Concise syntheses of GB22, GB13 and himgaline by cross-coupling and complete reduction

Eleanor M. Landwehr, Meghan A. Baker, Takuya Oguma, Hannah E. Burdge, Takahiro Kawajiri, Ryan A. Shenvi*

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

ABSTRACT: Class III neuroactive metabolites from the bark of Galbulimima belgraveana occur in variable distribution and are not easily procured by chemical synthesis. Here we decrease the synthetic burden of himgaline to nearly one-third of the prior best (7–9 vs. 19–31 steps) by cross-coupling high fraction aromatic (Fsp3) building blocks followed by complete, stereoselective reduction to high-fraction sp3 (Fsp3) products. This short entry into GB alkaloid space allows its extensive exploration and biological interrogation.

Extracts from Galbulimima belgraveana and baccata have yielded related neuroactive alkaloids classified by connectivity between piperidine and decalin domains (Galbulimima alkaloids, classes I–IV, Figure 1a). The simplest, class I GB alkaloid, himbacine (15 mcbits/atom), was found to antagonize muscarinic receptors M1–5 (rhodopsin-like GPCRs, subfamily A18) and its enantiomeric series was developed into Vorapaxar, an antagonist of related GPCR PAR-1 (subfamily A15). Classes II–IV have not been well-developed towards biological goals, but unpredictable bark content and potential for development have attracted significant interest from the synthetic community. GB alkaloid classes II and III have proved especially challenging to access (18–33 steps), although pioneering solutions have appeared (see SI for a full outline of each). The most concise syntheses by Movassagh, Sarpong and Ma obtained GB13 in 18–19 steps, and generated crucial data to aid our exploration. In search of a general strategy to access GB alkaloid chemical space, we targeted GB22 (3, Figure 1b), a low-abundance class III alkaloid (1.8 ppm, milled bark) whose aromatic ring might allow rapid entry and diversification to complex congeners. In this design, high fraction aromatic (Fsp3) intermediate 5 containing 15 sp2 atoms (11 mcbits/atom) might be reduced to generate the 11 tetrahedral stereocenters in the complex alkaloid himgaline (1, 21 mcbits/atom). This is a classical strategy, represented by the earliest alkaloid synthesis—conine in 1886—in which reduction converted a simple aromatic to a high Fsp3 alkaloid, albeit with one stereocenter whose stereochemistry was not controlled.

Success in himgaline would require relay of stereochemical configuration from the single stereocenter of 5 to nine prochiral carbons, including the concave-facing methine C–H bonds of GB13 (2). Although these hydrogens might epimerize to the concave face, the potential instability of extended enols and the existence of other low-energy configurations at ring junctions complicated our analysis of stereochemical equilibration (e.g. 9,10,15-epi-GB13 and 15-epi-GB13 are 2.6 kcal/mol and 1.3 kcal/mol lower in energy than GB13; see SI). Here we report unusually concise syntheses of GB22, GB13 and himgaline using an endo-selective attached-ring cross-coupling and arene reduction that significantly reduce the synthetic burden compared to prior art.

![Figure 1](image_url)

Figure 1. Representative Galbulimima (GB) alkaloids and synthetic analysis. a. Chemical space related to GB alkaloids. b. Through-class retrosynthetic analysis relating GB alkaloids. c. A high Fsp3 low Fsp3 intermediate undergoes rapid attached ring scission, but can be formed under mild cross-coupling conditions.
Retroynthetic analysis of GB22 (Figure 1b) identified an embedded attached-ring system, which could be unmasked by pyridine hydrogenation and intramolecular ketone arylation transforms. Despite the simplicity of 5, the most obvious disconnection—enone conjugate addition—fails. A direct Friedel-Crafts addition of 4 into the cyclohexadienone conjugate acid of 3 (Figure 2a) is prevented by preferential protonation of 4 and decomposition of 5 mediated by acids (see below). We thought that if the oxocarbenium ion were replaced with a β-keto carbon-centered radical, we might circumvent the Friedel-Crafts by interception of an arynickel complex (Figure 2c). β-Keto radical formation has been implicated in the ring-opening of siloxycyclopropanes by photoinduced electron transfer (PET) to 1,4-dicyanonaphthalene (DCN). Inspired by the recent success of photoredox/Ni dual catalytic cross-coupling platforms, we considered a system in which a photoexcited catalyst might oxidatively cleave a siloxycyclopropane with endo-selectivity, leading to arynickel capture and reductive elimination. Typically, transition-metal catalyzed arylation reactions of cyclopropanols and siloxycyclopropanols favor cleavage of the least hindered cyclopropane bond (path a, Figure 1c). In contrast, this electron transfer arylation would provide the opposite regioselectivity (path b).

Figure 2. The failure of a Friedel-Crafts conjugate arylation leads to the development of the corresponding radical cross-coupling.

Early efforts to develop a dual catalytic endo-selective siloxycyclopropane arylation identified the Doyle-MacMillan dual catalyst system of [Ir{dF(CF$_3$)}$_2$ppy]$_2$(dtbbpy)PF$_6$ and Ni(dtbbpy)Cl$_2$ as a good starting point (see Figure 3). Yields of coupled product 6 proved dependent on heat removal by air circulation and difficult to reproduce without tight control of temperature (B–D, Figure 3, were major byproducts). Ultimately, the reaction setup was altered to accommodate the use of a water bath for temperature control and heating. In combination with organic dyes like 3CzClIPN and 4CzIPN, the reaction proved more reliable and offered shorter reaction times, lower costs and more flexibility over conditions. Highly-polar solvents such as DMA and DMF were competent in this chemistry, but DMSO out-performed both. Additionally, carbonate bases were ineffective and phosphate bases proved inferior and less consistent than organic pyridine bases like 2,6-lutidine and 2-picoline. The yield of 6 decreased when we employed photocatalysts that had higher or lower oxidation potentials than 3CzClIPN. Finally, the reaction did not proceed in control reactions that excluded each of the reagents. These conditions were generally successful across a variety of siloxycyclopropanes and haloarenes. In all cases, the retrosynthetic disconnections using a conjugate addition transform would lead to a cyclohexadienone that exists as the phenol tautomer (B).

Figure 3. Variation from optimal conditions. 0.1 mmol bromobenzene, 3H NMR yield, (%yield of A), 0.25 mmol bromobenzene, with [Ir].

Neither electron- withdrawing nor electron-donating groups on the arene affected the efficiency of coupling and heterocycles coupled with efficiency (oxidant-sensitive arenes were problematic, however; see SI). The reaction translated from bromoarenes to 1-bromocyclohexene, albeit in reduced yield. Encouraged by the scope of this cross-coupling, especially with regard to heterocyclic substrates, we investigated entry into the synthesis of GB22 (Scheme 1). Ketone 7 is listed commercially and can be prepared in one step by condensation of 1,3-cyclopentanediene, methyl vinyl ketone, and ammonia. Conversion to siloxycyclopropane 8 was carried out via silyl enol ether formation, followed by Simmons-Smith cyclopropanation using the Shi modification. An alternative 3-step route to 8 from methyl 2-chloro-6-methyl-nicotinate was also developed to avoid the difficult purifications of the Simmons-Smith route. Cross-coupling with bromoaere 9a or 9b (2 steps from 1-naphthol) occurred cleanly, after optimization to account for ortho-substitution that leads to steric crowding of the intermediate arynickel. The higher yield of anisole 9b likely reflects the low bond dissociation enthalpy of C–H bonds in benzyl ether 9a.
The high F_w attached-ring intermediates 10a-b incorporated all the skeletal carbons of GB22, GB13 and himagoline, but the projected Friedel-Crafts arylation proved difficult. First, as suggested by positive Hammett parameters, 11 dominant inductive effects disfavor attack by the meta-position of the phenolic ether. Koltunov found benzene itself to cyclize efficiently with 5-quinolol using triflic acid (F_3CSO_2H), 18 but initial screens of strong Brønsted acids in our system delivered only small quantities of 4. Triflic acid instead competively protonated 10a-b and effected a retro-Friedel-Crafts arylation to cleave the hard-won C–C bond and return quinolol 3 (see Figure 1 and SI). Typical Lewis acids like AlCl_3 also did not yield 11 (see SI for a table of conditions). However, when inorganic aluminum Lewis acids were mixed with hexafluorosopropanol (HFIP), tetracycle 4 was finally observed, albeit in low yield, along with 3. We suspect that an aluminum species such as Al[OCH(CF_3)_2]_2Cl, might act as an efficient Lewis acid 32 or hydrogen-bonding catalyst. Minimization of strong Brønsted acidity (i.e. HCl liberation) was accomplished by adding diethylaluminium chloride to HFIP, which quickly and exothermically evolved gas (likely
ethane) to generate a new complex, tentatively assigned as Al[OCH(CHF)₂]₂Cl and its aggregates. The mechanism of cyclization may involve acidification of HFIP, formation of a strong double hydrogen-bond donor bridged by aluminum, or formation of a strongly Lewis acidic complex. HFIP alone did not promote any reaction of 2. This procedure led to clean and reproducible cyclization of the acid-labile attached ring as either the parent phenol 4 (52%) or its methyl ether 11 (86%), depending on use of 10a (to 4) or 10b (to 11).

Both 4 and 11 could be hydrogenated over Rh/Al₂O₃ with exquisite stereocontrol to 12a/b (other diastereomers not detected), by analogy to related work on GB13 wherein a larger, pre-saturated decalin motif provided steric shielding. Here, the benzene nucleus was unaffected by rhodium-catalyzed hydrogenation, but despite its planarity, small size and ability to adsorb to metal surfaces, it efficiently blocked the concave face of the pyridine ring. Whereas 12a could be N-methylated (CH₃O (aq), NaCNBH₃) to GB22 directly, 12b required demethylation by BBr₃ (75%), resulting in one more operation than the benzyl ether series, but almost double the yield (16% vs. 29%, 3 vs. 4 steps). ¹H- and ¹³C-NMR spectra of synthetic GB22 were identical to those reported by Lan and Mander (see SI).

The next arené reduction benefited from retention of the methyl ether in 12b and probed the role of the piperidine ring in control of stereochemistry at the incipient decalone. Birch reduction (Li⁺ or Na⁺ in NH₄ (l)) and electrochemical reduction proved unsuccessful, but Benkeser reduction (Li⁺ in MeNH₂, THF/ι-PrOH) was unique to effect clean reduction of the aniseole. Proton source and metal proved crucial. MeOH, EtOH and ι-BuOH did not promote reduction, and neither was Na⁺ effective. The recently reported Koide reduction (Li⁺, ethylenedia mine, THF) worked extremely well and yielded similar amounts of product to Li⁺/MeNH₂ with greater operational ease (see SI). A single diastereomer and regioisomer predominated (14, for X-ray structure see SI), resulting from intermolecular protonation of C10 from the convex face, despite the potential for intramolecular proton transfer to C9 from the piperidine N–H, modeled only 2.46 A apart in 12a (X-ray). Minor byproduct pathways included demethylation (to 12a), over-reduction of the arene and ca. 10% of a regioisomer. Hydrolysis of 14 with 2M aqueous HCl, followed by basification (4M NaOH) led to GB13 in 71% yield, with each of the remaining methine stereocenters adopting the desired configuration. Only a single methine (C10) positioned its hydrogen to the convex face, whereas two new stereocenters (C9, C15) derived from prochiral, planar carbons that projected hydrogens inward. This stereochemistry may reflect, in part, the thermodynamic preferences of ring-tautomer (aza-Michael product) 16-oxo-himgaline (15), which forms spontaneously under acidic conditions. Whereas the decalin cis-ring fusion of GB13 is calculated to be more stable by 1.3 kcal/mol, the trans-ring fusion of 16-oxo-himgaline is lower in energy by 2.7 kcal/mol (see SI). We speculate that the piperidine ammonium may deliver a proton internally to the enone γ-carbon C9 since β,γ to α,β-enone isomerization occurs under acidic conditions and an extended enol tautomer is occluded on its concave face by this ammonium (see 14 X-ray, SI). The final stereogenic methine C–H was installed according to a one-step protocol, as first demonstrated in a 33-step synthesis of himgaline. Thus, 9 prochiral carbons of high Fₘ intermediate 10b was converted in 3 steps to 9 new stereocenters (8 carbon, 1 nitrogen) by relay of increasing stereochemical information through simple reductions. To access pure GB13, 14 can be chromatographed to remove reduction byproducts prior to acid hydrolysis, but this is unnecessary for conversion to pure himgaline, resulting in a 7–9 step synthesis, depending on isolation of 14 and designation of official starting material (7 vs. cyclo pentane-1,3-dione vs. methyl 2-chloro-6-methyl-nicotinate, see SI and Figure 5).

Himgaline is constitutionally related to cross-coupled product 10b by these iterative additions of H₂, excluding the O-methyl embedded in starting material 9b. Since hydrogen atoms are typically omitted from complexity calculations, the progression of high Fₘ intermediates to 100% Fₘ³ (himgaline) is exclusively due to information carried by molecular topology (C–C, C–N, C–O bonds) and chirality content. Here, the 260.16 mebits of des-methyl 10b increase to 477.83 over 5 steps, or 43.5 mebits per step. Visualized as a walk through chemical space (Figure 5), the synthesis begins proximal to commercial space (low molecular weight, low complexity and low Fₘ³ /high Fₘ), converges early by cross-coupling and then rapidly reaches the high complexity, weight and Fₘ³ of himgaline, typical of remote GB alkaloid space. In contrast, the shortest prior synthesis of himgaline (formal, racemic, 19 steps) varies 148.45 mebits over 15 steps (9.9 mebits per step) from the latest point of convergence. Each route allows its own unique exploration of different areas of chemical space. However, recognition that the key methine C–H stereocenters can be stereoselectively appended from prochiral sp² carbons of an aromatic himgaline core simplifies access to GB alkaloid space in a clear and quantifiable way. Whereas this analysis focuses on navigation to high complexity chemotypes, we anticipate that GB structural chemical space can be better parameterized to relate to the biological targets and relative potencies among family members. Given the structural similarity among the 25 Class II and III congeners, this approach is likely to prove general and finally provide a means to deconvolute the targets, functions and translational potential of the GB alkaloids.
ACKNOWLEDGEMENTS

We thank Leo Smith (Concordia College, Moorhead) for assistance with the synthesis of S and Sarah Jane Hill for assistance with Matplotlib. We thank Professor Nathan Jui for sending 3D-printed racks for photochemical reactions and Cheng Bi for help with high pressure hydrogenation. We thank Professor Hans Renata and Dr. Steven Crossley for proofreading. Arnie Riehngold, Milan Gembicky and Erika Samolova are acknowledged for X-ray crystallographic analysis. Support was provided by the National Institutes of Health (R35 GM122606), the National Science Foundation (CHE 1856747), the Skaggs Graduate School (fellowship to E.M.L.), Bristol Myers Squibb (fellowship to M.A.B.), Jiangsu Industrial Technology Research Institute (JITRI) (support for M.A.B. and H.E.B.), Shionogi & Co., Ltd. (support for T.O.) and the Japan Society for the Promotion of Science (JSPS, Number: 17J08551 for T.K.).

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures, copies of NMR spectra, X-ray structure reports, full outlines of prior syntheses, coordinates and Matplotlib Python code.

AUTHOR INFORMATION

Corresponding Author

*rshevi@scripps.edu

Notes

The authors declare no competing financial interest.

*These authors contributed equally.

Competing Interests: A provisional patent has been filed.

REFERENCES

(24) Bume, D. D.; Pitts, C. D.; Lectka, T. Tandem C–C Bond Cleavage of Cyclopropanes and Oxidative Aromatization by

TOC Graphic

4 steps 10 hydrogens complete reduction

40% **F**sp³ 100% **F**sp³