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Template-free reaction networks enable predictive and
automated analysis of complex electrochemical reaction
cascades

Daniel Barter,a,† Evan Walter Clark Spotte-Smith,b,c,† Nikita S. Redkar,c,d Shyam
Dwaraknath,e Kristin A. Perssonb, f and Samuel M. Blaua∗

Chemical reaction networks (CRNs) are powerful tools for obtaining mechanistic insight into com-
plex reactive processes. However, they are limited in their applicability where reaction mechanisms
are unintuitive, and products are unknown. Here we report new methods of CRN generation and
analysis that overcome these limitations. By constructing CRNs using filters rather than templates,
we can capture species and reactions that are unintuitive but fundamentally reasonable. The re-
sulting massive CRNs can then be interrogated via stochastic methods, revealing thermodynamically
bounded reaction pathways to species of interest and automatically identifying network products.
We apply this methodology to study solid-electrolyte interphase (SEI) formation in Li-ion batteries,
generating a CRN with ∼ 86,000,000 reactions. Our methods automatically recover SEI products
from the literature and predict previously unknown species. We validate their formation mechanisms
using first-principles calculations, discovering multiple novel kinetically accessible molecules. This
methodology enables the de novo exploration of vast chemical spaces, with the potential for diverse
applications across thermochemistry, electrochemistry, and photochemistry.

Main
Understanding and controlling chemical reactivity has been

central to technological advances in manufacturing, transporta-
tion, pharmaceuticals, electronics, and beyond. Traditionally,
studies of reactivity have been conducted by hand using either
trial-and-error experiments or low-throughput molecular simu-
lations. However, pressing challenges in areas including elec-
trochemistry,1,2 atmospheric chemistry,3 and catalysis4,5 present
a degree of complexity that cannot be tractably described by
intuitively-driven investigation. To that end, recent years have
seen the development of a range of automated computational
methods to probe complex systems at the atomistic level. Among
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these methods are techniques to explore the potential energy
surface (PES) of a system of interest using quantum chemical
methods6 and methods to analyze chemical reaction networks
(CRNs).7 PES exploration techniques - including ab initio molec-
ular dynamics,8 artificial force-induced reactions,9 and stochas-
tic surface walking,10 among others6 - typically suffer from pro-
hibitively high cost, limiting their use to simple systems involving
only small molecules or very short (∼1ps) time scales. On the
other hand, because CRNs abstract away much of the complex-
ity of the PES, representing chemical transformations as discrete
steps, they do not incur extreme costs. For more tractable explo-
ration of reactive spaces, CRNs are thus highly attractive tools.

Most previous CRNs have been constructed based on human
chemical intuition. By applying reaction templates to include only
commonly observed mechanisms11–15 or pruning by the “chem-
ical distance” between species (the number of bonds that must
change for a reaction to occur, or the number of reactions re-
quired to transform reactants to products) to focus only on start-
ing species and known products of interest,16 it is possible to
create relatively simple networks capable of elucidating reaction
pathways in thermochemical systems.

However, chemical intuition is limited and unreliable when
describing new reactive spaces,17 impeding the design of next-
generation technologies. In such complex and poorly understood
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chemical contexts, such as where charged and open-shell species
dominate and must be accurately described, the use of CRNs is
challenging. In electrochemistry, for instance, studies of reaction
mechanisms5,18 and even characterization of reaction products1

can be challenging. As a result, CRN methods that rely on tem-
plates or the chemical distance to known products cannot be ef-
fectively used to study electrochemical reactivity.

Several methods have been developed that bypass the need for
prior knowledge of reactions and products by applying PES ex-
ploration to build CRNs.19,20 In general, these methods should be
expected to face the cost limitations of PES exploration. Recently,
however, Zhao and Savoie devised Yet Another Reaction Program
(YARP),20 which employs the semi-empirical quantum chemistry
code GFN2-xTB21 alongside density functional theory (DFT) to
accelerate PES exploration-based generation of CRNs describing
closed-shell organic molecules in the gas phase, achieving a 100-
fold reduction in cost compared to using DFT alone. In spite of
YARP’s considerable promise for conventional organic chemistry,
its applicability in domains such as electrochemistry is presently
limited, as GFN2-xTB is not an effective tool for accelerating ge-
ometry optimization of many classes of molecules that are impor-
tant in electrochemistry, including radicals and species containing
metals.22 Clearly, new methods must be developed to allow for
the de novo study of reactive electrochemistry using CRNs.

We recently developed the first CRN architecture capable of
providing insight into a complex electrochemical cascade, namely
the formation of the solid electrolyte interphase (SEI) in lithium-
ion batteries. After constructing graph-based CRNs containing
thousands of species and millions of reactions, we used shortest-
path algorithms to identify optimal pathways to two key SEI prod-
ucts, lithium ethylene dicarbonate (LEDC)23 and lithium ethylene
monocarbonate (LEMC).2 With this approach, we recovered pre-
viously proposed reaction mechanisms and predicted novel ther-
modynamically and kinetically reasonable pathways. We note
that while we were able to avoid the use of reaction templates
in our previous work, network construction was still significantly
limited by the poor scaling of shortest-path algorithms, which
severely constrained the number of species as well as the num-
ber and type of reactions included. Moreover, these prior meth-
ods could not be used in a predictive manner; in order to use
shortest-path algorithms, products of interest had to be known a
priori.

Here we present automated methods for template-free con-
struction and de novo exploration of CRNs in complex domains
such as electrochemistry. We first describe our method of High-
Performance Reaction Generation (HiPRGen). By using extensi-
ble filters, rather than prescriptive templates, HiPRGen is able to
eliminate reactions based on physical or practical criteria with-
out relying heavily on human chemical intuition. The massive
set of all stoichiometrically valid reactions in a chemical space
is reduced to a still massive but computationally tractable set of
chemically reasonable - though potentially unintuitive - reactions.
To overcome the scaling limitations of graph-based pathfinding,
we use a Monte Carlo-based approach, where the reactive space
is sampled using reaction thermodynamics. The combination of
HiPRGen with stochastic network analysis allows for the explo-

ration of electrochemical reactive spaces without prior knowl-
edge. We demonstrate and validate this approach with an appli-
cation to SEI formation. We first automatically identify the prod-
ucts of a HiPRGen-constructed network - including many reported
in the SEI literature - by analyzing Monte Carlo trajectories. To
demonstrate the plausibility of these network product species and
to underscore the critical importance of the inclusion of unintu-
itive species and reactions in CRN construction, we then identify
kinetically feasible reaction pathways to novel products of inter-
est. The methods described here can be widely applied to initiate
predictive studies of reactivity in domains where existing knowl-
edge is limited.

Results

Template-Free Reaction Network Generation

A CRN is defined by a set of species S and a set of reactions
R linking those species. Inspired by previous work by Kim16 and
Xie2 where the chemical distance between species was used to
selectively include reactions to a CRN without the use of tem-
plates, we have devised HiPRGen, which uses filters to remove
some unphysical or otherwise undesirable species and reactions
while preserving possibly unintuitive mechanisms. We note that
the methods used in this prior work were devised to search for the
optimal pathways to a single product of interest, while we seek to
broadly explore a reactive space. Our aim is to find many feasible
pathways under various starting conditions to a range of prod-
ucts, byproducts, and intermediates, including perhaps products
that might be unknown at the time of network construction.

We begin with some large dataset of species, the properties of
which are known from e.g. quantum chemical calculations. We
then apply a series of filters, where each filter can remove species
that are chemically unreasonable or otherwise undesirable under
the conditions studied (Figure 1-1). A list of species filters that
we have designed and employed is described in Methods and is
discussed in more detail in the Supplementary Information.

The filtered set of species S f iltered is then used to populate buck-
ets each defined by a unique composition (Figure 1-2). Buckets
are populated by members - either one or two species which to-
gether have the composition of the bucket. This means that any
two members of a given bucket define the reactants and products
of a stoichiometrically balanced chemical reaction containing one
or two reactants and one or two products. For each bucket, all
combinations of two unique members yield unique reactions (Fig-
ure 1-3). Note that, because we allow for electrochemical reac-
tions, charge is not necessarily balanced in these reactions. For a
system of several thousand species, there can easily be hundreds
of billions or even trillions of stoichiometrically valid reactions.
Reaction filters are therefore employed to remove reactions that,
despite being stoichiometrically valid, are chemically implausible
or otherwise undesirable (Figure 1-4). Due to the massive scale
of the reaction filtering problem, we note that computational effi-
ciency and parallelism are imperative. Specifically, reaction filters
must use a minimal amount of data to parallelize without out of
memory errors and must be rapid in order to allow filtering to
complete in a reasonable amount of time (hours to days). All em-
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3. Generate reactions by stoichiometry
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Fig. 1 A schematic overview of the High-Performance Reaction Generation (HiPRGen) method. A set of species Sinit is provided as input. 1.
The species contained in Sinit are filtered out based on some user-defined criteria. Here, species including non-ionic lithium (Li0) and species where
multiple fragments are connected only by coordination bonds, are removed. 2. Species are grouped and bucketed based on composition. Each bucket
is populated by entries that contain either a single molecule or a pair of molecules that together have the composition of the bucket. 3. Within each
bucket, all stoichiometrically valid reactions are generated. This corresponds to generating all combinations of two members of the bucket. 4. The
generated, stoichiometrically valid reactions are then filtered out, subject to user-defined reaction filters. Here, dissociative redox reactions (where
changes in bonding occur simultaneously with reduction or oxidation) and reactions involving more than two bonds changing are removed. After
aggregating the reactions generated from each bucket, the end result of the HiPRGen procedure is a set of filtered species S f iltered and a set of filtered
reactions R f iltered constituting a reaction network.
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ployed reaction filters are described in Methods and are discussed
in more detail in the Supplementary Information. Finally, the re-
actions from each bucket that pass all filters are aggregated. The
result of HiPRGen is a set of filtered species S f iltered and filtered
reactions R f iltered , which constitute a CRN.

We note that HiPRGen can exhaustively enumerate all possible
reactions between up to approximately 10,000 species, over an
order of magnitude more than any previous approach.2 Further,
to the best of our knowledge, HiPRGen represents the first mar-
riage of stoichiometric enumeration and chemically-motivated re-
action filtering for CRN construction.

From the CRN generated by HiPRGen, it becomes possible to
search for diverse products and reaction pathways to those prod-
ucts. However, even after filtering the set of stoichiometrically
valid reactions, the number of remaining reactions can be so vast
that a highly scalable method of network analysis is required.

Thermodynamically Bounded Network Analysis Via Stochas-
tic Methods

While it might be desirable to use shortest-path algorithms
to identify reaction pathways in graph-based reaction networks,
such algorithms become computationally intractable as network
size increases. We therefore turn to the kinetic Monte Carlo
(kMC) algorithm of Gillespie,24 which, with appropriate modi-
fications,25 can scale sublinearly with number of reactions. In a
kMC simulation, a system evolves from some user-defined initial
state in a manner that is non-deterministic but consistent with the
rate coefficients provided to the model.

When templates are viable and accurately describe the reactiv-
ity in a system, they can be used to approximate reaction kinetics
with minimal cost.11,13 On the other hand, in a template-free
network of potentially millions of reactions, it is completely im-
possible to include accurate rate coefficients for all reactions. For
the purposes of stochastic network exploration and analysis, we
therefore assign rate coefficients based on the reaction free en-
ergy ∆G rather than the reaction energy barrier ∆G‡, which is un-
known at this point. Exergonic reactions (∆G≤ 0) are assumed to
be barrierless and all have the same rate coefficient given by the
Eyring prefactor ( kBT

h ), while endergonic (∆G > 0) have rate co-
efficients given by the Eyring equation ( kBT

h exp(−∆G‡/kBT )) with
the reaction free energy serving as an effective barrier (∆G‡ =

∆G). This means that many reactions that might not happen in
reality due to high energy barriers will nonetheless occur in the
kMC simulations, but critically, all reactions that will occur in re-
ality will also occur in the kMC simulations. In this way, we can
say that the results of these kMC simulations are bounded by re-
action thermodynamics.

To analyze a CRN with thermodynamically bounded kMC, we
perform a large number of Monte Carlo simulations in parallel
(Figure 2a). The result of each simulation is a series of reactions
defining the trajectory of the system. We trace each trajectory,
examining if a molecule of interest has been formed, and if so,
identifying the shortest sequence of reactions necessary to lead to
its first formation (Figure 2b). Performing this method of stochas-
tic pathfinding over many trajectories, one can identify a range of

possible pathways to the molecule of interest. The paths iden-
tified can then be ranked in order to identify the “best” paths
among those observed, as defined by some cost function (see
Methods). The thermodynamic pathways obtained from network
analysis can then be further analyzed to identify complete mech-
anisms, including transition-states and energy barriers. We note
that while graph-based pathfinding becomes intractable above ap-
proximately 10 million reactions, pathfinding with thermodynam-
ically bounded kMC can scale to approximately 300 million re-
actions and consistently recovers the graph-based shortest paths
where the methods can be compared (see Supplementary Infor-
mation).

However, pathfinding is useful only if one already knows what
molecule to search for. Thermodynamically bounded kMC, unlike
graph-based pathfinding, can explore a reactive space without a
specific target. This is because, while kMC trajectories can be
used to search for a specific specie, they are neither produced
with any specific specie in mind, nor are they biased towards any
such specie.

To identify products of the CRN, we apply a set of heuristic
criteria to the collection of trajectories (Figure 2c). We define a
network product as any specie that is on average formed signifi-
cantly more than it is consumed, that accumulates significantly in
an average trajectory, and that can be reached by low-cost reac-
tion pathways (see Methods).

Via this heuristic method, one can analyze the structure of the
CRN itself. The average trajectory (Figure 2c) satisfies a rate
equation of the system,26,27 as demonstrated by the observed
smoothing that indicates convergence from sufficient sampling.
This means that our method of defining network products is
mathematically rigorous (see Supplementary Information for fur-
ther detail). While the products of the network are not neces-
sarily the metastable or stable products that would be observed
experimentally, the network products provide useful hypotheses
regarding what might form in an actual reactive system. These
hypotheses can then be interrogated and validated by either the-
oretical or experimental means. We note that network products
can depend on the initial state of the system.

Automatic Identification of Battery SEI Network Products

Using HiPRGen, we constructed a reaction network that seeks
to describe SEI formation in lithium-ion batteries. We begin with
an initial set of 8,904 species taken from the Lithium-Ion Bat-
tery Electrolyte dataset,28 which was strategically designed to fa-
cilitate studies of electrolyte reactivity and interphase formation
(see Methods). Network construction resulted in a CRN contain-
ing 5,193 filtered species and 86,001,275 filtered reactions. With
this network, we conducted 100,000 kMC trajectories under four
conditions, with combinations of two different applied potentials
(+0.0V vs. Li/Li+ and +0.5V vs. Li/Li+) and two different initial
states (one consisting only of Li+ and ethylene carbonate (EC)
and the other consisting of Li+, EC, and CO2). Average trajecto-
ries for each condition are shown in the Supplementary Informa-
tion.

Our approach is unique in its capacity to describe the complex-
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Fig. 2 Methods for analyzing CRNs from stochastic simulations. a) A large number of kinetic Monte Carlo trajectories are calculated, beginning
with the same network (defined by S f iltered and R f iltered) and the same initial state ([xi,x j, · · · ]0, where xq is the quantity of species q). b) In each
trajectory, the shortest reaction pathway to some species of of interest can be identified. Note that because these trajectories are stochastic, different
trajectories will often yield different shortest pathways to the same product. c) To identify products of the network, a set of heuristics are applied. In
order to be considered a product of the CRN, a specie must be formed substantially more than it is consumed and must accumulate to a significant
degree on average (that is, its average final concentration must be higher than some threshold). In addition, a product specie must be reachable by
some low-cost path. In the example provided, both the red and the blue species are formed significantly more than they are produced and accumulate,
but only the blue specie can be reached by a low-cost pathway. Therefore, by this heuristic, the blue specie is a network product, while the red specie
is not.
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Fig. 3 CRN construction and stochastic analysis for SEI formation yields a systematic reduction of complexity. I. 8,904 initial species are
reduced to 5,193 species via HiPRGen species filters. II. Of the approximately 176 billion possible stoichiometric reactions between the 5,193 species,
just over 86 million pass HiPRGen reaction filters. III. 100,000 thermodynamically bounded Monte Carlo trajectories are run to completion with Li+,
EC, and CO2 as starting species at +0.0V vs. Li/Li+, and in total only 3182 species and approximately 312,000 unique reactions are observed. IV.
Heuristic analysis of the average trajectory yields only 18 network product species.

ity of a reactive space including thousands of charged and open
shell species. Figure 3 graphically depicts the systematic reduc-
tion in complexity that is inherent to filter-based network con-
struction followed by stochastic analysis. While HiPRGen seeks
to preserve the vast range of chemically reasonable reactions that
could occur in a system containing charged and radical species,
only 312,034 of the over 86 million unique reactions in the net-
work are actually observed in a set of 100,000 kMC trajectories
run to completion from one initial condition. Further, of the 3,182
unique species observed to form in the same set of trajectories,
just 18 are identified as network products. Only an automated
computational infrastructure could possibly navigate such a vast
space of interconnecting species and reactions to guide further
investigation, and no previously reported method can be applied
on this scale.

The utility of our approach is demonstrated through analysis
of the 36 network products collected from the four set of con-
ditions previously described (Figure 4). We first note that our
automated procedure recovers 15 species that include a majority
of the experimentally observed products of SEI formation (Fig.
4 solid dark green). These include gases (H2, C2H4, CO),29 in-

organic species (lithium carbonate (Li2CO3) and lithium oxalate
(Li2C2O4)),30,31 and alkyl carbonates (including species closely
related to LEDC30–32 and LEMC,1,31 as well as lithium methyl
carbonate, lithium butylene dicarbonate (LBDC, or in this case
LiBDC–),31 and vinyl carbonate).33 We emphasize that these
species are recovered even though network exploration is based
only on reaction thermodynamics, with reaction kinetics entirely
ignored.

In addition to these well-known species, there are also a num-
ber of novel products that have not previously been proposed to
participate in SEI formation. Among these are seven additional
alkyl carbonates (Fig. 4 dotted light green) which are each very
similar to known products in molecular size, composition, bond-
ing, and contained functional groups. Due to the extreme dif-
ficulty of experimentally characterizing the SEI and the result-
ing limited ability to resolve small signal to noise,34 the likely
spectroscopic similarity35 of these species to the known products
means that they may already be unknowingly present in the SEI
in small quantities.

Other network products include a number of cyclic species,
such as 4,4’,5,5’-tetrahydro-2,2’-bi(1,3-dioxolylidene), which we
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Fig. 4 The 36 total collected network products from four different initial conditions (+0.0V vs. Li/Li+ with Li+ and EC as starting species; +0.0V
vs. Li/Li+ with Li+, EC, and CO2 as starting species; +0.5V vs. Li/Li+ with Li+ and EC as starting species; and +0.5V vs. Li/Li+ with Li+, EC, and
CO2 as starting species). 15 of the network products are species which have previously been experimentally identified in the SEI, outlined in green,
including dominant gaseous products, dominant molecular inorganic components, and dominant organic components. Seven of the network products,
outlined in dotted light green, are species which would have very similar spectroscopic signatures to the dominant organic components, and thus
may unknowingly be present in the SEI in small quantities. Two of the network products, bi-dioxolylidene and LFEO, outlined in dashed purple, are
unlike any SEI species ever previously proposed and were subjected to further mechanistic analysis; the identification of kinetically accessible pathways
validates our approach (see below for analysis of bi-dioxolylidene and see the Supplementary Information for analysis of LFEO). Finally, the remaining
12 network products may indicate that our CRN is missing species, may be kinetically inaccessible, or may be true SEI products, motivating future
calculations.

abbreviate as bi-dioxolylidene, and several species containing
carboxylate, ester, and oxide functional groups, such as lithium
2-(formyloxy)ethan-1-olate, which we abbreviate as LFEO. Bi-
dioxolylidene and LFEO (Fig. 4 dashed purple) were particularly
unexpected given how distinct they are from the expected SEI
products as well as most of the other novel network products.
Evaluating whether or not these products will actually form in
the SEI necessitates considering kinetic limitations and reactive
competition. However, as we will show, using the thermodynam-
ically shortest paths to guide automated transition state calcula-
tions identifies kinetically viable paths to both bi-dioxolylidene
and LFEO (see below for analysis of bi-dioxolylidene and see the
Supplementary Information for analysis of LFEO).

On the other hand, there are some network products which ob-
viously do not reflect the corresponding chemical system. Specifi-

cally, both vinylene carbonate (VC) and propylene carbonate (PC)
are known to rapidly decompose when included in battery elec-
trolytes.36,37 This contradiction indicates that there are missing
reactions or, more likely given the thoroughness of the HiPRGen
procedure, missing species necessary to facilitate the decomposi-
tion of VC and PC. The identification of this gap through the use of
stochastic network analysis and network product prediction pro-
vides a tractable path forward to expand the CRN via selective
addition of missing molecules that enable redox, decomposition,
or recombination of network products with other abundant inter-
mediate or product species.

Kinetically Feasible Pathways to Products of Interest

The reaction pathways produced by our stochastic approach
are based solely on reaction thermodynamics, with no knowledge
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Fig. 5 Kinetically accessible reaction pathway to bi-dioxolylidene identified from the 3rd shortest thermodynamic path. a) The dioxolylidene
carbene can be formed by the reaction of a doubly reduced Li+EC2− with CO2. CO2 can add with a small barrier (∆G‡ = 0.18eV, ∆G = −1.11eV)
to Li+EC2−, resulting in an intermediate specie. After rearrangement of Li+, this specie can form dioxolylidene by eliminating LiCO –

3 with a small
barrier (∆G‡ = 0.02eV, ∆G =−0.99eV). Once two dioxolylidenes have formed via this facile pathway, then they can dimerize (b) to form bi-dioxolylidene
(∆G‡ = 0.71eV, ∆G =−1.34eV).

of reaction kinetics. In actuality, the dominant reaction pathways
are heavily dependent on reaction energy barriers ∆G‡ and rate
coefficients. In order for thermodynamically bounded kMC to
provide useful chemical insights, it is therefore critical that the
thermodynamic reaction pathways can be reasonably translated
into complete reaction paths including transition-states (TS) and
energy barriers.

Using our stochastic approach, we can identify the N short-
est thermodynamic reaction pathways to the network products,
ranked by a cost function that we have employed previously (see
Methods). We selected two unexpected network products - bi-
dioxolylidene and LFEO - and subjected their thermodynamically
shortest pathways in order of cost to an automated procedure
to identify the TS for each elementary step along each pathway
(see Methods), allowing for the construction of complete reaction
mechanisms. Kinetically viable mechanisms for each were iden-
tified within the top 20 pathways, validating the ability of our
approach to discover novel accessible species and mechanisms.
The pathway to bi-dioxolylidene is shown in Figure 5) and dis-
cussed in more detail below, while the pathway to LFEO is pro-
vided in the Supplementary Information. Novel chemically inter-
esting pathways to expected product vinyl carbonate discovered
in the same manner are also shown in the Supplementary Infor-
mation.

Bi-dioxolylidene can be formed through a dimerization of the
carbene 4,5-dihydro-1,3-dioxol-2-ylidene, which we abbreviate as
dioxolylidene. This pathway is based on the overall third-shortest
thermodynamic pathway to bi-dioxolylidene from amongst all
four scenarios. First, the carbene forms by a facile mechanism
involving the reaction of a doubly reduced EC (Li+EC2−) with
CO2 (Figure 5a). A byproduct of this process is LiCO –

3 , which
can form Li2CO3 simply by coming in contact with an additional
Li+. Once two dioxolylidene have formed via this mechanism,
they can combine to form bi-dioxolylidene (Figure 5b). Although
bi-dioxolylidene has not previously been reported in the SEI liter-

ature (nor, to the best of our knowledge, anywhere in the chemical
literature), this pathway suggests that dioxolylidene should form
in a battery electrolyte if CO2 is present, and that bi-dioxolylidene
formation is plausible if dioxolylidene is formed in abundance.
In future work, we intend to combine multiple mechanisms to
SEI products into a microkinetic model in order to assess reactive
competition and determine what pathways are actually taken and
what products actually form.

Discussion
The method described here, combining HiPRGen with stochas-

tic CRN analysis, is broadly applicable to studies of reactivity in-
volving homogeneous molecular reactions. At present, however,
heterogeneous reactions involving surface sites are not supported.
The ability to automatically generate reactions involving surfaces,
and to perform stochastic simulations of massive reaction net-
works involving spatial dependence, will be necessary additions
to be able to study heterogeneous catalysis and other systems in-
volving surface-mediated reactivity. The other major limitation
concerns species generation. The quality of a CRN generated by
HiPRGen depends on the species initially provided; if there are
key species missing initially, then it is possible that important re-
action pathways and products will not be observed. We hope to
address both of these limitations in future work.

To summarize, we have here described our approach to ex-
plore reactivity using CRNs without reliance on prior knowledge.
The HiPRGen method allows for the construction of CRNs with
vast numbers of chemically reasonable but potentially unintuitive
species and reactions. The resulting massive networks can then
be analyzed using thermodynamically bounded kMC, allowing for
the identification of network products and reaction pathways. We
applied this methodology to study SEI formation in Li-ion batter-
ies, generating a network consisting of over 5,000 species and
over 86,000,000 reactions. Automatic network product predic-
tion yielded many known SEI products as well as several prod-
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ucts that had not previously been proposed. We identified kinet-
ically viable mechanisms for the formation of multiple novel net-
work products (bi-dioxolylidene and LFEO) based on pathways
obtained from CRN analysis and refined using automated DFT,
thereby validating that our network product prediction method
proposes species that, while unexpected, can be reached by ki-
netically viable pathways. Moreover, this suggests that thermo-
dynamic shortest pathways, obtained via network analysis, can
be used to efficiently search for transition-states and kinetically
viable mechanisms. With the approach presented here, it will be
possible to provide insights into a range of domains where funda-
mental understandings of reactivity are limited.

Methods

Species Selection

Initial species were taken from the Lithium Ion Battery Elec-
trolyte (LIBE) dataset.28 The LIBE dataset contains the properties
of 17,190 species of various charges (-1, 0, 1) and spin multiplic-
ities (1, 2, 3) calculated using density functional theory (DFT) at
the ωB97X-V/def2-TZVPPD/SMD level of theory.38–40 LIBE was
designed for study of reactivity in battery electrolytes, making it
well suited for the construction of CRNs and especially well suited
for interrogating SEI formation.

For this work, network construction began with a subset of LIBE
containing all species comprised of only carbon, hydrogen, oxy-
gen, and/or lithium. This subset, which we call LIBE-CHOLi, con-
tains 8,904 species.

Modifying Species Thermodynamics

All calculations on the species present in LIBE were con-
ducted in an implicit solvation environment. While implicit sol-
vation is generally accurate enough for the calculation of prop-
erties such as the solvation energy41 and redox potentials of or-
ganic molecules,42 we have found that even highly accurate im-
plicit solvation methods severely underestimate the stabilization
of small ions, especially metal ions, by solvent. This means that
species in LIBE containing Li+ ions with many coordination bonds
are in many cases vastly more stable according to DFT than those
with fewer coordination bonds, even if the corresponding species
without lithium present are significantly less stable (an exam-
ple is provided in the Supplementary Information). This insuffi-
cient stabilization led to inaccurate thermodynamics for reactions
where the overall charge of the system was constant but the num-
ber of coordinate bonds changed (non-redox reactions).

To correct for insufficient metal ion stabilization, we optimized
Li+ECn clusters at the ωB97X-D/def2-SVPD/PCM//ωB97X-
V/def2-TZVPPD/SMD level of theory, with n ∈ 0,1,2,3,4 to esti-
mate the stabilizing effect of each solvent molecule on Li+. The
lower level of theory (ωB97X-D/def2-SVPD/PCM, ε = 18.5) was
used for optimization due to the considerable computational cost
of optimizing large clusters. We found (see Supplementary Infor-
mation) that each EC stabilized Li+ by ∼ 0.7 eV.

During reaction network construction, we consider two free
energies for each specie: one uncorrected, and one solvent-
corrected. The uncorrected free energy is taken directly from

LIBE. For the solvent-corrected free energy, we count the total
number of coordinate bonds to all Li+ ions (see the Supplemen-
tary Information for a description of the method for deducing
metal coordination) and compare this to the maximum expected
number of coordinate bonds (assuming that each Li+ would pre-
fer to be coordinated by four neighbors).43 If any Li+ are under-
coordinated, then the free energy is lowered by 0.68 eV for each
“missing” coordinate bond. When calculating redox free energies,
the uncorrected free energy is used; otherwise, the corrected free
energy is used (see the Supplementary Information).

Species Filtering
In the HiPRGen package (see Code Availability), we implement

a number of filters that remove undesirable species. These filters
take as input an object containing information about a molecule,
including its species, coordinates, charge, spin multiplicity, par-
tial charges, connectivity, and thermodynamics. Each filter, based
on this information, can discard the molecule or pass it onto the
next filter. For terminal filters, if the molecule passes, then it is
included in the final filtered set S f iltered . For this work, the fol-
lowing molecules were filtered out:

• Molecules composed of two or more disconnected fragments

• Metal-centric complexes, where two or more non-metal frag-
ments are connected only by coordinate bonds to Li+

• Molecules containing neutral or negative metal ions, where
the charges are calculating by applying the Natural Bonding
Orbital (NBO) program version 5.044,45 to a single-point en-
ergy calculation at the ωB97X-V/def2-TZVPPD/SMD level of
theory in Q-Chem.

• Molecules with charge less than -1 or greater than 1

In addition to these filters, which define types of molecules
to be excluded from the final network, we further reduce the
molecules in the network by removing redundant species. In
LIBE, all molecules are unique based on the combination of their
charge, spin multiplicity, and molecular connectivity. This means
that there could be several molecules that differ only by spin mul-
tiplicity, or that differ only by the coordination environment of
Li+ ions (what we call “coordimers”). When this occurs (when
there are multiple molecules with the same covalent connectivity
and charge but potentially with different coordination environ-
ments or spin multiplicities), we include only that specie with the
lowest solvation-corrected free energy in the final filtered set of
species S f iltered .

These filters are explained further in the Supplementary In-
formation. We emphasize that these filters are particular to the
chemistry being studied in this work, but that HiPRGen has been
engineered to enable straightforward addition, removal, or modi-
fication of filters in order to be easily applied across diverse chem-
ical applications.

Reaction Filtering
Reaction filters take as input a reaction, defined by a collection

of reactants and a collection of products, and either discard the
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reaction or pass it onto the next filter until a terminal filter is
reached. The following types of reactions were filtered out in this
work:

• Endergonic reactions with ∆G > 0eV. The reaction free
energies for non-redox reactions were taken as ∆G =

∑
m
i=1 GC

product,i −∑
n
j=1 GC

reactant, j, where GC is the solvation-
corrected free energy, m is the length of the product collec-
tion, and n is the length of the reactant collection. For redox
reactions, ∆G = G0

product −G0
reactant +∆q(Ge), where G0 is the

uncorrected free energy, ∆q is the change in charge of the re-
action, and Ge is the free energy of the electron (for +0.0 V
vs. Li/Li+, Ge =−1.4eV; for +0.5 V vs. Li/Li+, Ge =−1.9eV).

• Reactions involving a charge change |∆q|> 1

• Redox reactions involving more than one reactant or more
than one product

• Unimolecular dissociative redox reactions in which |∆q| > 0
and covalent bonds form or break

• Reactions involving more than two reactants or products
(this is actually enforced by the species bucketing procedure
of HiPRGen and is not a separate filter)

• Reactions involving spectators (species that do not change
as a result of the reaction) e.g. A + B to A + C.

• Rections involving more than two bond changes

• Reactions in which two bonds form simultaneously or two
bonds break simultaneously

• Reactions in which covalent bonds change and metal ions
coordinate/decoordinate (note that reactions in which metal
ions remain coordinated but change their coordinate bonds
are allowed)

Motivations for each of these filters, along with examples, are
provided in the Supplementary Information. Like species filters,
the reaction filters can be easily modified and extended by end
users to suit a broad range of chemical applications. Of course,
removing filters will yield a larger final collection of reactions.
We note that for the size of the species collection presented in
this work, some filters are necessary to obtain a tractable number
of reactions in the final collection.

Monte Carlo Methods
We developed a high-performance implementation of Gille-

spie’s direct method24, with dependency graph and logarithmi-
cally scaling sampler optimizations25, which we call Reaction
Network Monte Carlo (RNMC). RNMC is heavily based on the
Stochastic Parallel Particle Kinetic Simulator (SPPARKS) pack-
age46,47 but with modifications to allow simulating networks
with hundreds of millions of reactions and thousands of species.
RNMC shares the reaction network and dependency graph be-
tween all running simulators and uses a lockless data structure
for the dependency graph that allows it to be computed dynami-
cally by all of the simulators in parallel.

Using RNMC, we performed 100,000 simulations under each
of the four chosen conditions (+0.0V without CO2, +0.0V with
CO2, +0.5V without CO2, and +0.5V with CO2). For simulations
without CO2, the initial state consisted of 30 Li+ and 30 EC; for
those with CO2, the initial state also included 30 CO2. Because
all reactions were exergonic and no energy barriers were consid-
ered, all rate coefficients were constant and equal. Each simu-
lation was conducted to “completion” - that is, until there were
no further reactions available for further simulation. Due to the
relatively small number of initial species, most simulations took
between roughly 200 and 500 steps. We note that simulating to
completion - especially with so few simulation steps - is only pos-
sible because the system contains only exergonic reactions and
therefore contains no loops.

Identification of Thermodynamic Reaction Pathways

To identify a single reaction pathway to a specie of interest, we
trace through an individual Monte Carlo trajectory. If the specie
of interest is formed in that trajectory, then we trace back the
series of reactions leading to the first formation of that specie (see
Supplementary Information for an illustration of this process).
For instance, if we are searching for pathways to specie X , we
might find that it is first formed by the reaction V +W → X . We
then look for the first reaction(s) forming V and W , and then
for the first reaction(s) forming the reactants of those formation
reactions, until all reactions can occur from only starting species
of the simulation. The series of reactions obtained in this way
define a reaction pathway to X .

In general, we are not interested in a single reaction path-
way but rather the myriad pathways to the specie of interest.
Therefore, for each specie of interest, we repeat the pathway
identification procedure above for each trajectory, collecting all
unique pathways. We then rank these pathways by some cost
function. Here, the cost Φ of a given reaction is defined as
Φ = exp(∆G/kBT )+ 1, where ∆G is the reaction free energy (un-
corrected for a redox reaction, and solvation-corrected other-
wise).23 The total cost of a reaction pathway is the sum of the
costs of the individual reactions. We note that, because all reac-
tions included in our network are exergonic, the constant term
tends to dominate, though this cost function retains a preference
for highly exergonic reactions over those that are only slightly
exergonic.

Identification of Network Products

After all simulations have completed, the resulting trajectories
are analyzed to determine product species. Products are defined
by three criteria: the ratio of formation and consumption, relative
accumulation, and availability of low-cost pathways.

To determine the ratio of formation and consumption, each
trajectory was interrogated to find all reactions involving each
specie. If a given specie is a reactant of an identified reaction,
then that means it was consumed; if it is a product of the re-
action, then that means it was formed. If the ratio of the total
number of instances of formation across all trajectories to the to-
tal number of instances of consumption across all trajectories is
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greater than some threshold (here chosen as 1.5, meaning that
three of the species are produced for every two consumed), then
it could be a network product.

For relative accumulation, we take the average of all trajecto-
ries. The expected value of a specie is the average of the final
state - how many of the molecule will persist once the average
simulation has completed. If this expected value is greater than
some threshold (here 0.1, meaning that one of this specie is pro-
duced and is present in the final state for every ten simulations),
then that specie could be a product.

Finally, for those species with formation/consumption ratios
and expected values that pass the chosen thresholds, we per-
form thermodynamic pathfinding analysis. If the pathway with
the lowest cost has a cost less than some threshold (here 10.0),
then we consider the specie to be a product of the network.

The species reported in Figure 4 are network products in at
least one - but not necessarily all - of the four conditions consid-
ered (see Supplementary Information for details). We note that
we add one additional constraint to the products reported here:
spin multiplicity. While open-shell species can be products of the
network (see Supplementary Information for examples), they are
highly unlikely to be stable or meta-stable (long-lived radicals
are generally rare). In the hopes of extracting useful chemical
insights from network products, we therefore only consider net-
work products that are singlets.

Kinetic Refinement of Reaction Mechanisms

The thermodynamic reaction pathways obtained via stochas-
tic analysis were interrogated to determine the actual elementary
steps. For the network products considered here (vinyl carbonate
and bi-dioxolylidene), several low-cost thermodynamic reaction
pathways were selected. For each elementary step along these
pathways - excluding coordination reactions and redox reactions
- we attempted to locate the TS using the AutoTS workflow,48 an
end-to-end workflow to identify TS and reaction pathways that
is built on top of the Jaguar electronic structure code (version
11.2).49 All AutoTS calculations were conducted at a ωB97X-
D/def2-SVPD(-f)/PCM level of theory,39,50,51 with water as the
solvent. In some cases, for reactions involving two bonds chang-
ing, AutoTS identified two TS (for instance, one to form a bond
and one to break a bond); these were optimized separately.

In cases where AutoTS was unable to find a TS for a given reac-
tion, we searched using the single-ended growing string method
(SE-GSM), as implemented in the pyGSM code.52 SE-GSM calcu-
lations were conducted with a Q-Chem backend (version 5.3.2)
at the ωB97X-D/def2-SVPD/PCM level of theory.53 To be as con-
sistent as possible, TS found using SE-GSM in Q-Chem were re-
optimized in Jaguar at the ωB97X-D/def2-SVPD(-f)/PCM level of
theory.

For each TS, we confirmed that the optimized structure pos-
sessed one imaginary frequency and confirmed that it connected
the expected endpoints. For cases where the endpoints consist
of two molecules that are not covalently bound (typically bound
only by coordination to Li+), we allow small imaginary frequen-
cies (less than 75i cm−1). These small imaginary modes can prove

extremely difficult to remove using conventional geometry opti-
mization methods, especially when they involve the motion of Li+

ions, and typically do not significantly affect the free energy. We
note that in some cases, the barriers that we report are based on
the difference between the TS and the reactants or products at
infinite separation, rather than the entrance or exit complex. The
electronic energies of all optimized structures (TS and endpoints)
were corrected using a single-point calculation at a higher level
of theory (ωB97X-V/def2-TZVPPD/SMD) in Q-Chem. The SMD
parameters used were the same used for the construction of the
LIBE dataset.28 We note that we used Q-Chem for these calcula-
tions, rather than Jaguar, because the SMD implicit solvent model
is not implemented in Jaguar at the time of this writing.

All AutoTS and pyGSM calculations were automated using
workflows that we have implemented in the MPcat code (see
Code Availability). These workflows are designed for high-
throughput transition-state searches and reaction pathway analy-
sis. Note that we use a fork of the original pyGSM code for SE-
GSM. All data used to construct mechanisms (molecular struc-
tures, thermodynamics, vibrational frequencies, and frequency
modes) are provided in the Javascript Object Notation (JSON)
format in the file “reaction_pathways.json”.

Code Availability

All codes discussed here (HiPRGen, RNMC, MPcat, and
pyGSM) are released open source on Github. A Python im-
plementation of the HiPRGen method can be found at https:
//github.com/BlauGroup/HiPRGen. RNMC, a performant ki-
netic Monte Carlo code in C++ and based on SPPARKS, can
be found at https://github.com/BlauGroup/RNMC. AutoTS and
SE-GSM calculations were performed using the automated work-
flows defined in MPcat, which can be found at https://github.
com/espottesmith/MPcat. SE-GSM calculations specifically used
a fork of the original pyGSM code, which can be found at https:
//github.com/espottesmith/pyGSM.
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