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Quantitative structure-activity relationship models built on diverse scaffolds of RNA-

targeted small molecules accurately predict binding affinities and kinetic rate constants. 

 

 
Abstract 
The diversity of RNA structural elements and their documented role in human diseases 

make RNA an attractive therapeutic target. However, progress in drug discovery and 

development has been hindered by challenges in the determination of high-resolution 

RNA structures and a limited understanding of the parameters that drive RNA recognition 

by small molecules, including a lack of validated quantitative structure-activity 

relationships (QSAR). Herein, we developed QSAR models that quantitatively predict 

both thermodynamic and kinetic-based binding parameters of small molecules and the 
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HIV-1 TAR model RNA system. A set of small molecules bearing diverse scaffolds was 

screened against the HIV-1-TAR construct using surface plasmon resonance, which 

provided the binding kinetics and affinities. The data was then analyzed using multiple 

linear regression (MLR) combined with feature selection to afford robust models for 

binding of diverse RNA-targeted scaffolds. The predictivity of the model was validated on 

untested small molecules. The QSAR models presented herein represent the first 

application of validated and predictive 2D-QSAR using multiple scaffolds against an RNA 

target. We expect the workflow to be generally applicable to other RNA structures, 

ultimately providing essential insight into the small molecule descriptors that drive 

selective binding interactions and, consequently, providing a platform that can 

exponentially increase the efficiency of ligand design and optimization without the need 

for high-resolution RNA structures. 

 

Introduction 
Initiated in 2003, the ENCODE project1 revealed an unprecedented number of non-

protein-coding RNAs (ncRNAs), and their roles in the regulation of transcription, 

translation, genetic modification and RNA degradation have been subject of intense study 

in relation to human disease.2 ncRNAs have been found to be abnormally expressed in 

multiple disease phenotypes, including neurodegenerative diseases and metastatic 

cancers.3-6 The implications of these RNAs in disease pathogenesis underscore their 

potential roles as drug targets. To date, small molecules have been used to target various 

ncRNAs from several different organisms, including mammals, viruses, bacteria, and 

fungi.7-18 

 

While RNA is an attractive therapeutic target, some RNA properties pose intrinsic 

challenges, including: 1) limited chemical diversity of RNA relative to proteins; 2) the 

highly negatively charged backbone of RNA, and 3) the dynamic nature of RNA, which 

allows it to sample a wide population of conformers. In particular, the diverse and complex 

conformational dynamics of RNA increase the complexity of RNA structure determination, 

including that of RNA:ligand structures, ultimately hindering the development of predictive 

binding models as well as our understanding of the drivers of small molecule:RNA 
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recognition. The most successful discovery method for bioactive RNA-targeted small 

molecules has been focused screens, which require synthetic library curation based on 

prior knowledge of the biased chemical space of RNA-targeted small molecules.19 

Additionally, characterization of RNA-targeted small molecules often disregards binding 

kinetics, precluding a full understanding and optimization of binding behaviors of a 

compound. Many protein-targeted drugs are characterized by slow dissociation 

processes and prolonged target occupancy, supporting the significance of binding 

kinetics for in vivo activity.20  The design of compounds with kinetic selectivity will open a 

new avenue for RNA targeting and facilitate the hit-to-lead triage during hit optimization,21, 

22 yet few studies have demonstrated how to intentionally optimize RNA binding kinetics.23 

Overall, there are clear unmet needs in identifying potential RNA-targeted chemical 

probes and to rationally design small molecules with desired binding behaviors, including 

appropriate binding kinetics.  

 

To fully access the numerous potentially-druggable RNA targets, a rational tool for ligand 

design and comprehensive understanding of RNA:small molecule binding details is 

required. Recently, machine learning-aided mechanistic studies and ligand predictions 

have shown success in multiple complex tasks, including the design of enantioselective 

catalysts in organic synthesis and bioactive ligands for kinase inhibition.24-27 Among 

multiple computational tools, quantitative structure-activity relationship (QSAR) studies 

can pinpoint guiding principles for a specific  target  by correlating the experimentally 

observed binding properties with the molecular descriptors of the ligands.28-30 A robust 

and predictive QSAR model has been proven to be an efficient tool to predict activities of 

small molecule candidates and to drive hit optimization. Despite its success in protein-

based ligand design, however, few QSAR studies have been conducted for identifying 

RNA-targeted small molecules.31-33 While significant work has been done to explore key 

descriptors involved in RNA recognition,34-36 this existing data cannot be used as input for 

a QSAR approach targeting a specific RNA structure, as these data are derived from 

disparate methods and RNA targets.   
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Herein, we build a general workflow utilizing QSAR as predictive platform to connect 

molecular descriptors of a given ligand with its binding profiles against a specific RNA. 

The activities, including binding affinity (KD) and kinetic rate constants (kon and koff), were 

measured for molecules bearing multiple scaffolds via surface plasmon resonance (SPR). 

Model building was accomplished by combining representative data splitting, descriptor 

selection, and linear regression. Post-modeling assessment validated the statistical 

assumption for linear regression and defined the specific applicable domain for the QSAR 

model in future use. To the best of our knowledge, this constitutes the first example of a 

systematic empirical QSAR study conducted on various scaffolds against a specific RNA 

target. We anticipate that this framework can be readily extended to different RNA targets 

to facilitate the design and synthesis of novel RNA-targeted ligands. The workflow built in 

this study will contribute to improving the understanding of RNA:small molecule binding 

mechanisms and provide an efficient tool to rationally design new ligands for a given RNA 

target. 
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Results and Discussion 
Selection of RNA target and small molecule training set: We chose the HIV-1 

transactivation response (TAR) element (Figure 1a) as a suitable model system to 

develop our workflow as this well-validated antiviral target has been frequently screened 

against small molecules, providing us with numerous candidates for the training 

process.12, 37-39 In total, we selected 48 compounds in this study, including 29 reported 

TAR ligands and 19 compounds with known RNA-targeted scaffolds. These ligands could 

be classified into 5 categories, namely aminoglycosides (AGs), dimethyl amilorides40, 41 

(DMAs), diphenyl furans42, 43 (DPFs), diminazenes44 (DMZs) and nucleic acid dyes 

(Figure 1a). These ligands covered a range of binding behaviors with the aim of building 

a model that can be applied to the prediction of ligands with diverse chemical architecture.  

 

Figure 1 A. Sequence and structure of 5’ biotinylated HIV-1 TAR and representative chemical structures of the scaffolds 
used in this work. B. Kinetics map of 48 tested ligands, represented on 10-based logarithmic coordinates. The diagonal 
lines represent KD values calculated from koff/kon. Units of three parameters are shown. The rest of study used values 
based on these units.  
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Calculations of molecular descriptors: To begin, we obtained molecular information 

for each compound via quantitative calculation of their molecular descriptors. Each 

descriptor provides information on a physiochemical property of a compound, ranging 

from topological to electrostatic terms. For example, atomic connectivity, which 

represents topological connections within a molecule, was calculated using graph theory 

matrices, which lays the foundation of many other descriptors including related adjacency 

distance matrices as well as surface properties. In addition, many QSAR expressions in 

previous reports suggest that ligand binding preferences originate from non-covalent 

interactions exerted in the micro-space of the ligand.45 Hence conformation-dependent 

3D descriptors were included to account for the spatial environment of the ligands, such 

as partial charges and potential energy. In total, we calculated 435 descriptors of each 

ligand.  

 

We also considered whether multiple species of a given molecule may exist at 

experimental conditions (Panel A, Scheme 1). Specifically, we evaluated protonation and 

tautomerization states for each ligand by distribution ratio as their population 

representation. For each state, potential conformations within 3 kcal/mol of the lowest 

energy conformation, as determined by the Molecular Operating Environment (MOE) 

software, were selected. The descriptor value of a specific ligand state was determined 

as the Boltzmann-weighted average of these conformations. Finally, the descriptor value 

of each ligand is the weighted average of the results from multiple states based on 

distribution ratio mentioned before. While the presence of multiple species and/or 

conformations is often overlooked due to computational cost, accuracy of molecular 

descriptors is a prerequisite for reliable and robust QSAR models.  
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Scheme 1 Workflow of ensemble QSAR. Structure: Input molecules were searched for “protomers” and then searched 
on conformations of each protomer. Molecular descriptors were calculated for each conformation and averaged based 
on Boltzmann distribution. Activity: Small molecules binding HIV-1 TAR were characterized via SPR and parameters 
including KD, kon and koff were fitted globally. Modeling: With multiple data splitting and independent model training, the 
final prediction is given by the averaged predictions from multiple learners followed by model interpretation. 

 

 
Measurement of binding parameters: To evaluate the binding parameters of the small 

molecules against HIV-1 TAR, we utilized SPR to measure the kinetic rate constants and 

binding affinities. Kinetic analyses for the observed SPR curves were performed globally 
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for the entire concentration series (Panel B, Scheme 1). The kinetics map summarizes 

the distribution of kon, koff and KD along logarithmic coordinates (Figure 1b). All three 

parameters have a wide range of values spanning at least 2 log units, supporting the 

appropriateness for reliable QSAR modeling from a response variable perspective.46  

 

We next compared our kinetics data to a previous survey that showed RNA ligand 

association was generally slower than that for protein.47 The measured on and off rates 

values in our SPR data are similar in order of magnitude to the RNA:ligand values 

previously reported (Table 1).47 The overall association rate constant of an RNA-ligand 

pair for all three RNA-ligand sets listed in Table 1 (median: ~104 M-1s-1) was not only far 

below the diffusion limit (centered at 109 M-1s-1) but also suggested a generally slower 

binding than protein-ligand pairs (median: 6.6×106 M-1s-1).47 This slow RNA recognition 

was expected due to the existence of multi-conformation distribution in unbound RNA 

states, though some variation was observed between ligand classes. Specifically, in our 

HIV-1 TAR-ligand set, most of the fast association rates were observed for 

aminoglycosides, nucleic acid dyes and DPFs (kon: 104~105 M-1s-1), probably due to their 

strong electrostatic (aminoglycosides) or topologically matched pi-pi stacking interactions 

(dyes, DPFs). As moderate and weak binders in this set, DMAs were characterized by 

fewer potential protonation sites or less planar structure than other molecules, leading to 

overall slower binding rates. Rates of dissociation were comparable among the three 

RNA-ligand sets, with median values around 10-2 s-1. Comparing binding strengths 

between sets in Table 1, it was expected that RNA-ligand pairs with in vitro selected 

RNAs (e.g. aptamers) and naturally occurring RNAs that have evolved to bind small 

molecules (e.g. riboswitches and ribozyme) would have tighter binding than the ones in 

our dataset (Table 1). In our QSAR study, we covered a range of binding affinities to 

achieve a generalizable scope and aid the discovery of decisive descriptors for binding 

of diverse small molecules. 
Table 1 Median values of binding parameters from three sets of RNA-ligand interaction, values for in vitro-selected 
and naturally occurring RNA-ligands from ref 47. 

 kon (M-1 s-1) koff (s-1) Kd (M) 

RNA (in vitro-selected) - ligand (N=13)47  8.1 x 104 6.3 x 10-2 4.3 x 10-7 
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QSAR modeling: baseline model construction 
Data refinement 

We used the log transformed versions of KD, kon and koff as our response variables, as 

the transformed versions yielded residuals that better satisfy the normality assumption of 

linear regression models. To mitigate the redundancy of constant and intercorrelated 

descriptors, a descriptor pre-reduction was applied. First, constant descriptors that have 

more than 80% compounds sharing the same value were deleted.48 Next, intercorrelation 

between every descriptor pair was calculated by Pearson correlation coefficient (ρ). High 

intercorrelation (ρ > 0.95 or ρ < -0.95) between descriptors can cause unstable estimation 

of regression coefficients, sign-change problems and insignificance of regression 

coefficients.49 Therefore, multicollinearity (the occurrence of high intercorrelations among 

two or more descriptors) terms need to be deleted before multiple linear regression. 

Descriptors intercorrelated with multiple descriptors were deleted one-by-one based on 

the maximal number of multicollinearity terms. After several rounds, the maximal number 

of multicollinearity terms for any descriptor would be one, namely only pairwise 

intercorrelations left. In the remaining pairwise intercorrelations, the term with lower 

correlation to the response variable was deleted. The above procedure afforded 193 

refined descriptors in the lnKD and lnkon datasets, and 191 in the lnkoff dataset. 

 

Representative data splitting by Kennard-Stone algorithm 

A key consideration for QSAR with diverse substrates is the continuity of the energy 

landscapes created by the ligands, i.e. whether gradual changes in ligand properties are 

smoothly plotted along the target activity function.30, 50 While QSAR has been classically 

applied to molecules from the same scaffold (congeneric sets) to alleviate these concerns, 

several studies have reported successful continuous fields even with the use of diverse 

scaffolds.51-53 Appropriate splitting of the training and test sets is critical to achieving a 

smooth landscape that avoids local minima where the model would explain only a subset 

of the compound pool.54 For the model trained from the training set to be used to predict 

RNA (naturally occurring) - ligand (N=24)47 5.5 x 104 1.9 x 10-2 3.0 x 10-7 

HIV-1 TAR - ligand (N=48, used in this work) 3.8 x 104 7.9 x 10-2 5.0 x 10-6 
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unseen data in the test set, the distribution of the training set and test set molecules must 

be representative of the entire sample. To this purpose, we first applied principal 

component analysis (PCA) to reduce the dimension of the descriptor space. Then, the 

Kennard-Stone algorithm55 was utilized to maximize the representativeness of the 

selected sample with the whole dataset, and the slightly different descriptor space 

between lnKD/lnkon and lnkoff dataset did not alter the sampling results. This specific 

sampling method rather than random splitting was applied here due to the small sample 

size (48), which can guarantee that representative small molecules are chosen to achieve 

a uniform representation of the descriptor space, giving more confidence in future 

predictions of test set molecules that come from the same distribution of the training set 

(Figure 2A). The distribution of corresponding response variables (lnKD, lnkon and lnkoff) 

derived from SPR for training and test sets was visualized in a boxplot (Figure 2B). 
Sampling of lnKD dataset over descriptor space resulted in two subsets with the most 

representative distribution of the response variable, as seen by the similar range and 

median values. lnkon has moderately consistent distribution while lnkoff poorly matched 

the distribution. This result indicated that the performance order of QSAR models might 

be lnKD > lnkon > lnkoff, given the QSAR assumption that gradual changes in descriptor 

space lead to gradual changes in response variable. Importantly, the unique test set 

selected by Kennard-Stone algorithm contains diverse candidates from every scaffold 

(Figure 2C) and is thus a representative subset from the chemical structural perspective 

(Supporting information, Section A). 
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Figure 2 A. Locations of test set molecules in the 2D chemical space constructed from the first two principal 
components (29.9% and 20.8% of variance, respectively) of the whole dataset. B. Distribution of response variables 
for the test and training set molecules. C. Chemical structures of the test set molecules that selected with Kennard-
Stone algorithm, the slightly different descriptor space between lnKD/lnkon and lnkoff dataset did not alter the sampling 
result.  

QSAR model development and interpretation 

To obtain a predictive and interpretable model, we used multiple linear regression (MLR) 

in this QSAR study, followed by an assumption evaluation. Due to the limited observations 

but large number of descriptors, classical MLR could not afford a unique close-form 

solution. To reduce dimension of the data and find the most relevant descriptors, we 
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applied least absolute shrinkage and selection operator (lasso) for descriptor selection 

prior to MLR.56 Lasso has been widely used in QSAR studies to control the model 

complexity and increase the performance by applying a penalty constraint to the loss 

function that needs to be minimized during modeling.57, 58 Specifically, a hyperparameter 

λ controls the model complexity as larger λ leads to more descriptor shrinkage. The 

operator can remove irrelevant descriptors by shrinking the regression coefficients to zero 

and keeping the most relevant ones. After descriptor selection by lasso, exhaustive 

searches for all combinations from selected descriptors using MLR was performed. The 

maximal number of descriptors in a MLR model was set as seven based on the Topliss 

rule,59 namely that at least five compounds in the training set were required for adding an 

extra descriptor in the QSAR model. This exhaustive search afforded multiple model 

candidates, which were further screened by their performance on training and test sets, 

as well as statistical significance (p-value) of each descriptor involved. Additionally, the 

principle of “Occam’s razor” was followed to choose the model with fewer descriptors if 

two have similar level of performance.60  
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Figure 3 A. Coefficients of lnKD descriptors were shrunk as λ increased using lasso regression, each curve with different 
color represented a descriptor coefficient shrinkage, the top x-axis showed the number of descriptors with non-zero 
coefficients at specific λ value that indicated by the bottom x-axis. The best λ value (0.01) was determined by the 5-fold 
cross validation. B. Observed lnKD (both training and test set) was plotted with the value predicted by the MLR baseline 
model shown at top. C. Small molecules from the test set along with respective MLR-predicted lnKD value (in red italics) 
versus the observed values (in blue). 
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In detail, for lnKD modeling, lasso selection was applied to gradually shrink the size of the 

descriptor set, as hyperparameter λ increases (Figure 3A). The best λ was determined 

to be 0.01, as the result of 5-fold cross validation that aimed at minimizing the prediction 

biases or the mean cross-validated error. Using this λ value, the number of descriptors 

was shrunk to 35. These 35 descriptors formed the new descriptor space for exhaustive 

model search, from the simplest 2-parameter linear model to the most complex 7-

parameter linear model. These model candidates were first screened by their 

performance on the training and test set (R2 > 0.75, Q2 > 0.75), then the statistical 

significance of each descriptor for explaining the model (p-value < 0.05).  

The final model based on our selection process (Figure 3B) was found with below 

expression, which predicted lnKD values of our structurally diverse test molecules with 

high accuracy (Figure 3C): 

𝑙𝑛𝐾! = −10 − 0.015𝑃𝐸𝑂𝐸_𝑉𝑆𝐴_𝑃𝑂𝑆 + 0.054𝑣𝑠𝑎_𝑜𝑡ℎ𝑒𝑟 − 0.37𝑣𝑠𝑢𝑟𝑓_𝐷𝑊12+

1.7𝑣𝑠𝑢𝑟𝑓_𝐼𝐷3 (𝑅"#$%&%&'( = 0.77, 𝑄")*"( = 0.89) 

The model included four physicochemical descriptors (PEOE_VSA_POS, vsa_other, 

vsurf_DW12 and vsurf_ID3) with their physical meaning shown in Table 2. The negative 

coefficient of PEOE_VSA_POS explicitly suggested that non-negative electrostatic 

properties of the molecule helped to improve lnKD, which is consistent with the fact that 

RNA is overall negatively charged. Additionally, vsa_other describes the sum of van der 

Waals surface area of atoms typed as “other”. These “other” atoms are not H-bond 

acceptors, H-bond donors, acidic, basic, polar or hydrophobic residues, thus mostly 

referring to the surface area of carbon atoms near oxygen, nitrogen and halide atoms.61 

According to the model, decrease in vsa_other could favor tight binding for HIV-1 TAR. 

vsurf_DW12 is the contact distance between the physical location of first two hydrophilic 

energy interaction minima when a hydrophilic probe (OH2) interacts with the target 

molecule. The negative correlation of this descriptor indicated that high-affinity ligands 

have energy minima which are relatively distant from each other in 3D space, which is 

also consistent with a previous report.62 Interaction energy (integy) moment is a type of 

descriptor that resembles dipole moment, but instead of describing separation of the 

partial charge, integy moments express the unbalance between the center of mass of a 

molecule and the barycenter of its hydrophilic or hydrophobic (vsurf_ID) regions. 
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Specifically for vsurf_ID3, it is the vector pointing from the center of mass to the center of 

the hydrophobic regions that is calculated at -0.6 kcal/mol energy level.63 The positive 

correlation of this descriptor to lnKD suggested tight binding could be achieved by small 

molecules that possess hydrophobic moieties that are either close to the center of mass 

or they balance at opposite ends of the molecule.  

 
Table 2 Descriptors involved in 3 models and their physical meanings 

 

To investigate how molecular descriptors quantitatively impact the association process of 

HIV-1 TAR ligands, we performed lnkon modeling. Similarly, lasso selection afforded 16 

descriptors after regression coefficients shrinkage with optimized λ equaled to 0.22 

Descriptor name Physical meaning 

PEOE_VSA_POS Total positive van der Waals surface area. 

vsa_other van der Waals surface area (Å2) of atoms typed as "other”. Other: not H-

bond acceptors, H-bond donors, acidic, basic, polar or hydrophobic 

residues. 

vsurf_DW12 Contact distances of vsurf_EWmin1 and vsurf_EWmin2, vsurf_EWmin 

describes the lowest hydrophilic energy representing the distances, 

between the best three local minima of interaction energy when a water 
probe (OH2) interacts with the target molecule. 

vsurf_ID3 Hydrophobic integy moment calculated at -0.6 kcal/mol energy level. 

GCUT_PEOE_0 The GCUT descriptors are calculated from the eigenvalues of a modified 

graph distance adjacency matrix. Each (i,j) entry of the adjacency matrix 
takes the value 1/sqr(dij) where dij is the (modified) graph distance 

between atoms i and j. The diagonal takes the value of the PEOE partial 

charges. The resulting eigenvalues are sorted and the smallest 

(GCUT_PEOE_0), 1/3-ile, 2/3-ile and largest eigenvalues are reported. 

vsurf_DD23 Contact distances of vsurf_EDmin2 and vsurf_EDmin3, vsurf_EDmin 

describes the lowest hydrophobic energy representing the distances, 

between the best three local minima of interaction energy when a 

hydrophobic probe (DRY) interacts with the target molecule. 

a_base Number of basic atoms. 

a_nN Number of nitrogen atoms. 

vsurf_DD13 Contact distances of vsurf_EDmin1 and vsurf_EDmin3. 
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(Figure S2A). Further model search led to the identification of the model below (Figure 
S2B): 

𝑙𝑛𝑘+& = −12 − 27𝐺𝐶𝑈𝑇_𝑃𝐸𝑂𝐸_0 − 0.093𝑣𝑠𝑎_𝑜𝑡ℎ𝑒𝑟 + 0.42𝑣𝑠𝑢𝑟𝑓_𝐷𝐷23 +

0.59𝑣𝑠𝑢𝑟𝑓_𝐷𝑊12	 (𝑅"#$%&%&'( = 0.77, 𝑄")*"( = 0.77) 

This model included four physicochemical descriptors, namely GCUT_PEOE_0, 

vsa_other, vsurf_DD23 and vsurf_DW12 (Table 2). Two of them (vsa_other and 

vsurf_DW12) also appeared in the lnKD model, consistent with the correlation between 

lnKD and lnkon (𝜌,&-!,,&/"# = −0.82 ). GCUT_PEOE_0 encodes information of partial 

charge and atomic connectivity, supporting an important role for partial charge distribution 

on on-rate constants, though it is hard to directly deduce chemically intuitive information 

as it is the mathematical representation of atomic partial charge calculated from partial 

equalization of orbital electronegativities (PEOE) method combining atomic connectivity. 

The negative coefficient of this descriptor suggested decreased value of GCUT_PEOE_0 

could accelerate the association process. The contribution of vsa_other and vsurf_DW12 

followed the same trend identified in lnKD model, namely lower van der Waals surface 

area for atoms typed as "other” and more distant distribution of hydrophilic interaction 

energy minima would benefit fast association, thus favoring tighter binding. Finally, 

vsurf_DD23 is another surface property descriptor, describing the physical distance 

between the location of the second-lowest and third-lowest hydrophobic energy 

interaction that measured by a specific hydrophobic probe (DRY).64 The positive 

coefficient of this descriptor signified that by increasing the distance between these 

energy minima sites, the compounds were predicted to have faster association 

processes.  

 

We next assessed whether the above workflow could afford a predictive lnkoff model. In 

this case, lasso selection refined the descriptor set to only four descriptors, using the 

cross-validated best λ value (λ = 0.50). This shrinkage appeared to be too stringent as 

lasso regression equally penalized all the descriptor coefficients and suffered with biased 

estimates at this situation, namely descriptors with large coefficients were over-penalized 

and descriptors with small coefficients were not detected.65 Specifically, the combination 

of these four features poorly explained the data (𝑅"#$%&%&'( = 0.43, 𝑄")*"( = 0.38 ). We 
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adjusted the λ value (λ = 𝑒0(  ~	𝑒01 ) as a less stringent shrinkage to include more 

descriptors (Figure S2C) and found that when the descriptor vsurf_DD13 was included, 

the model performance could be greatly enhanced. The final model(Figure S2D) we 

found for explaining lnkoff is shown below: 

 

𝑙𝑛𝑘+22 = 2.0 − 0.69𝑎_𝑏𝑎𝑠𝑒 − 0.42𝑎_𝑛𝑁 + 0.27𝑣𝑠𝑢𝑟𝑓_𝐷𝐷13	 (𝑅"#$%&%&'( = 0.64, 𝑄")*"( = 0.61) 

 

This model matched that from an exhaustive search result using all 191 descriptors, 

suggesting that lasso was able to pick significant variables but sometimes needs fine 

tuning of the hyperparameter λ. In this model, the negative correlation between number 

of basic atoms (a_base) and the dissociation rate constants suggested that increased 

electrostatic interactions can slow ligand dissociation.  Introduction of nitrogen-containing 

groups may also increase the retention time as a negative correlation was found between 

number of nitrogen atoms (a_nN) and the dissociation rate constants. The correlation 

between these two descriptors was low (𝜌$$%&',$_&4 = 0.23), indicating that they contribute 

to the rate constant differently, probably through electrostatic interactions (a_base) and 

π-π stacking from nitrogen-containing heterocyclic rings (a_nN), respectively. 

Additionally, vsurf_DD13 positively correlated with the off-rate constant, suggesting that 

decreasing the physical distance between the lowest and third-lowest hydrophobic energy 

interaction site will slow dissociation. Overall, however, regressions using lnkoff data could 

not afford a baseline model with comparable performance as above two models. This 

might be caused by a number of factors, including the poor representativeness of the 

selected subset in terms of the response variable distribution (Figure 2B) and the larger 

measurement variance as seen from different SPR replicates. Larger datasets are likely 

needed to precisely model the off-rate constants. Nonetheless, this data did show that 

QSAR can yield promising model for understanding dissociation process of HIV-1 TAR: 

small molecule recognition, assisting the design of ligands with prolonged retention time 

over the target. The success of training a predive and interpretable QSAR model for 

explaining different binding parameters of HIV-1 TAR ligands suggested that QSAR study 

could be a lens to investigate complicated macromolecular binding event and a guide for 

molecular design with specific response property. 
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Comparison with nonparametric ensemble tree methods 

To further evaluate the performance of MLR baseline models, we compared them to 

models constructed by ensemble tree methods, such as bagging and boosting. Tree 

methods use a flow-chart like structure to make predictions (leaf) based on the outcomes 

(branch) of the tests (nodes).66 By combining multiple decision tree models and making 

predictions from the averaged results, ensemble tree methods have been identified to 

improve the model performance and/or overcome the variance-bias tradeoff in 

prediction.67 However, the ensemble process increases the difficulty of explicit model 

interpretation when compared to the single parametric model such as the one given by 

MLR due to its aggregated model complexity. 

 

 
Table 3 Comparison of model performance built by different methods 

 

We started our comparison by building a single decision tree, which was the foundation 

of other ensemble-based models. Unlike MLR that needs a normality assumption to 

explain the randomness of the error (see Model assessment and applicable domain 

below), decision tree is a nonparametric method that can avoid the risk of mis-specifying 

these pre-assumptions and probability distributions. The complexity of the decision tree 

was controlled by the cross-validated error, which afforded us with the best number of 

terminal nodes in the pruned tree. Decision trees trained on lnKD and lnkon training set 

gave satisfactory predictions on the corresponding test set (Table 3). This result 

suggested that different scaffolds have distinguished binding affinities and association 

rate constants that can be revealed by the splitting nodes using existing descriptors. 

Meanwhile, the poor fitting on the dissociation rate constant indicated that more decisive 

 
lnKD lnkon lnkoff 

Train test Train test Train test 
Decision tree 0.90 0.78 0.87 0.86 0.73 -0.1 
Decision tree bagging 0.91 0.89 0.83 0.71 0.94 0.21 
Random forest 0.90 0.87 0.90 0.70 0.89 0.39 
Boosting 0.92 0.87 0.92 0.73 0.90 0.25 
MLR 0.77 0.89 0.77 0.77 0.64 0.61 
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descriptors were needed to explain the observations. Parallel training of multiple decision 

trees over a subset of training data that was generated by bootstrapping (sampling with 

replacement) gave us bagging models. The optimized number of trees was determined 

based on the averaged error of samples that were not included in training or out-of-bag 

samples. Random forest is a special scenario of bagging that in addition of using 

bootstrapping samples, only a subset of descriptor space will be used for the training of 

each individual tree. Figure 4A shows that when training on lnKD data, the out-of-bag 

error was gradually converged as number of trees increased. Figure 4B shows the 

random forest model trained for lnKD using 400 trees.  Boosting, however is a sequential 

training process that the current model trains on the residuals from last model by adding 

weight to the poorly predicted data point. Similarly, Figure 4C shows that loss function 

(squared error) decreased as the number of above sequential iterations increased, where 

the optimal iterations (990) could be found by looking at the cross validated error. Out-of-

bag error was also plotted. The discrepancy between these two errors suggested the 

heterogeneity of the data set. Figure 4D represents the final boosting model trained for 

lnKD using 990 iterations. 

 

Overall, models trained by above methods with different response variables behaved with 

the same trend as in MLR, namely their performance order is: lnKD models> lnkon models> 

lnkoff models (Table 3). lnKD models showed significant enhancement after the ensemble 

learning, namely aggregation of multiple weak learners led to a stronger learner, and the 

prediction accuracy on the test set was comparable to the MLR model. For lnkon, it was 

interesting that single decision tree with 6 nodes achieved both high training efficiency 

and prediction accuracy. Further application of the ensemble learning seemed to overfit 

the data as performance discrepancy between training set and test set data was 

observed. For this data set, ensemble learning failed to push the predictivity of the model 

to a higher level when compared to the MLR baseline model. For all lnkoff models the 

prediction on the test set was not satisfactory, probably due to the lack of decisive 

descriptors or the poor representativeness of the test set to the training set as seen from 

the lnkoff distribution (Figure 2B).  
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Figure 4 A. Out-of-bag error of random forest model vs. number of trees. B. Random forest model of lnKD built with 
400 decision trees. C. Squared error loss vs. number of iterations in boosting, two methods (out-of-bag method and 
cross validation method) were used to determine the best iteration number. D.  Boosting model of lnKD. 

 

Model assessment and applicable domain 

To validate the main regression assumption, namely that standardized residuals of MLR 

should follow a normal distribution, we plotted quantile-quantile (Q-Q) graphs. Q-Q plot is 

commonly used to compare distribution of two datasets. Herein standard quantiles of the 

normal distribution were plotted on the x-axis and the standardized residuals from MLR 

was plotted on the y-axis for comparison. Q-Q plots of all 3 MLR models (Figure 5A, 
Figure S3A) showed that residuals from linear regression lined around the 45-degree 

reference line, indicating the validity of the normality assumption. For the linearity 
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assumption check, we plotted residuals against each descriptor (Figure S4). In such 

plots, we found that residuals were randomly distributed around zero and no obvious 

trend could be observed, suggesting that no additional relationship with corresponding 

descriptor remained in residuals. For the independence and equal variance check, we 

plotted residuals against the fitted values (Figure S5). Similarly, the residuals were 

located randomly along zero with equal variance, suggesting the validity of the linear 

regression.  

 

To further evaluate the MLR model for future predictions, we defined a proper range of 

small molecules that can be applied to the models or the applicable domain. Y-outliers 

represent data points that have significant deviations on response values that do not 

follow the general trend of the rest of the data, while influential compounds are those that 

have large impact on the regression and usually have extreme descriptor values or 

leverage values (a scoring metric between 0 and 1, large value represents far away the 

values of the predictor variables for the observation from those of other observations). 

We generated a Williams plot to identify outliers from the response variable perspective, 

as well as influential points from the descriptor perspective (Figure 5B, Figure S3B). In 

this plot, the leverage value of each compound was plotted against its standardized 

residuals and y-outliers could be detected if the standardized residuals were higher than 

the ±3 limit. Potential influential points that have extreme descriptor values could be found 

by checking leverage values whereas the threshold was set as 3(𝑝 + 1)/𝑛  (𝑝  is the 

number of descriptors in MLR model, 𝑛 is the number of data points). In these 3 Williams 

plots, we did not observe any outliers from the view of response variable. There is one 

compound, DMZ p8, that has high leverage values from the training set of lnkoff model. 

However, the fitting on this compound did not further support this is as an influential point. 

Meanwhile, by looking through the Williams plot, we could find potential inaccurately 

measured data points. For instance, the Williams plot of lnkoff model found that two 

compounds (DMA-1 and DCC-3k) have large fitting residuals but shared similar descriptor 

space as their leverage values were both low. In fact, both compounds were measured 

with much larger dissociation rate constants than other DMAs, indicating potential 

measurement error. Removal of DCC-3k in the training and DMA-1 in the test set would 
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increase the R2(training) from 0.64 to 0.71 and prediction accuracy from 0.61 to 0.70 of 

the lnkoff MLR model. 

 

 
Figure 5 A. Normal quantile-quantile plots of lnKD model. B. Williams plot showed applicable domain of lnKD model 
with training and test sets. C. Model stability test on lnKD data using below formula: lnKD~ 1+ PEOE_VSA_POS + 
vsa_other + vsurf_DW12 + vsruf_ID3. The training and prediction stability were shown on the left and right, respectively. 
Each bar represented the result from a random sampling, totally 100 times. 

To evaluate the robustness of the model constructed by above descriptors, a 

training/prediction stability test was performed for each MLR model. In this stability test, 

a set of 36 molecules were randomly selected as the training set, then a MLR model was 
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trained using the same descriptors found before on the training set. The prediction 

accuracy was calculated using the remaining 12 compounds in the test set. By repeating 

this process, we can test the robustness of identified descriptors for building a well-

performed MLR model. In Figure 5C and Figure S6, the 100 random samplings gave 

distinctive training/test sets, but models trained with the same set of descriptors afforded 

high and stable training efficiency and were consistent to the original MLR model. In terms 

of the prediction accuracy on test sets, we still see overall high Q2 scores for all of 3 

datasets but with higher variance, which might be caused by the extremely 

unrepresentative data splitting.  

 

 

  

 

Conclusion 
Discovery of novel RNA-targeted chemical probes is pivotal for connecting basic 

understanding of RNA regulation in biology and its potential therapeutic application. 

Numerous ncRNAs have been discovered as potential drug targets following the RNA 

revolution. However, difficulties in obtaining accurate 3D structures and conformational 

landscape for a given RNA hinders efficiency of rational design of the RNA-targeted 

ligand from a structure-based approach. Additionally, lack of appreciation of binding 

kinetics in hit discovery compromised an alternative path towards ligand optimization via 

kinetic selectivity. Consequently, a novel method that can bypass the structural 

information and comprehensively evaluate binding parameters, from affinities to kinetics, 

is greatly needed. To this aim, a systematic QSAR workflow for RNA ligand discovery 

was built using HIV-1 TAR as a model system to demonstrate the potential application of 

this method on a broad scope of ligands. To the best of our knowledge, this is the first 

time that 2D-QSAR has been used to predict binding parameters of RNA-targeted ligands 

with diverse scaffolds. 

 

By applying a representative data splitting, we trained models from 36 small molecules 

derived from structural classes (DMZ, DMA, DPF, AG, nucleic acid dyes) as the basis of 
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our understanding of RNA ligand chemical space. The trained models afforded 

satisfactory explanations for both binding affinities and kinetics data empirically gathered 

via SPR. The subsequent prediction of 12 previously untested compounds revealed 

similar or even higher precision as compared to the well-established ensemble learning-

based methods, supporting the power of MLR models to inform compound design. 

Notably, the accurate prediction of the binding affinity and kinetics of 12 structurally-

diverse small molecules not present in the training set underscored the breadth of 

application of the method to a general small molecule library. The detailed analysis of the 

descriptor space highlighted by the best models revealed important roles of ligand surface 

properties and potential charge in RNA recognition of small molecules. Moreover, the 

MLR model provided quantitative information on how the modification of these descriptors 

can better aid molecular design and lead optimization. Further evaluation of the applicable 

domain suggested the proper range of the future small molecules that can be 

appropriately predicted using these models.  

 

We anticipate that the method applied here will be an efficient tool in hit identification and 

lead optimization for a wide range of specific RNA targets.  The knowledge gained from 

known ligands during training can now be efficiently transformed into quantitative models 

for generalization, i.e. prediction of binding affinity and kinetics. Additionally, this proof-of-

concept study could be feasibly extended to other biomacromolecules targets with little 

structural characterization, including other ncRNAs and proteins. Various parameters 

could be investigated as well, such as binding entropy and enthalpy. We anticipate the 

workflow set forth here to significantly facilitate rational decision-making in medicinal 

chemistry, overcoming one of the current bottlenecks in RNA-targeted small molecule 

development. 

 

Data availability 
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