems as compared to aug-cc-
pVXZ, as the difference (for second-row atoms) is a set
of diffuse f functions.

The takeaway from this analysis is that the accuracy
obtained from these very large basis sets is comparable to
what is possible using the somewhat more modest Karls-
ruhe basis sets. Unlike the case of SAPT0, once the
slow convergence of the dispersion energy is taken out
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Fig. 2: Mean absolute errors (MAEs) in XSAPT + MBD total interaction energies for the S66 dimers, using (a) Karlsruhe basis
sets, (b) Dunning correlation-consistent basis sets, (c) Pople basis sets, and (d) the best-performing basis sets from amongst
these three categories. Indices along the horizontal axis refer to the ordering of the S66 dimers in Ref. 82 and the three regions
delineated by shading indicate the hydrogen-bonded subset (dimers 1–23), the dispersion-dominated subset (24–46), and the
subset of mixed-influence dimers (47–66). Errors are defined with respect to the CCSD(T)/CBS benchmarks from Ref. 82.

of the picture it is no longer the case that jun-cc-pVDZ
affords the best results, and the accuracy is improved
substantially in triple-ζ basis sets. The data provide no
compelling reason to to push to quadruple-ζ basis sets,
however.

4.2.3. Pople Basis Sets. XSAPT + MBD absolute
errors using Pople basis sets are shown in Fig. 2c, color-
coded across the visible spectrum based on the size
of the basis set, with warmer colors (towards red) in-
dicating larger basis sets. Errors are generally larger
as compared to Karlsruhe or Dunning basis sets, al-
though 6-311++G(d,p) and 6-311++G(3df,2dp) perform
reasonable well, with MAEs of 1.2 and 0.8 kcal/mol,
respectively, although the maximum errors (3.1 and
4.4 kcal/mol, respectively) are larger than those obtained

using triple-ζ basis sets of the Karlsruhe or Dunning
variety. Diffuse functions on hydrogen make very lit-
tle difference, even for hydrogen-bonded systems, and
6-311+G(3df,2dp) affords results that are nearly indis-
tinguishable from 6-311++G(3df,2dp).

These “(3df,2dp)” basis sets were originally developed
for MP2 calculations75 and provide relatively good per-
formance for the hydrogen-bonded subset of S66, where
large induction effects amplify the importance of polar-
ization functions. For the other S66 dimers, however,
the performance of these basis sets is nearly identical to
that of several other Pople basis sets, notably 6-31+G(d).
A set of diffuse functions is necessary even for the
dispersion-bound complexes but otherwise the double-ζ
basis sets perform just as well as the triple-ζ ones, for the
dispersion-bound and mixed-influence dimers. Polariza-
tion functions matter little for dispersion-bound systems
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Table 2: Error Statistics for XSAPT + MBD Applied to the S66 Data Set.

Method

Error (kcal/mol)

H-Bonded Dispersion Mixed Total

MAE Max MAE Max MAE Max MAE Max

def2-SVP 3.71 8.65 2.32 5.33 1.89 2.60 2.67 8.65

def2-ma-SVP 1.86 4.54 1.98 4.47 1.41 2.56 1.86 4.54

def2-ha-SVP 1.14 3.50 1.75 3.74 1.14 2.06 1.35 3.74

def2-SVPD 1.17 3.78 1.65 3.54 1.33 2.30 1.39 3.78

def2-TZVP 0.75 1.67 0.55 1.99 0.82 1.42 0.70 1.99

def2-ma-TZVP 0.19 0.36 0.49 1.78 0.60 1.17 0.42 1.78

def2-ha-TZVP 0.21 0.57 0.50 1.56 0.55 0.99 0.41 1.57

def2-TZVPD 0.17 0.48 0.43 1.57 0.54 0.99 0.37 1.57

def2-QZVP 0.53 2.19 0.36 1.32 0.55 1.17 0.48 2.19

def2-ma-QZVP 0.49 1.94 0.35 1.32 0.49 1.07 0.44 1.40

def2-ha-QZVP 0.40 1.40 0.35 1.08 0.49 1.09 0.41 1.40

def2-QZVPD 0.40 1.36 0.33 1.07 0.49 1.10 0.40 1.36

cc-pVDZ 3.34 8.10 2.42 5.31 1.90 2.68 2.58 8.10

jun-cc-pVDZ 0.98 3.10 0.69 2.09 0.65 1.32 0.78 3.10

jul-cc-pVDZ 0.58 2.64 0.73 2.09 0.62 1.37 0.64 2.64

aug-cc-pVDZ 0.75 2.86 0.77 2.06 0.74 1.52 0.75 2.86

cc-pVTZ 2.18 5.69 1.08 3.15 1.21 1.83 1.50 5.69

jun-cc-pVTZ 0.54 2.51 0.54 1.83 0.53 1.02 0.53 2.51

jul-cc-pVTZ 0.56 2.58 0.52 1.70 0.54 1.03 0.54 2.58

aug-cc-pVTZ 0.60 2.65 0.42 1.60 0.48 1.04 0.50 2.65

cc-pVQZ 0.87 2.84 0.52 2.08 0.78 1.47 0.72 2.84

jun-cc-pVQZ 0.38 1.80 0.32 1.11 0.47 1.00 0.39 1.80

jul-cc-pVQZ 0.44 2.17 0.32 1.17 0.46 0.99 0.40 2.18

aug-cc-pVQZ 0.49 2.41 0.30 1.14 0.44 0.97 0.41 2.41

6-31G(d) 4.74 10.08 3.41 6.74 2.73 3.88 3.67 10.08

6-31+G(d) 2.71 5.71 1.00 2.88 0.99 1.65 1.59 5.71

6-311G(d) 4.23 7.92 2.13 5.12 2.19 2.90 2.88 7.92

6-311G(d,p) 3.54 7.51 2.11 4.91 2.02 2.71 2.58 7.51

6-311+G(d) 2.20 3.51 1.15 3.25 1.31 1.91 1.56 3.51

6-311+G(3df,2pd) 1.04 4.50 0.84 2.47 0.82 1.53 0.90 4.50

6-311++G(d,p) 1.53 3.14 1.02 2.85 1.09 1.55 1.22 3.14

6-311++G(3df,2pd) 0.99 4.43 0.79 2.40 0.77 1.15 0.85 4.43

and affect the MAEs for that subset by . 0.2 kcal/mol.

Overall, even the best of the Pople basis sets afford
larger errors than what is possible to achieve readily with
either Karlsruhe or Dunning basis sets but can be com-
petitive alternatives of only slightly lower quality, pro-
vided that both diffuse and polarization functions are
present. The use of composite sp shells makes Pople basis
sets more efficient, per unit basis function, as compared
to other types of basis sets, assuming that one is using
a quantum chemistry program that is written to exploit
this. As such, 6-311+G(d,p) and 6-311+G(3df,2dp) may
have a place in the pantheon of SAPT methods for large
systems.

4.2.4. Summary. Several of the best-performing ba-
sis sets from each of the categories discussed above are

compared in Fig. 2d. It is clear that even the best-
performing Pople basis sets are outperformed by both
Dunning and Karlsruhe basis sets, with absolute errors
that are larger by up to 2 kcal/mol. All of the largest dis-
crepancies are found amongst the hydrogen-bonded sub-
set of S66, hence the problem is likely the inadequate
description of induction energies. In contrast, the best of
the Dunning and Karlsruhe basis sets are nearly identical
in their performance, with MAEs < 0.5 kcal/mol. The
Karlsruhe basis sets achieve this level of accuracy with
fewer basis functions and for that reason we will focus on
the Karlsruhe basis sets in much of the rest of this work.

4.3. Energy Component Analysis. It is clear from
the results in Section 4 .2 that the largest variations
amongst basis sets occur for hydrogen-bonded complexes,
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suggesting that the induction energy is more sensitive to
the choice of basis set as compared to other energy com-
ponents. To investigate this further, we next examine
how individual energy components converge with respect
to basis set. We do this first for the S66 systems that
were examined above (in Section 4 .3 .1) and then for the
S22 data set87 (Section 4 .3 .2). For the latter, high-level
SAPT benchmarks are available88 so we can examine not
just convergence but also errors in each energy compo-
nent.

4.3.1. Averaged Components for S66. Individual
energy components for the S66 systems are plotted in
Fig. S1, where the calculations were performed at the
XSAPT + MBD level in each of the six best-performing
basis sets that were identified in Section 4 .2. These data
will not be discussed in detail because the variations be-
tween basis sets are mostly quite small. This does demon-
strate that the basis sets that we previously identified as
the best-performing ones achieve this status not through
any kind of error cancellation but rather because they of-
fer a converged (or nearly converged) description of each
energy component.

In an attempt to distill the S66 data into a form that
can be used for quick side-by-side comparison of differ-
ent basis sets, we will instead examine average values of
Eelst, Eexch, Eind, and Edisp across the entire S66 data
set. These averages are not physically meaningful be-
cause they do not exemplify any one system; nevertheless,
inspection of how the average changes from one basis set
to the next provides a simple means to gauge convergence
as a function of basis set. This analysis will underscore
the fact that not all of the energy components converge in
the same way and that some components place different
demands on the basis set than others.

As explained in Section 3 .3, we have tested not only
the traditional augmented Karlsruhe basis sets (def2-
SVPD, etc.) but also heavy-augmented versions (def2-
ha-SVP, etc.) in which diffuse functions are removed
from the hydrogen atoms, and minimally-augmented ver-
sions (def2-ma-SVP, etc.) that further remove the dif-
fuse functions having highest angular momentum on the
other atoms. Finally, the def2-SVP, def2-TZVP, and
def2-QZVP basis sets contain no diffuse functions what-
soever.

Figure 3 presents the basis-set dependence for the er-
rors in total interaction energies along with S66-averaged
values of each energy component: Eelst, Eexch, Eind, and
Edisp. The average dispersion energies are considered in
Fig. 3e and in view of the results presented in Section 4 .3,
it is not surprising that all of the basis sets examined
afford values within 0.3 kcal/mol of the def2-QZVPD re-
sult. As such, we will not consider the dispersion energies
in any more detail.

Considering the electrostatic energies (Fig. 3b), the
def2-QZVPD basis set affords an S66-averaged value
〈Eelst〉 = −6.7 kcal/mol and all of the basis sets except

def2-SVP come within ±0.2 kcal/mol of this value, in-
cluding the rather compact def2-ma-SVP basis set. In
contrast to this, when the cardinality of the basis set is
increased to triple- or quadruple-ζ level, augmentation
does not appear to be necessary in order to obtain a con-
verged result for electrostatics; the def2-TZVP and def2-
QZVP values of 〈Eelst〉 are both within 0.05 kcal/mol of
the def2-QZVPD value.

S66-averaged exchange energies are given in Fig. 3c and
these prove to be more sensitive to the choice of basis set.
The def2-SVP basis is clearly inadequate and differs by
about 4 kcal/mol (or 44%) from the def2-QZVPD value of
〈Eexch〉. This should be contrasted with the behavior of
〈Eelst〉, where the entire collection of Karlsruhe basis sets
spans a range of less than 1.5 kcal/mol. Also in contrast
to the electrostatics case, for exchange it does not seem
to be possible to obtain a converged result simply by
adding diffuse functions to a double-ζ basis set. However,
a triple-ζ basis (with or without diffuse functions) does
appear to be adequate: the def2-TZVP result differs by
just 0.6 kcal/mol (8%) from the def2-QZVPD result and
the def2-TZVPD value differs by just 0.1 kcal/mol (1%).
What is similar to the case of electrostatics, and perhaps
surprising, is that triple- and quadruple-ζ calculations of
the exchange energy do not appear to benefit at all from
diffuse basis functions. This is reflected in the overall
error statistics in the interaction energies (Fig. 3a).

The quantity Eelst + Eexch is often grouped together
as “electrostatics plus finite size”,36,60 or equivalently
as the electrostatic interaction between antisymmetrized
monomer wave functions.34 This is convenient because
the sum of these two energy components is often more
comparable in magnitude to the remaining energy com-
ponents (Eind and Edisp), where electrostatics and ex-
change individually are often much larger in magnitude
but opposite in sign, at least where equilibrium geome-
tries are concerned. The average basis-set dependence of
Eelst +Eexch is presented in Fig. 3f. On the ∼ 1 kcal/mol
energy scale it is clear that a triple-ζ basis set is required
to obtain converged results, but that only minimal aug-
mentation is needed in that case. The def2-SVP result is
qualitatively wrong but even with a full complement of
diffuse functions (i.e., def2-SVPD), the results are clearly
inferior to def2-TZVP. Convergence is reached at def2-
ma-TZVP.

Average induction energies are presented in Fig. 3d.
Whereas the def2-SVP value of Eind is underestimated
by 2.0 kcal/mol (17%), all of the other values lie within
0.2 kcal/mol (8%) of the def2-QZVPD result. Remark-
ably, a double-ζ basis set with diffuse functions affords
values of Eind that are close to def2-QZVPD values, and
in a triple-ζ basis set the diffuse functions are not needed
to obtain a value that is negligibly different from the def2-
QZVPD value. This may suggest a tractable computa-
tional scheme for large systems, in which the induction
energy is computed in a smaller basis set as compared to
electrostatics or exchange. First, however, we will more
rigorously examine this conclusion in Section 4 .5, using
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Fig. 3: (a) MAEs in Eint, along with S66-averaged values of (b) Eelst, (c) Eexch, (d) Eind, (e) Edisp, and (f) Eelst +Eexch, each
computed at the XSAPT + MBD level in various Karlsruhe basis sets. For brevity, “def2” is omitted from the basis set names.

ion–water clusters that exhibit much larger induction en-
ergies as compared to the S66 systems.

Looking back at the errors in total interaction ener-
gies (Fig. 3a), we see that none of the double-ζ basis sets
achieves a MAE below 1 kcal/mol. Based on the analysis
presented in this section, we ascribe this failure primarily
to inadequate description of Eelst and Eexch, since Eind

and Edisp are reasonably well described in double-ζ basis
sets so long as diffuse functions are included. The def2-
TZVP basis set affords a mean accuracy < 1 kcal/mol
despite the absence of diffuse functions, without benefit-
ing significantly from error cancellation. With minimal
augmentation (def2-ma-TZVP), the MAE drops below
0.5 kcal/mol and the average deviation in each energy
component is < 3% of the def2-QZVPD value. The def2-
ma-TZVP basis set therefore appears to afford converged
XSAPT + MBD results, at least for the S66 dimers.

4.3.2. Benchmark Components for S22. In this
section, we examine the basis-set behavior of individ-
ual energy components for the S22 data data,87 com-
paring XSAPT + MBD (in various basis sets) to en-
ergy components computed at the SAPT2+(3)/aug-cc-
pVTZ level.88 The latter approach affords an overall
MAE of 0.5 kcal/mol for the S22 interaction energies,
with respect to CCSD(T)/CBS benchmarks, which can
be separated into an MAE of 0.8 kcal/mol for the

electrostatically-dominated subset of the S22 dimers and
0.2 kcal/mol for the remaining systems.25 We therefore
take the SAPT2+(3)/aug-cc-pVTZ results to be bench-
marks for each individual energy component.

Figure 4 plots the error in each energy component,
for each S22 dimer, in several basis sets. We restrict
out attention to the best-performing Pople and Karls-
ruhe basis sets that were identified in Section 4 .2, omit-
ting the Dunning basis sets since the S66 results suggest
that comparable, high-quality XSAPT + MBD energet-
ics can be obtained more efficiently using def2-TZVPD
and def2-QZVPD. Examining the electrostatic energies
in Fig. 4a, we notice that 6-311++G(d,p) exhibits er-
rors & 1.0 kcal/mol for several of the electrostatically-
dominated systems (dimers 1–7 in Fig. 4), with the
largest errors for (H2O)2 and (HCO2H)2 (dimers 2 and
3, respectively). With additional polarization functions,
to obtain 6-311++G(3df,2pd), the electrostatic errors
for these same complexes are comparable to those ob-
tained using def2-TZVPD or def2-QZVPD. More sur-
prising is that 6-311++G(3df,2pd) outperforms both
Karlsruhe basis sets for the induction energies (Fig. 4c).
That said, errors in the exchange energies (Fig. 4b)
are significantly larger for both Pople basis sets than
they are for either Karlsruhe basis set. This is espe-
cially true for the formic acid dimer (system #3) and
for the four π-stacked dimers, systems 11–15, repre-
senting (respectively) the dimers of benzene, pyrazine,
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Fig. 4: MAEs in energy components for the S22 dimers, computed at the XSAPT + MBD level in the basis sets that are
shown and compared to benchmark energy components computed at the SAPT2+(3)/aug-cc-pVTZ level. Shaded regions
delineate the electrostatics-dominated dimers (1–7), the dispersion-dominated dimers (8–15), and the dimers with mixed-
influence interactions (16–22). Note that the energy scale is different in each panel.

and uracil, and the heterodimers indole· · · benzene and
adenine· · · thymine. Consistent with the analysis in Sec-
tion 4 .3 .1, the dispersion energy is rather insensitive to
the choice of basis set.

Overall, the picture that emerges from these data
are that the somewhat larger errors for hydrogen-
bonded complexes that were documented for S66
dimers when the 6-311++G(3df,2pd) basis set is
used (MAE of 1.0 kcal/mol and maximum error of
4.4 kcal/mol, whereas the maximum error for def2-
TZVPD is 0.5 kcal/mol) result primarily from inadequate
description of exchange rather than electrostatics or in-
duction. The def2-TZVPD basis set offers reasonably
consistent performance for each energy component, with
errors that are . 1.5 kcal/mol in each.

4.4. Benchmarks Containing Ions. Systems con-
taining ions tend to exhibit much larger interaction en-
ergies as compared to cases where the monomers are

charge-neutral, and this may place different demands on
basis sets. We next consider results for the IL16, AHB21,
and CHB6 data sets of ion-containing dimers that were
described in Section 3 .4.83 Despite some promising pre-
liminary results using XSAPT + MBD to describe ion–
molecule interactions,36,56,60 we have identified other
cases where performance of the MBD model is erratic
for ion-containing systems, perhaps due to issues re-
lating to the non-uniqueness of the Hirshfeld partition
in such cases, for which iterative schemes have been
suggested89–91 and implemented with supramolecular
DFT-based versions of the MBD model.92–94 (Alterna-
tive means of obtaining polarizabilties for use in the MBD
model have also been shown to be superior to the original
MBD@rsSCS approach.95) In view of these difficulties,
we consider that a proper MBD model for ion-containing
systems is still under development. For the present pur-
poses, however, we have already demonstrated that the
MBD dispersion energy converges rapidly with basis set,
because the density converges rapidly, and do not expect
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this to be different for an ionic MBD model. We will
therefore focus on the other energy components in this
section, using the XSAPT + aiD3 method.54 In this ap-
proach, Edisp is modeled using atom–atom C6/R

6 and
C8/R

8 potentials and does not depend on the density
at all, but the other three energy components are com-
puted in the same manner as in XSAPT + MBD, so the
conclusions should be transferable.

XSAPT + aiD3 error statistics for the IL16, AHB21,
and CHB6 data sets are compiled in Table 3. For these
calculations, monomer SCF wave functions are computed
using the monomer basis set, in order to preclude any
charge delocalization at the SCF level, although the
dimer basis is still used for the δEHF calculations be-
cause ∆EHF

int in eq. 4 needs to be counterpoise-corrected.
Because the IL16 and AHB21 data sets contain anions,
only basis sets containing diffuse functions are considered
in these tests.

The first column of Table 3 gives the error statistics for
the IL16 database of cation–anion pairs, and these errors
are also plotted in Fig. 5a for the Dunning and Karlsruhe
basis sets. Notably, 6-311++G(3df,2pd) proves to be on
par with the other triple-ζ basis sets in systems contain-
ing either cations (CHBH) or anions (AHB21) with an
MAEs of 2.95 and 1.74 kcal/mol respectively. However,
when cations and anions are in the system (IL16), the
MAE increases substantially to 8.31 kcal/mol

Perhaps serendipitously, the best-performing basis set
for IL16 is jun-cc-pVTZ with a MAE of 0.8 kcal/mol
although the def2-ha-SVP and def2-TZVPPD basis sets
afford comparable MAEs, and def2-TZVPPD affords a
smaller maximum error. (The def2-TZVPD basis set is
nearly as good as def2-TZVPPD.) In contrast to the
behavior for S66, here we see no systematic improve-
ment in accuracy for larger basis sets, although neither
do the errors get significantly larger. For example, the
XSAPT + aiD3/aug-cc-pVXZ methods with X = D, T,
and Q afford MAEs of 1.3, 1.7, and 1.7 kcal/mol, respec-
tively, and maximum errors of 3.5, 3.8, and 3.7 kcal/mol.
Similar trends hold for the Karlsruhe sequence of basis
sets (def2-SVPD, def2-TZVPD, and def2-QZVPD), al-
though the errors are slightly but systematically smaller
in the Karlsruhe basis sets as compared to the Dun-
ning basis sets. As noted in a previous SAPT study,83

the most challenging systems in the ion-containing data
sets that are examined here require a “δMP2” correc-
tion for higher-order induction (and not just a δHF cor-
rection), in order to achieve sub-kcal/mol accuracy with
respect to CCSD(T)/CBS benchmarks. As such, errors
of 1.7 kcal/mol (MAE) or 3.7 kcal/mol (maximum) ob-
tained at the XSAPT + aiD3/aug-cc-pVQZ level likely
reflect the inherent accuracy of this particular XSAPT-
based method as applied to these very challenging ion-
pair systems. Some error cancelation is then responsible
for the somewhat better performance of the smaller basis
sets mentioned above.

Figures 5b–d show the energy components (excluding
dispersion) for the IL16 data set. The electrostatics term

(Fig. 5b) is especially flat, with variations of no more than
1 kcal/mol across a wide range of Karlsruhe and Dunning
basis sets. Excluding the double-ζ basis sets, because we
know that Eelst is not yet converged in double-ζ basis
sets even for the S66 dimers, the variations in Eelst are
. 0.1 kcal/mol. Exchange energies (Fig. 5c) also vary by
only ∼ 1 kcal/mol if double-ζ basis sets are excluded from
the comparison. In contrast, induction energies (Fig. 5d)
span a range of ∼ 4 kcal/mol in the various triple- and
quadruple-ζ basis sets. This analysis points to induction
as the energy component wherein the overall errors in
the interaction energies reside, which is consistent with
the need for a δMP2 correction to achieve sub-kcal/mol
accuracy.

In contrast to IL16, overall errors in the interaction
energies for the AHB21 and CHB6 data sets follow more
discernible and systematic trends; see Table 3. The
smallest MAEs (1.2–1.5 kcal/mol) are obtained using the
aug-cc-pVQZ and def2-QZVPD basis sets. Trimming
the diffuse functions at the triple-ζ level has a notice-
ably detrimental effect on the anion–neutral dimers in
the AHB21 data set. This effect, which was not seen
in dimers of neutral molecules, is less evident at the
quadruple-ζ level. In general the basis-set demands for
these ion-containing dimers are more severe than they
are for the S22 and S66 dimers.

4.5. Halide–Water Clusters. For the S66 data set
we found that induction energies exhibit remarkably little
basis set dependence (see Fig. 3d), which might simply
reflect that the induction energies for these small, charge-
neutral dimers are not especially large. That the ionic
test systems considered in Section 4 .4 exhibit somewhat
more stringent basis-set requirements comports with this
hypothesis. To test this further, we next consider some
larger anion–water clusters whose induction energies are
more significant.

4.5.1. Aqueous Chloride Ion. We first consider
Cl−(H2O)n clusters extracted from a molecular dynam-
ics simulation of Cl−(aq),96 and which have previously
been used to explore the energetics of ion hydration.60 A
set of 51 clusters containing an average of n = 28 water
molecules (representing two solvation shells) was taken
from previous work,60,96 and we will examine basis-set
effects on the energy components across this trajectory.
These calculations are meant to investigate what (if any)
cancellation one can expect across a set of similar ge-
ometries for the same system and for the purposes of
these calculations each Cl−(H2O)n snapshot is treated
as a dimer, with Cl− as one monomer and (H2O)n as the
other. As a representative example of a high-throughput
application, we examine some very efficient basis sets
such as 6-31+G(d) and 6-311+G(d,p) in addition to
higher-quality ones such as def2-TZVPD and some in-
termediate choices as well. Calculations were performed
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Table 3: Error Statistics for XSAPT + aiD3 Applied to Ion-Containing Data Sets.a

Basis Set

Error (kcal/mol)

IL16 AHB21 CHB6

MAE Max MAE Max MAE Max

jun-cc-pVDZ 2.53 (2.3%) 5.75 3.12 (12.9%) 13.12 1.46 (5.0%) 3.11

jul-cc-pVDZ 1.09 (1.0%) 3.18 2.26 (11.0%) 7.69 2.05 (6.3%) 6.19

aug-cc-pVDZ 1.29 (1.2%) 3.54 1.86 (8.0%) 7.36 2.01 (6.2%) 6.50

jun-cc-pVTZ 0.80 (0.8%) 3.07 1.76 (8.4%) 6.44 2.09 (6.4%) 7.21

jul-cc-pVTZ 1.28 (1.2%) 3.46 1.48 (7.0%) 5.69 2.32 (7.1%) 7.57

aug-cc-pVTZ 1.71 (1.6%) 3.83 1.27 (5.8%) 5.70 2.09 (6.3%) 7.06

jun-cc-pVQZ 1.17 (1.1%) 2.79 1.43 (6.9%) 6.18 1.53 (4.8%) 4.40

jul-cc-pVQZ 1.44 (1.3%) 3.38 1.28 (6.2%) 7.80 1.69 (5.1%) 5.53

aug-cc-pVQZ 1.72 (1.6%) 3.69 1.23 (5.5%) 8.18 1.31 (3.8%) 4.74

def2-ma-SVP 3.11 (2.8%) 5.60 3.70 (16.7%) 11.93 1.83 (6.7%) 3.43

def2-ha-SVP 1.03 (1.0%) 2.60 2.86 (13.5%) 8.38 1.20 (4.3%) 2.56

def2-SVPD 1.23 (1.1%) 2.60 2.49 (11.3%) 8.14 1.52 (5.3%) 2.89

def2-ma-TZVP 1.95 (1.8%) 3.78 2.61 (11.2%) 8.57 1.74 (5.9%) 3.86

def2-ha-TZVP 1.24 (1.1%) 2.30 2.73 (12.3%) 8.24 1.28 (4.1%) 3.68

def2-TZVPD 1.08 (1.0%) 2.29 2.54 (11.1%) 8.36 1.26 (4.0%) 3.65

def2-TZVPPD 0.85 (0.8%) 2.16 1.89 (8.9%) 6.09 1.63 (5.0%) 5.78

def2-ma-QZVP 1.44 (1.3%) 3.44 1.39 (7.0%) 3.20 1.76 (5.3%) 3.20

def2-ha-QZVP 1.23 (1.1%) 2.60 1.51 (7.6%) 3.03 1.43 (4.4%) 4.97

def2-QZVPD 1.24 (1.1%) 2.63 1.46 (7.3%) 3.06 1.20 (3.8%) 3.96

def2-QZVPPD 1.24 (1.1%) 2.63 1.46 (7.3%) 3.06 1.21 (3.8%) 3.96

6-311+G(3df,2pd) 8.33 (8.1%) 18.12 1.76 (8.2%) 8.28 2.98 (8.8%) 10.38

6-311++G(3df,2pd) 8.32 (8.1%) 18.09 1.74 (8.1%) 8.09 2.95 (8.7%) 10.26

aRelative to CCSD(T)/CBS benchmarks from Ref. 83. Boldface values indicate the best-performing basis sets.

at the XSAPT + aiD3 level and δEHF is not included in
the induction energy for these calculations, in the interest
of computational expedience. We expect the convergence
behavior of the second-order induction terms in eq. 2 to
be similar to that of δEHF. The first half of the data set
is sufficient to exhibit both the minimum and maximum
value of each energy component so for clarity only those
data are shown, in Fig. 6.

While there are certainly systematic errors in particu-
lar basis sets, we observe that the overall step-to-step
fluctuations (both in Eint and in its components) are
very similar, across basis sets ranging in quality from
6-31+G(d) to def2-TZVPD. Systematic errors are dif-
ferent in various energy components and this leads to
some error cancellation, such that Eint computed at the
XSAPT + aiD3/6-31+G(d) level differs from the corre-
sponding def2-TZVPD value by only 1.9± 0.8 kcal/mol.
This is just 2% of the ensemble-averaged interaction en-
ergy, 〈Eint〉 = −87.0 kcal/mol. Error statistics for Eint,
with respect to XSAPT + aiD3/def2-TZVPD values that
represent our best estimates for this system, are listed in
Table 4 along with timing data for various basis sets.

Examining the individual energy components in Fig. 6,
we note that the relatively low-quality 6-31+G(d) and
6-311+G(d,p) basis sets both overestimate Eelst (mak-

Table 4: Timing Data and Error Statistics for XSAPT + aiD3

Calculations on Cl−(H2O)n.a

Basis Set
Eint Error (kcal/mol)b Time (sec)c

MAEd Max CPU wall
6-31+G(d) 1.9 ± 0.8 3.8 1954 152
6-311+G(d,p) 1.3 ± 0.5 2.4 4912 402
6-311+G(2df,2p) 0.1 ± 0.1 0.4 14935 1143
6-311+G(3df,2pd) 0.3 ± 0.1 0.6 32916 2501
def2-SVPD 1.2 ± 0.2 1.5 22492 2144
def2-TZVPD 0.0 0.0 73063 6326

aData represent averages over 51 snapshots with 〈n〉 = 28.4 ±
2.4 water molecules treated as a single fragment. bWith respect
to the def2-TZVPD value. cCalculations run on 14 processors.
dUncertainty represents one standard deviation.

ing it too attractive) but underestimate Eind (making
it insufficiently attractive). Partial cancellation of these
errors is responsible for the reasonable interaction ener-
gies that are obtained in either basis set. Errors in both
Eelst and Eind are larger for 6-31+G(d), which therefore
relies more heavily on error cancellation. In contrast,
the 6-311+G(3df,2pd) basis set affords individual energy
components that are fully converged with respect to def2-
TZVPD values, so the accuracy of this approach does not
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Fig. 5: XSAPT + aiD3 results for the IL16 data set: (a) error in the total interaction energy, and values of (b) Eelst, (c) Eexch,
and (d) Eind in various basis sets.

rely on error cancellation, and in fact the maximum de-
viation with respect to the def2-TZVPD interaction en-
ergies is only 0.4 kcal/mol when this high-quality Pople
basis set is used. Interestingly, the exchange energies ap-
pear to be converged in any triple-ζ basis set but also in
def2-SVPD, although they are somewhat overestimated
when 6-31+G(d) is used.

Timing data in Table 4 demonstrate that the use
of 6-311+G(3df,2pd) affords a 2× speedup relative to
def2-TZVPD. Interestingly, the latter actually comprises
fewer basis functions. For Cl−(H2O)28, which is the av-
erage size of the clusters examined in this section, the
use of def2-TZVPD involves 1,670 basis functions versus
1,923 for 6-311+G(3df,2pd). The smaller timings for the
larger calculation provides an unambiguous indication of
the much better efficiency of Pople basis sets, provided
that the integrals engine can exploit sp shells.

If one removes some of the polarization functions
from the highest-quality Pople basis set, to obtain 6-
311+G(2df,2p), the speedup relative to def2-TZVPD in-
creases to 5× while preserving the accuracy of Eint, at
the expense of introducing a small amount of error can-

cellation between Eelst and Eind. This basis is superior
to def2-SVPD in both accuracy and efficiency. Neverthe-
less, it is worth noting that the error in the 6-31+G(d)
calculations appears to be quite systematic while afford-
ing a speedup of 37× relative to def2-TZVPD. The more
affordable Pople basis sets therefore offer good insight as
to how the energy components change as a function of
geometry in large systems.60

4.5.2. Basis-Set Convergence for F−(H2O)6. In
a similar vein, we next examine energy components for
F−(H2O)6, for which CCSD(T)/CBS benchmarks97 al-
low us to characterize absolute errors in the interac-
tion energies. In contrast to the Cl−(aq) system, where
each Cl−(H2O)n cluster was treated as a dimer, here
we exploit the many-body power of XSAPT to describe
F−(H2O)6 as a system of 7 fragments.

Figure 7a shows the errors in Eint using
XSAPT + MBD in various Karlsruhe basis sets. Errors
are unacceptably large in the absence of diffuse functions
(even using def2-QZVP), which is not surprising, but
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Fig. 6: XSAPT + aiD3 calculations along a Cl−(aq) trajectory with two solvation shells of explicit water: (a) Eint, (b) Eelst,
(c) Eexch, and (d) Eind. Note that the energy scales are different in each panel. The induction energy in (d) contains the
second-order terms only but omits δEHF in eq. 2.

minimal augmentation is sufficient to reduce the errors
to ≤ 5 kcal/mol versus a CCSD(T)/CBS reference
energy Eint = −116.6 kcal/mol,97 even at the double-ζ
level. In quadruple-ζ basis sets with diffuse functions,
the XSAPT + MBD errors are all ≤ 1.3 kcal/mol.

Examining the basis-set convergence of the F−(H2O)6
energy components, we find that electrostatic energies
(Fig. 7b) span a wide range but if the minimally-
augmented basis sets are excluded then all of the val-
ues of Eelst lie between −175 and −172 kcal/mol. At
the triple-ζ level it appears that diffuse functions can
safely be deleted from the hydrogen atoms, as the
def2-ha-TZVP and def2-TZVP values of Eelst differ by
only 0.2 kcal/mol. That said, the def2-TZVPD value
(Eelst = −174.4 kcal/mol) differs by 2 kcal/mol from
the def2-QZVPD value (Eelst = −172.2 kcal/mol), and
in fact that def2-SVPD value is much closer: Eelst =
−174.6 kcal/mol. As we observed for S66, a double-ζ
basis set with a full complement of diffuse functions can
stand in for a triple-ζ basis set for electrostatics calcula-
tions.

Exchange energies (Fig. 7c) span a similarly wide

range and here the diffuse functions are important, to
prevent severe underestimation of Eexch caused by the
tails of the anion’s wave function. That said, the
def2-SVPD value (Eexch = 144.6 kcal/mol) is only
about 1 kcal/mol different from the def2-QZVPD value
(Eexch = 143.8 kcal/mol). Often, the sum Eelst + Eexch

is easier to interpret than either of these energy com-
ponents alone,36,60 in part because the sum tends to be
more comparable to values of |Eind| and |Edisp|, whereas
|Eelst| and Eexch are individually much larger. Data for
Eelst + Eexch in F−(H2O)6 are presented in Fig. 7f. Us-
ing heavy-augmented basis sets, this sum appears to con-
verge at the triple-ζ level, where the difference with re-
spect to def2-QZVPD is only 0.8 kcal/mol, which once
again suggests that diffuse functions on hydrogen are not
essential at the triple-ζ level. With a full complement of
diffuse functions, the def2-SVPD basis set can be sub-
stituted for the triple-ζ one with . 1 kcal/mol loss in
accuracy.

Induction energies for F−(H2O)6 are presented in
Fig. 7d and the def2-QZVPD value is Eind =
−50.8 kcal/mol. Double-ζ basis sets grossly under-
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Fig. 7: Basis-set dependence of XSAPT + MBD for F−(H2O)6 using Karlsruhe basis sets: (a) Errors in Eint versus the
CCSD(T)/CBS benchmark (Eint = −116.6 kcal/mol),97 and convergence of (b) Eelst, (c) Eexch, (d) Eind, (e) Edisp, and (f)
Eelst + Eexch as a function of basis set. For brevity, the “def2” prefix is omitted from the basis set names. Note also that the
basis-set selection (and the ordering) is different in (a) as compared to the other panels, in order to highlight the significant
errors obtained in the absence of diffuse functions.

Table 5: Error Statistics for SAPT0(HF) + MBD Applied to the S66 Data Set.

Method

Error (kcal/mol)

H-Bonded Dispersion Mixed Total

MAE Max MAE Max MAE Max MAE Max

def2-SVP 5.24 12.53 2.77 6.73 2.39 3.31 3.52 12.53

def2-SVPD 3.11 8.70 2.28 5.43 1.92 2.95 2.46 8.70

def2-TZVP 2.45 5.38 1.12 3.71 1.44 2.33 1.61 5.38

def2-TZVPD 1.73 4.85 1.06 3.36 1.21 2.07 1.34 4.85

def2-QZVP 2.01 5.88 1.04 3.24 1.24 2.17 1.44 5.88

def2-QZVPD 1.91 5.72 1.04 3.12 1.20 2.09 1.39 5.72

cc-pVDZ 4.86 11.84 2.81 6.73 2.46 3.46 3.42 11.84

jun-cc-pVDZ 3.52 8.93 1.64 4.68 1.61 2.48 2.29 8.93

jul-cc-pVDZ 2.02 5.77 1.06 3.40 1.19 2.07 1.44 5.77

aug-cc-pVDZ 2.63 7.22 1.68 4.43 1.61 2.41 1.99 7.22

cc-pVTZ 3.43 8.38 1.69 4.76 1.82 2.80 2.34 8.38

jun-cc-pVTZ 2.28 6.28 1.27 3.97 1.29 2.06 1.63 6.28

jul-cc-pVTZ 2.29 6.29 1.28 3.86 1.31 2.07 1.64 6.29

aug-cc-pVTZ 2.30 6.41 1.23 3.80 1.26 2.07 1.61 6.41

cc-pVQZ 2.32 6.09 1.17 3.72 1.42 2.43 1.64 6.09

jun-cc-pVQZ 1.98 5.65 1.06 3.35 1.20 2.08 1.43 6.65

jul-cc-pVQZ 2.48 7.29 1.61 4.44 1.49 2.31 1.87 7.29

aug-cc-pVQZ 1.98 5.83 1.07 3.39 1.20 2.04 1.43 5.83

6-311+G(3df,2pd) 2.92 8.40 1.56 4.49 1.53 2.41 2.02 8.40

6-311++G(3df,2pd) 2.90 8.37 1.59 4.52 1.58 2.46 2.04 8.37
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estimate this value, even with a full complement of
diffuse functions; the def2-SVPD value is Eind =
−45.2 kcal/mol, which represents 11% error with respect
to the def2-QZVPD value. In contrast, the def2-TZVPD
value (Eind = −50.0 kcal/mol) represents an underesti-
mate of 0.8 kcal/mol or 2%. To obtain converged re-
sults, triple-ζ basis sets with diffuse functions are re-
quired and here the hydrogen atom diffuse functions con-
tribute 1.0 kcal/mol, comparing def2-ha-TZVP to def2-
TZVPD.

It is also abundantly clear that the dispersion energy
is not very sensitive to basis set, and changes by only
0.7 kcal/mol between the def2-ma-SVP and def2-QZVPD
basis sets. This is consistent with earlier results for other
data sets where the dispersion energy is nearly constant
across a wide range of basis sets, suggesting that MBD
gives both accurate dispersion energies and ones that con-
verge quickly.

4.6. Performance of Different SAPT Methods.
In this section, we compared the performance of three
different SAPT variants: XSAPT, SAPT0(HF), and
SAPT0(KS), using either MBD or else aiD3 to replace
second-order dispersion (eq. 3) in each case. The pur-
pose of these tests are to examine the importance of
the self-consistent XPol charge embedding that is used
in XSAPT + MBD, thus the two SAPT0 variants do not
include such an embedding. The SAPT0(HF) + MBD
method consists of a standard HF-based SAPT0 cal-
culation but with a modified dispersion term, while
SAPT0(KS) + MBD uses GDD-tuned LRC-ωPBE in
place of HF theory for the monomer wave functions and
is therefore similar to XSAPT + MBD except that the
self-consistent embedding is omitted.

4.6.1. Total Interaction Energies. Error statistics
for the SAPT0(HF) + MBD and SAPT0(KS) + MBD
methods, as applied to the S66 dimers data set, are pro-
vided in Tables 5 and 6, respectively, which should be
compared to the statistics for XSAPT + MBD that are
listed in Table 2. SAPT0(HF) + MBD is clearly less accu-
rate than either of the approaches based on LRC-ωPBE
for the monomers, with MAEs that are consistently 1.0–
1.5 kcal/mol larger. (This is analyzed in terms of energy
components in Section 4 .6 .2.) Statistically speaking, the
performance of SAPT0(KS) + MBD and XSAPT + MBD
is about the same for these dimers, which by definition
do not experience many-body polarization. This demon-
strates that the charge-embedding procedure does not
improve the quality of the zeroth-order reference state
small dimers in any way that is statistically meaningful.

Error statistics for the ion-containing data sets
are provided in Tables S8, S9 and S10, computed
with the +aiD3 versions of XSAPT, SAPT0(HF),
and SAPT0(KS). Here, the trend is different and
XSAPT + aiD3 outperforms both of the other meth-

ods by 1–2 kcal/mol for the IL16 data set and by a
lesser amount for the AHB21 data set. The fact that
XSAPT + aiD3 exhibits statistically-significant error re-
duction as compared to SAPT0(KS) + aiD3 suggests
that induction effects are large enough in these systems
so that the charge-embedded XPol determinant is a bet-
ter reference state for perturbation theory as compared
to the use of isolated-monomer wave functions.

In contrast to the behavior for IL16 and AHB21, where
XSAPT + aiD3 appears to offer clear improvement over
the other two +aiD3 methods, results from all three ap-
proaches are much more similar for the CHB6 data set;
see Table S10. This data set consists of M+(H2O) and
M+(C6H6) complexes with M = Li, Na, or K. Specifically
for the cations, the tuning procedure affords rather large
values of ωGDD (Table S4): ωGDD = 1.30 a−1

0 , 0.84 a−1
0 ,

and 0.59 a−1
0 for Li+, Na+, and K+, respectively. The

values for Li+ and Na+ are much larger than the tuned
values for small, charge-neutral monomers or anions, and
even the value obtained for K+ is somewhat larger than
what we observe for other systems. The range separation
in LRC-ωPBE occurs at a distance of ≈ ω−1

GDD, and that

value corresponds to 0.41 Å for Li+, 0.63 Å for Na+, and
0.90 Å for K+. In each case, this is smaller than the van
der Waals radius of the cation itself,98 meaning that for
the purpose of intermolecular interactions computations,
the XSAPT + aiD3 calculations are using HF theory for
the exchange functional. This explains the close similar-
ity with SAPT0(HF) + aiD3.

4.6.2. Energy Components. In order to further in-
vestigate these three variants of SAPT and to understand
the origins of the differences between them, we wish to
examine individual energy components. For this we turn
to the S22 data set,87 for which benchmark energy com-
ponents are available,88 computed at the SAPT2+(3)/
aug-cc-pVTZ level. Figure 8 compares benchmarks
against the SAPT0(HF) + MBD, SAPT0(KS) + MBD,
and XSAPT + MBD methods and Table 7 lists the er-
ror statistics in each energy component. These data in-
dicate that the Eexch and Eind, for the electrostatically-
dominated subset of S22, are responsible for the dimin-
ished accuracy of SAPT0(HF) + MBD relative to other
methods; these two components exhibit MAEs of 3.6 and
2.0 kcal/mol, respectively, for the subset that includes the
hydrogen-bonded dimers.

For the DFT-based second-order methods, most of the
energy components exhibit sub-kcal/mol MAEs, with
the lone exception being Eind for the electrostatically-
dominated dimers described at the SAPT0(KS) + MBD
level, for which the MAE is 1.5 kcal/mol. That is re-
duced to 0.2 kcal/mol using XSAPT + MBD, demon-
strating the importance of charge embedding even in a
dimer system, at least where hydrogen bonds are con-
cerned. For the dimers that are not dominated by
electrostatics, charge embedding makes little difference
and the error statistics for both SAPT0(KS) + MBD and
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Table 6: Error Statistics for SAPT0(KS) + MBD Applied to the S66 Data Set.

Method

Error (kcal/mol)

H-Bonded Dispersion Mixed Total

MAE Max MAE Max MAE Max MAE Max

def2-SVP 3.56 7.38 2.39 5.37 1.84 2.52 2.60 7.38

def2-SVPD 0.67 1.92 1.66 3.47 1.19 2.25 1.17 3.47

def2-TZVP 0.40 0.95 0.58 2.02 0.79 1.35 0.58 2.02

def2-TZVPD 0.50 1.62 0.43 1.51 0.48 0.95 0.47 1.62

def2-QZVP 0.22 0.77 0.38 1.30 0.53 1.11 0.37 1.30

def2-QZVPD 0.43 0.98 0.32 1.00 0.46 1.10 0.40 1.10

cc-pVDZ 3.13 6.90 2.45 5.37 1.89 2.61 2.52 6.90

jun-cc-pVDZ 0.81 1.96 0.72 2.06 0.67 1.32 0.74 2.06

jul-cc-pVDZ 0.34 0.92 0.31 1.10 0.40 0.91 0.35 1.10

aug-cc-pVDZ 0.19 0.81 0.77 2.02 0.68 1.45 0.54 2.02

cc-pVTZ 1.74 3.55 1.17 3.20 1.19 1.73 1.38 3.55

jun-cc-pVTZ 0.17 0.60 0.55 1.79 0.49 1.00 0.40 1.79

jul-cc-pVTZ 0.16 0.60 0.53 1.65 0.49 1.01 0.39 1.65

aug-cc-pVTZ 0.21 0.67 0.42 1.53 0.41 1.00 0.34 1.53

cc-pVQZ 0.36 0.66 0.59 2.10 0.76 1.40 0.56 2.10

jun-cc-pVQZ 0.39 1.01 0.31 1.04 0.42 0.95 0.37 1.04

jul-cc-pVQZ 0.31 1.01 0.76 2.06 0.62 1.27 0.56 2.06

aug-cc-pVQZ 0.42 0.87 0.28 1.05 0.38 0.95 0.36 1.05

6-311+G(3df,2pd) 0.56 2.05 0.86 2.41 0.79 1.41 0.73 2.41

6-311++G(3df,2pd) 0.50 1.95 0.81 2.34 0.74 1.40 0.68 2.34

Table 7: Error Statistics for Energy Components in the S22 Data Set.a

Method Subset
Error (kcal/mol)

Electrostatics Exchange Induction Dispersion
MAE Max MAE Max MAE Max MAE Max

SAPT0(HF)+MBD Elst. 0.72 1.57 3.59 6.10 2.00 3.68 0.77 1.51
SAPT0(HF)+MBD Disp. 0.26 0.48 0.45 1.45 0.08 0.20 0.24 0.67
SAPT0(HF)+MBD Mixed 0.23 0.50 0.51 1.45 0.12 0.53 0.60 1.15
SAPT0(HF)+MBD All 0.40 1.57 1.47 6.10 0.70 3.68 0.53 1.51

SAPT0(KS)+MBD Elst. 0.27 0.52 0.38 0.95 1.53 2.88 0.31 0.68
SAPT0(KS)+MBD Disp. 0.25 0.59 0.60 1.50 0.10 0.33 0.44 1.00
SAPT0(KS)+MBD Mixed 0.04 0.08 0.29 0.38 0.10 0.36 0.25 0.61
SAPT0(KS)+MBD All 0.19 0.59 0.45 1.50 0.62 2.88 0.35 1.00

XSAPT+MBD Elst. 0.27 0.52 0.38 0.95 0.24 0.44 0.31 0.68
XSAPT+MBD Disp. 0.25 0.59 0.60 1.50 0.08 0.25 0.44 1.00
XSAPT+MBD Mixed 0.04 0.08 0.29 0.38 0.04 0.08 0.25 0.61
XSAPT+MBD All 0.19 0.59 0.45 1.50 0.12 0.44 0.35 1.00

aError is relative to SAPT2+(3)/aug-cc-pVTZ benchmarks from Ref. 88.

XSAPT + MBD are very similar, for each energy com-
ponent. Notably, error statistics for the induction en-
ergy evaluated using SAPT0(KS) + MBD are more sim-
ilar to the SAPT0(HF) + MBD errors than they are to
the XSAPT + MBD errors. Each of these methods uses
the same δEHF correction (evaluated in each case using
HF theory and not DFT), which again supports the im-
portant role that charge embedding plays even dimers,
at least where hydrogen bonds are involved. Swapping
DFT for HF orbitals reduces the MAE for the hydrogen-
bonded subset from 2.0 to 1.5 kcal/mol, then adding
charge embedding reduces it even more, to 0.2 kcal/mol.

4.7. Hybrid Basis-Set Calculations. We now con-
sider the possibility of a hybrid method in which differ-
ent energy components are computed with different basis
sets, exploiting the separability of the SAPT decompo-
sition. A simple-to-implement version of such a proce-
dure is to focus on the δEHF correction, which requires a
dimer HF calculation. This is the only part of an XSAPT
calculation that requires an iterative SCF calculation on
something larger than a monomer, and it is usually the
computational bottleneck step when large basis sets are
employed. That δEHF is defined by difference (eq. 4)
also suggests that this term might converge more rapidly
than other energy components in eq. 1, similar to the way
that a correction δ = ECCSD(T) − EMP2 converges more
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Fig. 8: Comparison of energy components of the S22 set of dimers: (a) Eelst, (b) Eexch, (c) Eind, and Edisp. Bench-
mark SAPT2+(3) calculations were performed using the aug-cc-pVTZ data set and are taken from Ref. 88, whereas
SAPT0(HF) + MBD, SAPT0(KS) + MBD, and XSAPT + MBD calculations were performed using the aug-cc-pVQZ basis set,
and the latter two methods are indistinguishable except for Eind in (c). Shaded regions delineate the electrostatics-dominated
dimers (1–7), the dispersion-dominated dimers (8–15), and the dimers with mixed-influence interactions (16–22). Note that
the energy scale is different in each panel.

rapidly than either ECCSD(T) or EMP2.99

To test this, we repeated the XSAPT + MBD calcu-
lations on the S66 dimers, using the def2-QZVPD basis
set to evaluate all of the terms in eq. 1 except for δEHF,
for which we use a smaller basis set. The smaller basis
set is used both for the supramolecular HF calculation
(for ∆EHF

int ) and to solve the coupled-perturbed equa-

tions that are used to obtain E
(2)
ind,resp + E

(2)
exch-ind,resp in

eq. 4. Table 8 shows the error statistics for this hybrid
scheme, averaged over the S66 data set and using vari-
ous choices for the smaller (δEHF) basis set, and Fig. S2
shows the individual errors across S66 for a selection of
basis sets. Even when δEHF is evaluated with a basis set
as small as 6-31G*, the errors (with respect to the full
def2-QZVPD result) are uniformly < 1 kcal/mol. Av-
erage errors with respect to the CCSD(T)/CBS bench-
marks, using def2-QZVPD for all the terms except δEHF,
are all ≈ 0.4 kcal/mol (see Table 8), using a variety of

small basis sets to evaluate δEHF.

Timing data for these hybrid calculations are shown in
Fig. 9 using the largest of the S66 systems, uracil dimer.
These data demonstrate the dramatic speedups that are
afforded by this simple hybrid procedure. If δEHF is eval-
uated using def2-ma-SVPD or 6-31+G(d), with all other
parts of the calculation performed using def2-QZVPD,
then the total cost of the calculation is reduced by 3.8×
when either 6-31+G(d) or def2-ma-SVPD is substituted
for def2-QZVPD to evaluate δEHF. This substitution in-
troduces an error of < 0.1 kcal/mol. The speedup can
be expected to improve as system size increases, since
the cost of the δEHF correction scales with dimer size
whereas other parts of the XSAPT procedure scale only
with monomer size, meaning that the δEHF calculation
will constitute an increasing fraction of the total cost as
the system grows larger. This will be evident in the tim-
ing data presented below for a much larger supramolec-
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Fig. 9: (a) Total CPU time and (b) wall time for a XSAPT + MBD/def2-QZVPD calculation of uracil dimer (shown), using
a hybrid approach in which the δEHF correction is evaluated using a smaller basis set (as indicated). All calculations were
performed on a single 28-core node and the time (in hours) is indicated at the top of each bar.

Table 8: Accuracy of XSAPT + MBD/def2-QZVPD for the
S66 Data Set, Using a Smaller Basis for δEHF.

Basis Set MAE (kcal/mol)

for δEHF vs. CCSD(T)/ vs. XSAPT + MBD/

CBSa def2-QZVPDb

6-31G(d) 0.36 0.12

6-31+G(d) 0.37 0.06

def2-ma-SVP 0.36 0.11

def2-ha-SVP 0.38 0.07

def2-SVPD 0.38 0.07

def2-ma-TZVP 0.39 0.03

def2-ha-TZVP 0.40 0.02

def2-TZVPD 0.40 0.02

def2-ma-QZVP 0.40 0.00

def2-ha-QZVP 0.40 0.00

aMAE with respect to the CCSD(T)/CBS benchmark value of
Eint.

bMAE with respect to conventional XSAPT + MBD/def2-
QZVPD.

ular complex.

4.8. Results for Large Complexes. To complement
the small dimer and cluster systems examined above, we
next present two examples of XSAPT + MBD calcula-
tions on much larger systems: coronene dimer, which is
one of the dispersion-bound systems in the L7 data set,86

and a DNA–ellipticine intercalation complex100 that has
become something of a standard test system in noncova-
lent quantum chemistry.20,54,56,101–103 The latter system
contains 157 atoms including the ligand, two hydrogen-
bonded base pairs, and the sugar/phosphate backbone.

In the calculations presented below, the ellipticine lig-
and (33 atoms) is treated as one monomer and the entire
double-stranded DNA model as a second monomer (with
124 atoms and −2 charge).

These two systems are interesting in part because there
is a discrepancy in both cases between various bench-
mark interaction energies available in the literature. For
the DNA intercalation complex, a recent CCSD(T)/CBS
benchmark (Eint = 38.0±2.2 kcal/mol103) is inconsistent
with an older quantum Monte Carlo (QMC) estimate
(Eint = −33.6 ± 0.9 kcal/mol102), even after account-
ing for the reported uncertainties in both values. For
coronene dimer, the QMC benchmark (Eint = −18.1 ±
0.8 kcal/mol104) and the CCSD(T)/CBS benchmark
(Eint = −20.93 ± 0.44 kcal/mol103) remain 1.6 kcal/mol
apart after accounting for the uncertainties, although the
smaller uncertainty in the CCSD(T)/CBS value in this
case means that the two values of Eint are not so far
apart as they are for the DNA intercalation complex.
A few other examples where QMC calculations are in-
consistent with CCSD(T)/CBS values have also been re-
ported recently,104,105 and it is unclear to us which val-
ues are more reliable. QMC calculations are subject to
an unknown fixed-node error that is not reflected in the
statistical uncertainty, while the CCSD(T)/CBS bench-
marks are computed using the domain-localized pair nat-
ural orbital (DLPNO) approximation.106–108 For nonco-
valent interactions, this approximation is especially sen-
sitive to numerical thresholds,109 although this has been
taken into consideration in the benchmark calculations
cited above. Accuracy of the DLPNO approximation is
also sensitive to system size.110

For these large systems, the δEHF correction is the
most time-consuming part of an XSAPT calculation and
the mixed-basis approach introduced above stands to
yield considerable savings. We therefore benchmark this
approach for these larger systems, using a variety of small
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Table 9: Accuracy of the Mixed-Basis δEHF Approach for
Large Complexes.a

Basis Set (coronene)2 DNA/ellipticine
for δEHF δEHF errorb δEHF errorc

6-31+G(d) −1.82 0.24 −2.90 0.27
6-311+G(3df,2pd) −2.04 0.03 −3.15 0.01
6-311++G(3df,2pd) −2.04 0.03 −3.15 0.01

def2-SVP −1.75 0.31 −2.63 0.53
def2-ma-SVP −1.79 0.30 −2.70 0.47
def2-ha-SVP −1.77 0.29 −2.87 0.29
def2-SVPD −1.77 0.30 −2.87 0.29

def2-TZVP −2.04 0.03 −3.24 0.07
def2-ma-TZVP −2.05 0.02 −3.25 0.09
def2-ha-TZVP −2.06 0.01 −3.28 0.12
def2-TZVPD −2.06 0.01 −3.16 0.00

jun-cc-pVDZ −1.99 0.08 −3.07 0.05
jul-cc-pVDZ −2.00 0.06 −3.21 0.04
aug-cc-pVDZ −2.00 0.07 −3.22 0.10

jun-cc-pVTZ −2.06 0.01 −3.17 0.004
jul-cc-pVTZ −2.06 0.00 —d —d

aAll values are in kcal/mol. bWith respect to the def2-ma-QZVP
value, δEHF = −2.07 kcal/mol. cWith respect to the def2-TZVPD
value, δEHF = −3.16 kcal/mol. dOmitted for reasons of cost.

basis sets to evaluate δEHF; see Table 9. With only one
exception, errors in δEHF are ≤ 0.3 kcal/mol for each of
the smaller basis sets that we test, as measured with re-
spect to the value computed in the largest basis set that
is practical in either case. The one slightly larger error
(of 0.5 kcal/mol) occurs when def2-SVP is used to eval-
uate δEHF for the DNA–ellipticine complex. Given the
−2 charge on the DNA backbone, this would seem to be
an inappropriate choice and is included here mostly for
completeness, although it is interesting that the δEHF

error remains rather small even in the absence of any
diffuse functions at all. Based on these tests, we recom-
mend 6-31+G(d) for the δEHF correction, as the error is
< 0.3 kcal/mol but this basis is much more efficient than
any of the others that are listed in Table 9.

We now turn to total interaction energies for these
large complexes, using 6-31+G(d) to evaluate δEHF. (Al-
though we have large-basis benchmarks for δEHF, this
allows us to present timing data for realistic applications
using the mixed-basis procedure.) Interaction energies
and timing data for DNA–ellipticine are presented in Ta-
ble 10, using a variety of basis sets for the other energy
components besides δEHF.

Only the highest-quality basis sets that we can afford
for this system, def2-TZVPD and jun-cc-pVTZ, afford in-
teraction energies that begin to approach the CCSD(T)/
CBS benchmark, although even these XSAPT + MBD
values are overbound by ≈ 1.7 kcal/mol in the absence
of the δEHF correction. When that correction is in-
cluded (δEHF = −2.9 kcal/mol), the XSAPT + MBD
interaction energy moves even further away from the
CCSD(T)/CBS value, and further still from the QMC

Table 10: XSAPT + MBD Results for the DNA–Ellipticine
Intercalation Complex.

Basis Seta
Eint (kcal/mol) Timec

sans δEHF with δEHF
b (hours)

6-311+G(3df,2pd) −43.2 −46.1 603.6

6-311++G(3df,2pd) −42.6 −45.5 621.0

def2-SVP −61.3 −64.2 56.6

def2-ma-SVP −55.7 −58.6 69.3

def2-ha-SVP −54.1 −57.0 121.4

def2-SVPD −54.1 −57.0 143.6

def2-TZVP −42.9 −45.8 199.4

def2-ma-TZVP −41.1 −44.0 267.7

def2-ha-TZVP −40.5 −43.4 586.2

def2-TZVPD −40.4 −43.3 636.7

jun-cc-pVDZ −43.8 −46.7 133.8

jul-cc-pVDZ −43.3 −46.2 232.3

aug-cc-pVDZ −43.2 −46.1 322.1

jun-cc-pVTZ −40.3 −43.2 995.1

CCSD(T)/CBSd −38.6 ± 2.2 —

QMCe −33.6 ± 0.9 —

aCalculations performed at XSAPT + MBD level except where in-
dicated, using the listed basis set for all parts of the calculation ex-
cept δEHF. bThe δEHF calculation is performed using 6-31+G(d).
cAggregate time on 28 processors including the time to evaluate
δEHF, which is 41.2 hours in each case. dDLPNO-CCSD(T)/CBS
value from Ref. 103. eFixed-node diffusion Monte Carlo value, from
Ref. 102.

reference value, which is less strongly bound. Neverthe-
less, these XSAPT + MBD values with triple-ζ basis sets
and including δEHF represent the highest-level XSAPT
methods that have been applied to this system, and this
set of calculations appears to reach a consensus value of
Eint ≈ −43.3 kcal/mol for XSAPT + MBD in the large-
basis limit. The origins of the discrepancy with respect to
either the DLPNO-CCSD(T)/CBS or the QMC bench-
mark remains a topic for further investigation.

Analogous XSAPT + MBD results for coronene dimer
are presented in Table 11. For the Karlsruhe basis sets,
the difference between minimal and full augmentation is
mostly insignificant (equal to 1.0 kcal/mol at the double-
ζ level but much smaller in larger basis sets), whereas the
difference between jun-cc-pVXZ and aug-cc-pVXZ (X =
D or T) is completely insignificant. It is worth noting
that jun-cc-pVXZ retains some higher-angular momen-
tum diffuse functions beyond minimal augmentation and
these appear to be adequate to afford an interaction en-
ergy that is converged with respect to inclusion of further
diffuse functions. The calculations appear to converge to
a value |Eint| = 21–22 kcal/mol in the absence of the
δEHF correction, or |Eint| = 23–24 kcal/mol when δEHF

is included. The latter value represents what is in prin-
ciple the most complete version of XSAPT + MBD that
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Table 11: XSAPT + MBD Results for Coronene Dimer.

Basis Seta
Eint (kcal/mol) Timec

sans δEHF with δEHF
b (hours)

6-311+G(3df,2pd) −25.8 −27.7 81.6

6-311++G(3df,2pd) −25.6 −27.5 82.6

def2-ma-SVP −31.1 −32.9 12.0

def2-ha-SVP −32.2 −33.9 19.2

def2-SVPD −32.1 −33.9 22.7

def2-ma-TZVP −20.5 −22.3 50.4

def2-ha-TZVP −20.7 −22.5 89.3

def2-TZVPD −20.8 −22.6 106.8

def2-ma-QZVP −21.4 −23.3 462.1

def2-ha-QZVP −21.3 −23.2 750.3

def2-QZVPD −21.1 −22.9 850.8

jun-cc-pVDZ −27.2 −29.0 21.1

jul-cc-pVDZ −26.8 −28.6 37.2

aug-cc-pVDZ −27.2 −29.0 45.5

jun-cc-pVTZ −22.4 −24.2 146.8

jul-cc-pVTZ −22.3 −24.2 316.9

aug-cc-pVTZ −22.2 −24.0 415.1

CCSD(T)/CBSd −20.93 ± 0.44 —

QMCe −18.1 ± 0.8 —

aCalculations performed at XSAPT + MBD level except where in-
dicated, using the listed basis set for all parts of the calculation ex-
cept δEHF. bThe δEHF calculation is performed using 6-31+G(d).
cAggregate time on 40 processors including the time to evaluate
δEHF, which is 7.3 hours in each case. dDLPNO-CCSD(T)/CBS
value from Ref. 103. eFixed-node diffusion Monte Carlo value, from
Ref. 104.

we have applied to this system, yet remains somewhat
overbound with respect to the DLPNO-CCSD(T)/CBS
benchmark (|Eint| = 21 kcal/mol103). As in the DNA–
ellipticine case, the QMC benchmark is somewhat less
strongly bound (|Eint| = 18 kcal/mol104).

For both of the large systems examined in this sec-
tion, inclusion of the δEHF correction worsens the agree-
ment with the benchmarks. Reasons for this are un-
clear. In small-molecule benchmarks, δEHF has its most
important effects on hydrogen-bonded systems whereas
this correction is negligible for dispersion-dominated
systems.42 Although neither (coronene)2 nor the DNA in-
tercalation complex involves hydrogen bonding, the cor-
rection is 2–3 kcal/mol (and therefore not negligible) in
these large systems. It is worth noting the hybrid nature

of the δEHF correction in XSAPT: E
(2)
ind+E

(2)
ind-disp in eq. 2

is computed using DFT (tuned LRC-ωPBE functional),
whereas δEHF (eq. 4) is computed using HF theory. Al-
though this mixed procedure has been carefully examined
in small systems,42 it is possible that those benchmarks
misrepresent the behavior in larger systems. This re-
mains a topic for further investigation.

Examining the timing data for these large supramolec-
ular complexes (Tables 10 and 11), it is clear that the
cost can be reduced substantially by trimming the dif-
fuse functions. For coronene dimer, the change from
def2-QZVPD to def2-ma-QZVP is accompanied by a
0.3 kcal/mol (or 1%) increase in the interaction energy
and a 2× speedup. The change from def2-TZVPD to
def2-ma-TZVP also changes the interaction energy by
0.3 kcal/mol and also results in a 2× speedup. The
“sweet spots” for this system would appear to be def2-
TZVPD or jun-cc-pVTZ, for which the interaction en-
ergies are within 1 kcal/mol of the def2-QZVPD result
but the cost is less (in either case) than that associated
with def2-ma-QZVP. As applied to the DNA–ellipticine
complex, these same two basis sets appear to afford con-
verged results, to the extent that we can tell without
prohibitively expensive quadruple-ζ calculations.

Examining lower-cost alternatives to def2-TZVPD or
jun-cc-pVTZ, it seems that def2-SVPD is wholly inad-
equate, even if it was able to function as a stand-in for
triple-ζ basis sets in some small-molecule complexes. The
jun-cc-pVDZ basis is better (and 7× faster than jun-
cc-pVTZ) but overestimates the XSAPT + MBD/jun-cc-
pVTZ interaction energy by 3.5 kcal/mol (or 9%) for
the DNA complex and by 4.8 kcal/mol (21%) for the
coronene dimer.

5 Conclusions

In this comprehensive assessment of basis-set behav-
ior for the XSAPT, SAPT0, and SAPT0(KS) methods,
we have demonstrated that the energy components Eelst,
Eexch, Eind, and Edisp converge in different ways with re-
spect to the underlying Gaussian basis set. The XSAPT
approach20,54 replaces conventional second-order disper-
sion with a model that is both cheaper and more ac-
curate: either MBD,55,56 or else aiD3.48,54 The for-
mer is a first-principles, density-dependent description of
dispersion,69,70 but one that substantially mitigates the
basis-set dependence of Edisp, which for XSAPT + MBD
is converged (or nearly converged) already in double-ζ
basis sets. In XSAPT + aiD3, the classical dispersion
potential has no basis-set dependence at all. In contrast,
for conventional SAPT or MP2 calculations, dispersion
exhibits the slowest convergence with respect to basis set
amongst all the energy components; this was a motivat-
ing factor in the early development of XSAPT.52

With the basis-set dependence of Edisp thus rendered
manageable, it is no longer clear that a compromise (or
“Pauling-point”) basis set such as jun-cc-pVDZ, which
is often used for conventional SAPT0,25,42 is the best
choice for hybrid XSAPT-type methods. Much of the
present work has therefore been dedicated to finding ba-
sis sets that afford converged results for all four energy
components. A general trend across all of the energy
components is that diffuse functions are important, even
in systems where the monomers are charge-neutral. This
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is an important observation, given that (in our experi-
ence) many computational chemists are hesitant to in-
clude diffuse functions, presumably for reasons of cost.
Data presented herein make it clear that this omission
has deleterious consequences for accuracy. Notably, this
is true for the perturbative components of XSAPT (Eelst,
Eexch, and Eind) that have identical forms as compared
to the SAPT0 method, hence our results underscore the
need for diffuse functions in conventional SAPT calcula-
tions as well.

As compared to electrostatics or dispersion, the ex-
change and induction energies are more sensitive to the
choice of basis set and these are not converged un-
less triple-ζ basis sets are used. Dunning’s correlation-
consistent basis sets can certainly be used for this pur-
pose, but insofar as hybrid XSAPT methods have not
been designed with the intention to extrapolate to the
complete-basis limit, the Dunning basis sets are more
expensive than other alternatives that afford similar ac-
curacy. Karlsruhe “def2” basis sets work well in this ca-
pacity, although we find that Pople basis sets with addi-
tional polarization functions, such as 6-311+G(3df,2pd),
can also provide high-quality results, comparable to def2-
TZVPD in many cases. The use of Pople basis sets is
sometimes maligned in modern electronic structure the-
ory but they are very efficient in certain quantum chem-
istry codes that can take advantage of sp shells. As
applied to Cl−(H2O)28, for example (with Cl− as one
monomer and the water cluster as the other), XSAPT
calculations with 6-311+G(3df,2pd) afford a 2× speedup
over def2-TZVPD despite the fact that the Pople basis
set has 253 more functions! The 6-311+G(2df,2p) basis
set affords a 5× speedup over def2-TZVPD, and both of
these Pople basis sets afford interaction energies within
0.5 kcal/mol of the def2-TZVPD value.

Further speedups can be obtained by exploiting separa-
bility of the SAPT energy decomposition to evaluate dif-
ferent energy components at different levels of theory. A
preliminary version of this idea, which is trivial to imple-
ment, is to use a smaller basis set to evaluate δEHF, the
correction for induction effects beyond second-order per-
turbation theory. We find that a minimally-augmented
double-ζ basis, such as 6-31+G(d) or def2-ma-SVP (the
latter of which is introduced as part of the present work)
is sufficient to evaluate δEHF, which is defined by energy
difference and thus converges rapidly. For quadruple-ζ
calculations, this mixed-basis procedure affords speedups

of 3–4×.

That said, for dimers of charge-neutral complexes
there is little reason to push XSAPT to quadruple-ζ ba-
sis sets and we find that a good catch-all basis set is
def2-TZVPD, although 6-311++G(3df,2pd) also works
very well for charge-neutral monomers but exhibits much
larger errors for systems containing ions. For ionic sys-
tems, where induction effects are very large, best results
are obtained using def2-ma-QZVP for anions and def2-
QZVPD for cations, although def2-TZVPPD affords re-
sults that are only slightly less accurate, with MAEs that
are about 0.4 kcal/mol larger.

The conclusions outlined above are drawn from tests
on small dimers where it is possible to use basis sets
of quadruple-ζ quality. Tests on two larger systems,
namely, a DNA intercalation complex with 157 atoms
and the coronene dimer, (C24H12)2, appear to indicate
that def2-TZVPD and jun-cc-pVTZ results are essen-
tially converged. Unlike the results for smaller systems,
such as the S22 and S66 dimers where XSAPT + MBD
exhibits an accuracy of ∼ 1 kcal/mol with respect to
CCSD(T)/CBS benchmarks, in these larger systems the
XSAPT + MBD value of |Eint| is 2–3 kcal/mol larger
(more strongly bound) as compared to the CCSD(T)/
CBS result. The latter benchmark is itself is some-
what more strongly bound than alternative QMC bench-
marks. Agreement with the benchmarks improves if the
δEHF correction is omitted, for reasons that are unclear
but which warrant further study. Given that individual
XSAPT + MBD energy components for the S22 dimers
are in good agreement with SAPT2+(3)/aug-cc-pVTZ
benchmarks, the origin of these discrepancies for larger
systems remains an open question.
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mark database of accurate (MP2 and CCSD(T) com-
plete basis set limit) interaction energies of small model
complexes, DNA base pairs, and amino acid pairs. Phys.
Chem. Chem. Phys. 2006, 8, 1985–1993.

88 Flick, J. C.; Kosenkov, D.; Hohenstein, E. G.; Sher-
rill, C. D.; Slipchenko, L. V. Accurate prediction of non-
covalent interaction energies with the effective fragment
potential method: Comparison of energy components to
symmetry-adapted perturbation theory for the S22 test
set. J. Chem. Theory Comput. 2012, 8, 2835–2843. Erra-
tum: J. Chem. Theory Comput. 10, 4759–4760 (2014).

89 Bultinck, P.; Ayers, P. W.; Fias, S.; Tiels, K.; Van
Alsenoy, C. Uniqueness and basis set dependence of it-
erative Hirshfeld charges. Chem. Phys. Lett. 2007, 444,
205–208.

90 Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbó-
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proved density dependent correction for the description
of London dispersion forces. J. Chem. Theory Comput.
2013, 9, 4293–4299.
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