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Abstract

We apply a newly developed Voronoi fundamental zone (VFZ) framework to gain insights about grain
boundary (GB) structure-property relationships in the five degree-of-freedom (5DOF) space of cubic
GBs. We analyze the shape and size of a 5DOF fundamental zone (FZ), molecular statics energy un-
certainty, property similarity of GBs that are crystallographically “close” (i.e. correlations), and energy
pathways through 5DOF space. Considered together, these insights are important for managing trade-
offs between accuracy, complexity, and design considerations for electron backscatter diffraction/serial
sectioning, high-energy diffraction microscopy, molecular statics, and density-functional theory. In terms
of the shape and size of a 5DOF FZ, we discover that a FZ is smaller than expected at only ∼65° in the
largest principal component. Thus, a 10° difference between two GBs, which may have previously been
considered small, is actually quite large. We represent a GB by five transformed Cartesian coordinates
equipped with a Euclidean distance metric. Using this representation, we find that the FZ has a low
aspect-ratio shape (i.e. width, length, height, etc. are similar) which is important for 5DOF numerical
differentiation. Semivariogram and numerical optimization methods reveal that grain boundary energy
(GBE) in Ni and Fe are globally correlated within ∼6° to 8° in the grain boundary octonion (GBO) sense
(multiply by 2 to convert to misorientation angle). For local correlation lengths of high-symmetry GBs of
interest, we notice significant variation relative to global correlation lengths and an inverse relationship
with the Brandon criterion. We suggest that property data with no more than ± ∼3 % error and point
sets with GBs that are no more than ∼3−4° apart should be used and then paired with high-fidelity
interpolation strategies. Finally, in terms of dynamic material behavior, geodesic paths through 5DOF
space for Ni suggest that, under appropriate conditions, a certain low-energy Σ7 GB may transform
into the frequently observed Σ3 coherent-twin GB which may be interesting to verify by experiment or
simulation.

Keywords: grain boundary energy, five degree-of-freedom, structure-property model, machine
learning, octonion

1. Introduction

When subjected to plastic deformation and/or
elevated temperatures, the crystallographic charac-
ter of grain boundaries (GBs) in polycrystalline mi-
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crostructures can change to reduce the total system
energy [1–5]. These energy minimizing transforma-
tions of GB crystallography constitute trajectories
or paths along the GB energy landscape, which is
a function over the 5-dimensional (5D) GB char-
acter space. Consequently, to understand, model,
and predict such transformations and their effects
on microstructure evolution, it is necessary to un-
derstand these paths and the relationships between
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GBs that are near each other in that space.

Examples of such spontaneous energy minimiz-
ing changes to GB character include the rotation
of the GB plane to achieve equilibrium at triple
junctions [6, 7]—both those formed by the in-
tersection of three GBs within a polycrystal and
those formed between a GB and two free sur-
faces at the exterior of a microstructure. It is
this phenomenon that is exploited to produce the
quarter- and half-loop bicrystal geometries used in
classic constant-driving-force GB migration exper-
iments [8–13]. The inclination of the GB plane
can also change during GB migration [REF], or
when faceting into different combinations of GB
planes to reduce energy [14], or upon the disap-
pearance of a grain during grain growth (which re-
quires establishment of new equilibrium configura-
tions at the newly formed triple junctions). This
class of energy minimizing changes to GB charac-
ter constitute paths through the GB energy land-
scape that are restricted to two-dimensional sub-
manifolds (the GB plane fundamental zone (FZ)
for a fixed misorientation).

Another class of energy minimizing changes to
GB character are illustrated by the phenomenon
of grain rotation [15–24], which can occur during
high-temperature plastic deformation [25–31] or re-
crystallization [32], as well as at lower temperatures
in nanocrystalline materials [33]. The primary fea-
ture of grain rotation is the change in crystal ori-
entation of one grain relative to its neighbors re-
sulting in lower-energy GBs between them. How-
ever, when the misorientation between two grains
changes there will also be an accompanying change
to the GB plane inclination1. Consequently, such
GB character transformations represent more gen-
eral paths through the 5D GB character space that
are not restricted to any misorientation or bound-
ary plane subspaces.

Until recently, models for GB energy that depend
on their full 5D crystallographic character were
unavailable. Bulatov, Reed, and Kumar (BRK)

1Even if the GB plane remains fixed in the macroscopic
reference frame, a change in the GB misorientation results
in a change of the GB normal in the crystal reference frame,
which is the physically relevant reference frame.

[34] developed a fully 5D GB energy model by fit-
ting a closed-form function to GB energies from a
database [35] of 388 GBs in several materials. This
function has been employed in a variety of appli-
cations to study mesoscale microstructure phenom-
ena like X [REF], Y [REF], and Z [REF].

We recently developed a general approach, called
the Voronoi fundamental zone (VFZ) framework,
for inferring GB structure-property models from
GB structure-property databases [36].

In this work we present 5D GB structure-
property models for FCC Ni and BCC Fe developed
using the VFZ framework. We also study correla-
tions in GB energy as a function of crystallographic
distance. We use the VFZ framework to give con-
text to GB property correlation lengths2 and find
that previous estimates are likely too high for low-
noise, computational GBE calculations while on
par when the low-noise constraint is removed. Fi-
nally, we investigate general paths through the GB
energy landscape and show qualitatively distinct
types of relationships between important types of
GBs.

2. Methods

We first review the VFZ construction and in-
terpolation methods which have been published
elsewhere [38] (Section 2.1). We describe tools
to examine 5DOF results, including dimensional-
ity reduction (Section 2.2) and techniques for es-
timating spatial correlation lengths (Section 2.3)
and methods to visualize paths through the 5DOF
space (Section 2.4). Finally, we describe literature
datasets used in this work (Section 2.5).

2.1. The Voronoi Fundamental Zone Framework

The VFZ is a newly developed tool that allows
for efficient and relatively accurate predictions of
properties across the 5DOF space [38] by building
on the recent GBO distance metric which “correctly
determines the angular distances between GBs with

2Correlation length in the context of GBs has been de-
scribed as the degree to which boundaries with similar
macroscopic geometrical degrees of freedom have related
properties [37].
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a common normal or misorientation” and “closely
approximates the geodesic metric on SO(3)×SO(3)
for all grain boundary pairs while maintaining the
ability to be analytically minimized with respect
to the U(1) symmetry” [39]. To best describe what
the VFZ framework is and how it all fits together,
we summarize its requisite parts and steps for cre-
ating and defining a VFZ, mapping GBOs into the
VFZ, distance calculations, and interpolation, fol-
lowed by a brief comparison with the traditional
GBO metric (Section S1). A 2-sphere analogue
to Voronoi fundamental zone grain boundary oc-
tonions (VFZ-GBOs) is provided in Figure 1. The
methods are based on functions and scripts from
(github.com/sgbaird-5dof/interp), and we
refer the reader to Baird et al. [36] for a detailed
description of the methods and model.

2.2. Dimensionality Reduction

A singular value decomposition transformation
is used to remove degenerate dimensions and ro-
tate/align the VFZ-GBO point clouds such that
the 1st, 2nd, 3rd, etc. dimensions are progressively
smaller.

Additionally, principal component analysis is ap-
plied and the variance explained by each dimension
is extracted.

2.3. Correlation Lengths

We use semivariogram and numerical optimiza-
tion methods to obtain several estimates of correla-
tion lengths (l) from VFZ-GBO pairwise distances
and GBEs for two GB datasets Section 2.5.

In the semivariogram method, we assume a sta-
tionary Gaussian kernel and limit the semivari-
ogram to half of the maximum pairwise distance.
We use a correlation strength of ρ = 0.61 for corre-
lation lengths reported in this work; however, as the
choice of correlation strength is arbitrary, one can
use Eq. (S5) to determine the length scale corre-
sponding to any specified correlation strength. See
Section S2 for additional information.

In a separate method for estimating the corre-
lation length, numerical optimization is performed
via gradient-descent-based maximization of a like-
lihood function that depends on the correlation
length, l, and noise , σ, parameters [40].

2.4. Visualizing 5DOF Paths

geodesic paths between two GBs in a VFZ are ob-
tained via coordinate interpolation constrained to a
hyperspherical arc. The geodesic path in a VFZ is
not always the minimum distance path (which may
cross the borders of a VFZ). However, it is instruc-
tive to observe these paths because the minimum
distance path in 5DOF space is not necessarily the
path a GB will take during grain growth.

2.5. Literature Datasets

Ni [37] and Fe [41] GBE datasets from the lit-
erature are used. Intrinsic uncertainty for the Fe
simulation data is estimated by the following steps:

1. Sort GBs into degenerate sets

2. Determine the average GBE for each degener-
ate set

3. Compare each of the degenerate GBs to the
set-wise average GBE (root mean square error
or mean absolute error)

See Section S3.1 for further details on the methods
used to estimate the intrinsic uncertainty of the Fe
simulation dataset.

3. Results and Discussion

Measuring and/or calculating the properties of
GBs are generally time-intensive efforts. When
seeking to collect data to establish a GB structure-
property model, it is therefore desirable to deter-
mine the minimum number of measurements/cal-
culations needed. To answer this question, three
pieces of information are necessary: (1) the size
and shape of the space, (2) how close the points
must be to one another, and (3) the uncertainty of
the data.

To obtain the first piece of information, we need
to determine the size and shape of a VFZ. To ob-
tain the second piece of information, we need to
determine the distance over which the property of
interest is correlated. If the crystallographic dis-
tance between nearest neighbors (NNs) in a collec-
tion of GBs is larger than the correlation length,
then there will be large gaps between points where
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Figure 1: (a) Symmetrization of many points relative to a fixed reference point (white circle) into a 3D Cartesian VFZ
point set (dark blue points). (b) To further illustrate, identical representations of a single input point (magenta points) is
symmetrized (dark blue point) relative to a fixed reference point (white circle), demonstrating that only one symmetrized
point is found within the borders (black lines) of each of the Voronoi cells (light blue spherical triangle). In the case of
VFZ-GBOs, the same procedure applies to the U(1)-symmetrized 6-sphere. Reproduced with permission from Baird, S.
G.; Homer, E. R.; Fullwood, D. T.; Johnson, O. K. Computational Materials Science 2021, 200, 110756 [36].

predictions/interpolation will be unreliable. If, on
the other hand, the NN distances are smaller than
the correlation length, then predictions between
the measured/calculated values can be expected
to be reasonable. Finally, estimates of uncertainty
can be obtained by comparing the distribution of
repeated measurements. We use VFZ-GBOs to
explore structure-property relations in the 5DOF
space of GBs. To make our aims more complete,
we summarize these points in the following ques-
tions:

• How large is a 5DOF fundamental zone? What
is it shaped like? (Section 3.1)

• How similar are the energies for GBs with sim-
ilar crystallographic character (i.e. how cor-
related)? How close/densely spaced are ran-
domly generated GBs? (Section 3.2)

• What is the uncertainty of molecular statics
simulations of GB energy? (Section 3.3)

• What can crystallographic paths in 5DOF
space teach us about material behavior? (Sec-
tion 3.4)

Finally, we discuss the potential for computing
numerical derivatives with respect to 5DOF space

for computing minimum energy paths and finding
local minima (Section 3.5).

3.1. Dimensions of a VFZ

The maximum principal component of a partic-
ular3 singular value decomposition transformed Oh

cubic VFZ is ∼65°. The sizes for this first and the
remaining 7 dimensions are given in Table 1.

Table 1: Dimension of singular value decomposition trans-
formed coordinates (Dimension) and GBO dimension size
(dΩ) for a set of 20 000 VFZ-GBOs. These are the diagonal
entries of the “S” matrix in the singular value decomposition
decomposition.

Dimension dΩ (°)

1 65.03
2 63.24
3 58.8
4 53.7
5 46.34
6 6.651
7 5.821
8 2.436e-13

3This VFZ was used to analyze the dimensions and is
distinct from the VFZs used for the Ni and Fe datasets.
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By performing principal component analysis, we
find that ∼99.6 % of the variance (spatial disper-
sion) is explained by the first 5 transformed coor-
dinates of an Oh VFZ as shown in Table 2.

Table 2: Dimension of principal component analysis trans-
formed coordinates (Dimension) and percent variance ex-
plained (v) for a set of 50 000 VFZ-GBOs. The first 5 di-
mensions cumulatively explain ∼99.6 % of the variance.

Dimension v (%)

1 25.19
2 23.82
3 20.6
4 17.18
5 12.79
6 0.2631
7 0.1565
8 3.532e-28

What does it mean that the 5th dimension is
∼70 % the size of the 1st dimension? This gives
an indication of the shape of the VFZ. The first 5
dimensions contain essentially all of the informa-
tion, which is consistent with the fact that there
should be only 5 independent crystallographic pa-
rameters to describe a GB. The fact that these 5
dimensions are of similar size indicates that the
VFZ is roughly isometric and can be thought of as
a hyper-rectangle or hyper-ellipse with only minor
eccentricity.

3.2. Correlation Lengths

We present global (Section 3.2.1) and local (Sec-
tion 3.2.2) correlations for the Ni and Fe simulation
datasets. We then describe how the number of GBs
in a VFZ-GBO set affects, on average, how close
GBs are to their NNs (Section 3.2.3) in the context
of correlation.

3.2.1. Global Correlation Lengths

Using the input data for each of the datasets,
global correlation lengths were obtained via the
semivariogram method described in Section 2.3
with a bin width of 1 d◦Ω. Figure S1 shows the em-
pirical semivariograms together with the analytical

fits used to obtain the values of the respective cor-
relation lengths. The change in concavity suggests
that GBE correlations for Ni and Fe are Gaussian
in nature (Section S2.2).

In addition to the correlation length estimates
obtained via the semivariogram method, we also
computed correlation length estimates using the
gradient-based fitrgp() method described in Sec-
tion 2.3.

To better understand the Gaussian process re-
gression (GPR) models that were trained on the
GBE data, we also interrogated their correlation
lengths (as opposed to the input data only). This
was done by the semivariogram method, with the
GBEs (E (xi) and E (xj) in Eq. (S3)) given by the
GPR model (which is the mean of a collection of
posterior models). This was done in two ways: (1)
by evaluating the posterior models at the same lo-
cations as the input data, and (2) by evaluating
the posterior models at randomly selected points
(replications of which facilitate uncertainty quan-
tification). The correlation lengths obtained by all
of these methods are summarized in Table 3.

For the Ni dataset, the input data exhibits a cor-
relation length of about 7.5 d◦Ω for both the semivar-
iogram and gradient methods. For the Fe dataset,
we observe 6.2665 d◦Ω for the semivariogram method
and 8.3073 d◦Ω for the gradient method, the average
of the two being 7.3 d◦Ω. Thus both datasets seem
to have correlation lengths of about 7.5 d◦Ω. This is
significant. For symmetric tilt GBs, the octonion
distance metric corresponds to half of the difference
in misorientation angles. That means that in the
more traditional units of degrees of misorientation
difference the observed correlation lengths are very
close to 15◦, which is the traditional low-angle GB
threshold. Thus, the traditional 15◦ threshold ap-
pears to hold (on average) more generally than just
for differentiating low- and high-angle GBs. Rather
we find that on average, GBs that are within 15◦

(7.5 d◦Ω) will have well correlated energies regard-
less of their misorientations or GB planes (i.e. it
is not restricted to symmetric tilt GBs, but holds
across the entire GB character space).

The correlation lengths obtained by evaluating
the GPR models are similar to those obtained di-
rectly from the input data, but they are slightly
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Table 3: Correlation lengths obtained via semivariogram and gradient based approaches in units of GBO distance (multiply
by 2 to get misorientation angle). For the semivariogram of the posterior mean model evaluated at random points, we
used 103 random points and repeated this process 10 times. The corresponding values in this table represent the mean ±
one standard deviation of those 10 replicates.

l : dΩ [◦]

Ni Fe

Semivariogram (Input Data) 7.5491 6.2665
Semivariogram (Posterior Mean at Input Points) 7.7316 7.5179
Semivariogram (Posterior Mean at Random Points) 8.8551± 0.1970 7.7082± 0.1746
Gradient (Input Data) 7.3995 8.3073

larger, suggesting that GB energies in the trained
models are correlated over a slightly longer distance
than the input data, though the difference is nearly
negligible (about 1 d◦Ω or less).

Using the correlation lengths, l, obtained via the
semivariogram of the input data, Figure 2 shows
the length scale, l′, corresponding to an arbitrary
user-specified correlation strength, ρ. The length
scales over which GB energies are correlated range
from l′ = 0 d◦Ω for perfect correlation (ρ = 1) to
l′ ≈ 23 d◦Ω and l′ ≈ 19 d◦Ω for essentially4 zero
correlation in the Ni and Fe datasets, respectively.

If low noise is assumed for Ni, the correlation
length drops to ∼2 degrees. See Table 4 for GPR
parameters for each dataset. By contrast, if a GPR
model is trained on a large set of 50 000 GBs sam-
pled from the Bulatov Reed Kumar (BRK) model,
the numerically optimized correlation length is
10.5° suggesting that the BRK model imposes a-
priori information that GBs are more correlated
than the data warrants. In other words, the BRK
function is too smooth.

The two simulation datasets have distinct differ-
ences from each other, as summarized in Table 5.

Despite these differences in terms of noise,
dataset size, and crystal symmetry, it is interesting
to see that the correlation lengths within a VFZ are
similar for the two datasets. Both are lower than

4Technically the correlation does not go to exactly zero
until the length scale is infinite. The values listed here are
for a correlation of ρ = 0.01.

Figure 2: Global length scale of correlation, l′, in units of
GBO distance (dΩ [◦]) as a function of correlation strength,
ρ, for the Ni (Olmsted) and Fe (Kim) datasets. Multiply
GBO distance by 2 to convert to misorientation angle.

Table 4: Fitted parameters for two GPR models fitted to
the 388 simulated Ni GBEs by Olmsted et al. [35] and fitted
parameters for a GPR model trained on 80% of the Fe sim-
ulation data (46 883 GBs). The first Ni model allows σ to
vary, whereas the second constrains σ to be fixed. Mat., σL,
σF , β, and σ are the material (i.e. element), kernel length
scale in units of dΩ (◦), signal standard deviation (Jm−2),
constant basis function (Jm−2), and input property stan-
dard deviation (Jm−2), respectively.

Mat. Fix σ σL (◦) σF β σ

Ni no 7.3995 0.2049 1.0913 0.0321
Ni yes 1.9354 0.201 1.1044 0.0001
Fe no 8.3073 0.0716 1.2192 0.0562
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Table 5: Comparison of Ni (Olmsted et al. [37]) and Fe
(Kim et al. [41]) molecular statics simulation datasets. The
differences in noise-levels results from whether multiple ini-
tial starting configurations were probed in search of a glob-
ally minimized configuration as opposed to using a single
metastable configuration.

Property Ni Fe

Size 388 58604
Noise Low High
Symmetry FCC BCC

the correlation lengths of 10° [42] and 15° [37] previ-
ously reported5 with respect to misorientation, and
are about on par in terms of boundary plane nor-
mal owing to the fact that GBO distances for tilt
angles are half the value of misorientation angles.

It is reasonable to assume that the Ni data has
low noise due to use of a global optimization strat-
egy [37]; thus, the correlation length of ∼1.9° after
imposing the low-noise condition suggests that the
Ni dataset may have an actual correlation length
much smaller than previously reported.

By contrast, the correlation length of a GPR
model trained on many BRK GBEs remains rela-
tively large at 10.4°. What does this suggest? The
BRK model is smoothed more than the data war-
rants on its own. This has the following implica-
tions:

1. More sophisticated methods are required
which do not impose mistaken a-priori infor-
mation about the correlation length6. Instead,
the data itself should suggest proper correla-
tion lengths

2. Larger, low-noise datasets which span all
5DOF are necessary to be confident in
structure-property paths that are not re-
stricted to a single misorientation fundamental

5Both of these lengths are based on results from Olmsted
et al. [37].

6The a-priori information that the BRK model imposes
is that correlation lengths within a misorientation funda-
mental zone or boundary plane fundamental zone hold for
arbitrary paths through 5DOF space and that moving from
one subspace to another results in monotonic behavior.

zone or boundary plane fundamental zone

We believe that the GPR model within the VFZ
framework meets the requirements of point #1 and
is capable of handling the ideal dataset proposed in
point #2.

Some questions that remain are:

• Does the similarity between correlation lengths
for FCC and BCC extend to non-cubic crystal
symmetries?

• What are the differences in correlation length
for other properties? (e.g. mobility)

It is possible that the correlation length will in-
crease with the size of the VFZs, and we expect that
the correlation length will depend on the property
of interest.

3.2.2. Local Correlation Lengths

In addition to the global correlation lengths re-
ported in Section 3.2.1, we also investigated corre-
lation length scales locally in the vicinity of certain
low-Σ GBs. This is accomplished by the same semi-
variogram process explained in Section 2.3, except
that in Eq. (S3) we consider only pairs of GBs for
which one of the GBs is the particular GB of in-
terest (i.e. we fix one of the GBs). Because the re-
sulting set of GB pairs is smaller than in the global
analysis, we use larger bins with a width of 2 d◦Ω
for the local empirical semivariograms.

Figures S2 and S3 show the local empirical semi-
variograms for the Ni and Fe datasets respectively.
Each panel shows the semivariogram centered at a
different low-Σ GB. While noisier than the global
empirical semivariograms, reasonable fits were ob-
tained for all except Σ5 in the Ni dataset Sec-
tion S2.3.

Table 6 provides the local correlation lengths ob-
tained for each of the low-Σ GBs for each of the
datasets. The most noteworthy observation is that
these correlation lengths are different from one an-
other and different from the respective global corre-
lation lengths. While the local correlation lengths
for the Σ3 GBs are similar to the global values for
both datasets, other GBs have correlation lengths
more than twice as large as the global correla-
tion length (the Σ9 in the Ni dataset, and the
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Table 6: Local correlation lengths in the vicininty of specific
low-Σ GBs, obtained via the semivariogram method in units
of octonion distance. The fit of the Σ5 GB for the Ni dataset
was sufficiently poor that we do not report a corresponding
correlation length.

l : dΩ [◦]

Ni Fe

Σ3 7.1460 7.0921
Σ5 — 16.0440
Σ7 9.6533 10.1493
Σ9 17.2601 10.7792
Σ11 10.2027 11.6011

Σ5 in the Fe dataset). The fact that certain lo-
cal correlation lengths differ from the global corre-
lation length suggests that a non-stationary Gaus-
sian kernel (which depends on both relative dis-
tance and absolute location) may be a more appro-
priate choice than the stationary Gaussian kernel
(Section S2.3).

These local correlation lengths facilitate an in-
teresting comparison with the canonical Brandon
criterion [43]. The Brandon criterion provides a
threshold for the maximum angular deviation that
can be accommodated by a coincident site lattice
boundary before losing coincidence:

∆θ = θ0Σ−1/2 (1)

where ∆θ is the angular deviation threshold, θ0 =
15◦ a constant corresponding to the low- to high-
angle GB threshold and Σ is the reciprocal den-
sity of coincidence lattice points (i.e. the coinci-
dent site lattice number). The Brandon criterion
predicts that the amount of distortion that the GB
can accommodate (e.g. via introduction of GB dis-
locations) before losing coincidence should decrease
with Σ because the density of coincident sites de-
creases with Σ.

In contrast, Figure 3 shows that correlation
lengths generally increase with Σ. That is to say
that in general there is a trend of GB energies being
correlated over longer length scales with increas-
ing Σ. This seems reasonable since the deepest
cusps in the GB energy landscape (corresponding

Figure 3: Comparison of the Brandon criterion [43] for low-Σ
GBs (in units of ◦) to the local correlation lengths obtained
in this work (in units of d◦Ω). Conversion to consistent units
would unnecessarily separate the data without changing the
trends, and since we are most interested in the uniqueness
of the trends rather than the numerical values themselves,
we leave the values in their native units. Error bars indicate
95% confidence intervals. There is no marker for the Σ5 GB
in the Ni (Olmsted) dataset because of the failure of the fit
discussed above.

to small correlation lengths) tend to correspond to
the lowest-Σ GBs. This suggests that while strict
coincidence may indeed be lost over smaller crys-
tallographic deviations with increasing Σ, GB en-
ergies seem to be relatively insensitive to this loss
of coincidence and instead seem to be increasingly
correlated over larger length scales. This may ex-
plain why previous researchers found Sigma to be
a poor predictor of GB energy [44].

3.2.3. Density and Distribution of Points

Figure 5 illustrates how the VFZ-GBO average
NN distance varies with the cardinality of the set
(i.e. number of random VFZ-GBOs in the set).
The average NN distance (over approximately 70
trials) of set sizes between 100 and 50 000 be-
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tween (10.7175± 0.3684)° and (2.6479± 0.2254)°,
respectively (dΩ). Additionally, a curve fit is given
in the range of 388 to 50 000. For a specific
50 000 VFZ-GBO set, the NN GBO distance is
(2.870 20± 0.691 17)° (Figure 4a) while the aver-
age 100-th NN distance is within 10° (Figure 4b).
While not shown, we also found that the sampling
scheme used in this work (sampling misorientation
and boundary plane normal as opposed to sampling
GBOs directly) produced no qualitative differences
in the observed distributions.

How large is the local region of influence for a
5DOF interpolation model? Another way of phras-
ing this question is: how many GBs are necessary
to sample in the space to obtain a model that’s ac-
curate enough? NN distances give context to these
questions: if 50 000 GBs are randomly sampled,
then on average, these GBs are (2.6479± 0.2254)°
apart from their NN. In the context of correlation
lengths of ∼7−8° (Section 3.2.1), a random set of at
least ∼10 000 GBs is required to reach a reasonable
goal of half the correlation length (i.e. to have a
reasonably performing structure-property model).
By contrast, A set of 388 randomly sampled GBs
will yield average NN distances of ∼7.5°. The fact
that this is approximately the same as the correla-
tion lengths derived in this work suggest that this
size of dataset is far too small. We demonstrate
this via an example.

Assume the property of a particular GB which
has been randomly sampled has never been mea-
sured before. What is available, however, is a set
of property measurements for 388 other GBs. Our
model suggests that GBs which are further apart
than ∼7.5° can’t reveal much information about
each other. So, how many GBs are in this local
region of influence to be able to predict the prop-
erty for the GB of interest? The answer is only one
GB. To make matters worse, this GB happens to
be at the borderline distance of containing relevant
information (closer is better).

Correlation lengths can vary locally and are sub-
ject to some interpretation (Section 3.2.2); how-
ever, it’s clear that without knowing more, the
property prediction of the GB of interest might be
OK, or it might be completely off. The BRK [34]
model (which uses 388 GBs) works around this lim-

itation by imposing prior information: a “scaffold-
ing” of GBs at high-symmetry cusps is used, and it
is assumed that the function varies monotonically
from point to point everywhere else. For a well-
studied property (GBE) and a well-studied mate-
rial system (FCC), this domain knowledge can be
successfully baked in. But what if the property or
material system is not so well understood? These
are cases where the VFZ framework is especially
useful.

3.3. Uncertainty of Noisy Molecular Statics Simu-
lations

The VFZ-GBO framework allows us to probe the
quality of the datasets that are used which provides
additional context for the accuracy of the models
that we report. Using a Gaussian process regression
mixture model developed for a noisy, Fe molecular
statics simulation dataset, we find that:

• the model error is on par with the intrinsic un-
certainty of the data; in other words, the ob-
servable model accuracy will not improve un-
less the input data is less noisy (Section S3.2)

• the predictions likely exhibit overprediction
bias relative to the true minimum for a given
GB; in other words, accurate resolution of
GBE cusps and noisy data are incompatible
(Section S3.3)

• future availability of multiple metastable state
GBEs is anticipated to greatly improve the
model performance; in other words, even with
a large quantity of data, poor quality severely
hampers the utility of the data (Section S3.4)

3.4. 5DOF Paths and GB Behavior

We constructed 5D structure-property models
for GB energy (i.e. GB energy landscapes), with
quantified uncertainty, for the Ni [37] and Fe
[41] datasets previously mentioned using the GPR
method of interp5DOF (https://github.com/sgb
aird-5DOF/interp). The performance and fidelity
of these models were discussed in previous work
[36]. Here we use these models to explore geodesic
paths through the resulting GB energy landscapes,

9
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Figure 4: (a) Histogram of NN GBO distances (dΩ) in a VFZ-GBO set of 50 000 points. The average NN distance was
(2.870 20± 0.691 17)°. (b) The average k-th nearest neighbor distances demonstrate that NNs up to the ∼10-th NN fall
within a tolerance of ∼5°. Standard deviation uncertainty bars using approximately 10 trial runs are also shown.

Figure 5: NN VFZ-GBO (ωNN) distances (◦) versus VFZ-
GBO set size out of 70-80 random VFZ-GBO sets per set
size and a fit to ax − log(x)b + c where a = 2.5025 × 10−5,
b = 1.27396, c = 15.4499, x represents set size, and 388 ≤
x ≤ 50000.

between certain low-Σ GBs, and discuss the impli-
cations for microstructure evolution.

We choose the Σ5, Σ7, Σ9, and Σ11 GBs with the
lowest GBE 7; we then visualize geodesic paths as
“tunnel” plots8 in a VFZ between each of these and
the global minimum Σ3 coherent-twin GB (Fig-
ures 6 and 7). This is performed for both the BRK
and VFZ-GPR models. These tunnel plots show
the predicted energy along the respective geodesic
path, together with the 1st-6th nearest data points
along the path so that one can compare the predic-
tions to data near each point along the path.

We note that while the GBE path is direct with
respect to crystallographic distances, the actual ro-
tation of a grain is not a barrier-free transformation
and requires energy to induce the crystallographic
change [REF]. Thus, when grain rotation and other
non-spontaneous atomic transitions are involved,

7The IDs that correspond to each of the low-Σ GBs used
for path visualization for the Olmsted et al. [37] and Kim
et al. [41] datasets are given in Table S1 and Table S2, re-
spectively.

8Similar to traveling through a 1D tunnel while also look-
ing at nearby points in the region close to the line in all
directions.
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(a) (b)

(c) (d)

Figure 6: “Tunnel” plots of GBEs along geodesic paths in a VFZ between the Σ3 coherent-twin boundary and minimum
GBE (a) Σ5, (b) Σ7, (c) Σ9, and (d) Σ11 GBs within the Ni Olmsted et al. [37] dataset. GBE values are plotted for the
BRK and GPR models which both used Olmsted et al. [37] as input data. 95% confidence intervals are plotted for the
GPR model. A “tunnel” plot is formed by calculating up to the 6th NNs of the input data relative to the geodesic path
formed between two GBs. The distances of the NNs relative to the arc are used to both color and size the markers on the
plot; NNs which are closer to the arc are large, blue circles, whereas NNs which are further from arc are small, red circles.
Additionally, the 1st NN path is plotted as a dashed line.

the true energy path can be thought of as a signal of
local energy barriers associated with atomic move-
ment superimposed on the 5DOF paths shown.

From another perspective, any transformation
will depend on both the driving force and the ac-
tivation energy. For example, near the transforma-
tion temperature, nucleation is slow because the
driving force is small despite having fast diffusion.

Likewise, at large undercoolings nucleation will be
slow, but this time due to sluggish diffusion de-
spite a large driving force. The GB energy land-
scape tells us about the driving force for such a
GB crystallographic transformation, but it does not
describe the activation energies of the atomic pro-
cesses by which that transformation is achieved.
Both pieces of information are necessary to pre-
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(a) (b)

(c) (d)

Figure 7: GBEs along geodesic paths in a VFZ between the minimum GBE Σ3 and minimum GBE (a) Σ5, (b) Σ7, (c)
Σ9, and (d) Σ11 GBs for the Fe Kim et al. [41] dataset. A GPR model trained on all 58 604 Fe Kim et al. [41] simulation
datapoints was used. 95% confidence intervals are plotted for the GPR model. A “tunnel” plot is formed by calculating
up to the 6th NNs of the input data relative to the geodesic path formed between two GBs, similar to traveling through
a 1D tunnel while also looking at nearby points in the region close to the line in all directions. The distances of the NNs
relative to the arc are used to both color and size the markers on the plot; NNs which are closer to the arc are large,
blue circles, whereas NNs which are further from arc are small, red circles. Additionally, the 1st NN path is plotted as a
dashed line.

dict whether and how fast a given crystallographic
transformation might occur.

For the GPR model trained on the Ni Olmsted
et al. [37] dataset, we observe that the path from
Σ7 to Σ3 is strictly downhill in energy in Figure 6b
while the geodesic paths between Σ3 and Σ5, Σ9,
Σ11 are separated by energy barriers (Figures 6a,
6c and 6d). This indicates that for grain growth

systems governed by GBE, it is possible that a Σ7
GB may transform into a Σ3 GB, if the mecha-
nisms required to traverse this trajectory in the GB
energy landscape are available (e.g. if both grain
rotation and plane reorientation are possible, such
as during high-temperature plastic deformation, re-
crystallization, or in nanocrystalline materials). In
contrast, for a Σ5, Σ9, or Σ11 GBs to transform
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into Σ3 coherent-twins, either an energy barrier
must be overcome, or a different (perhaps more cir-
cuitous) trajectory through the 5DOF space must
be taken.

For the GPR model trained on the Ni data (Fig-
ure 6), the substantial vertical spread of the 1st-6th
NNs (colored, variable-size circles) are consistent
with the fact that many points have distances on
the order of 8−14° relative to the geodesic path
between the two GBs. For perspective, these dis-
tances are greater than the global correlation length
of 7.4° (Section 3.2.1), for which a higher proportion
of distant points from the models are also distant
crystallographically (small red and yellow circles).
In other words, these trajectories traverse regions
of the VFZ that are sparsely populated with data.

For the GPR model trained on the Fe Kim et al.
[41] dataset, the 1st NN path and the GPR path
have substantial qualitative deviation from each
other for Σ3,Σ9 and Σ3,Σ11 paths. While the
GPR model suggests that Σ3,Σ11 are connected,
the 1st NN path suggests that there are local min-
ima that are overestimated. Likewise, the 1st-6th
NNs (colored, variable-size circles) for Σ3,Σ5 and
Σ3,Σ7 follow the general trend of the models. We
observe that all NNs distances up to the 6th NN
are less than ∼6° from the paths of interest; this
in turn is less than the global correlation length
of 8.3° from Section 3.2.1 which indicates that lo-
cal regions of influence along these paths in the Fe
dataset are densely populated.

By contrast, some NNs have vastly different en-
ergies compared with the GPR model. This is
because the noise of the simulated GBEs (Sec-
tion S3.2) precludes the GPR model from simulta-
neously resolving sharp transitions and maintain-
ing smooth behavior elsewhere. This is one of the
drawbacks of using a noisy dataset in a diverse
space (some regions with sharp cusps, others with
shallow hills and valleys) with a global smoothness
(i.e. correlation) length.

3.5. Potential for Numerical Derivatives

GB path visualizations in the VFZ framework
suggest the ability to estimate numerical deriva-
tives or gradients of GB properties without being
restricted to a GB subspace (e.g. misorientation

fundamental zone or boundary plane fundamental
zone) which can be a useful mathematical construct
for the GB community. For example, steepest de-
scent paths can be estimated and used in grain
growth simulations.

Because distance overestimations exist in the
standard VFZ framework, use of ensembled VFZ-
GBO interpolation or data augmentation may be
necessary to mitigate discontinuity artifacts when
crossing the exterior of a VFZ as discussed in Sec-
tion 2.1. Alternatively, the “excess” points in a
gridded sampling can act as a type of data aug-
mentation and help to address this issue. We plan
to explore these topics in future work. Section S4
contains further discussion of a gridded sampling
approach.

4. Conclusion

We applied the VFZ framework to learning more
about the nature of a 5DOF FZ.

The increase of distance computation through-
put and the development of a 5DOF VFZ with
continuous coordinates enabled us to explore the
nature of a 5DOF FZ. We found that symmetrized
NN distance distributions are Gaussian and plot-
ted these as a function of set size. Additionally, we
found the GBE correlations to be Gaussian. We
determined the maximum principal component of
a particular Oh VFZ to be ∼65°.

Other point groups (in particular those which are
noncentrosymmetric) may give rise to differently
shaped/larger VFZs and for which the Euclidean
approximation may need to be removed. It will
be interesting to see the VFZ framework applied
for other distance metrics (see Morawiec [45] for a
comprehensive summary of metrics).

The interpolation errors for a Fe simulation
dataset are on par with the intrinsic uncertainty
of the dataset itself (Section S3.1). Analysis of
the GPR fitting results indicates that the Ni and
Fe simulation datasets have correlation lengths of
8.3° and 7.4°, respectively, but that when the Ni
dataset is constrained to have low noise, the nu-
merical correlation length drops to ∼1.9°. Plotting
of geodesic paths between low-Sigma GBs of inter-
est reveal that a Σ7 cusp has a monotonically de-
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creasing path towards the coherent-twin Σ3 cusp,
whereas a Σ5, Σ9, and Σ11 cusps do not necessar-
ily share this same type of monotonically decreas-
ing path within a VFZ. We demonstrated that two
cusps can be connected in 5DOF space.

In addition to its previous implementation for
GB property interpolation [38], we anticipate the
VFZ framework will continue to reveal important
aspects of a 5DOF FZ and inform us about material
behavior especially with respect to grain growth
and other large scale time-dependent or iterative
processes.
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Glossary

5DOF five degree-of-freedom 1–4, 7, 9, 11, 13, 14

BRK Bulatov Reed Kumar 6, 7, 9–11

FZ fundamental zone 1, 13, 14

GB grain boundary 1–14

GBE grain boundary energy 1–3, 5–7, 9–13

GBO grain boundary octonion 1–4, 6, 7, 9, 10

GPR Gaussian process regression 5–7, 9–13

NN nearest neighbor 3–5, 8–13

VFZ Voronoi fundamental zone 1–7, 9–14

VFZ-GBO Voronoi fundamental zone grain
boundary octonion 3–5, 8–10, 13
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