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Abstract

Force field is a central requirement in molecular dynamics (MD) simulation for accurate
description of the potential energy landscape and the time evolution of individual atomic motions.
Most energy models are limited by a fundamental tradeoff between accuracy and speed. Although ab
initio MD based on density functional theory (DFT) has high accuracy, its high computational cost
prevents its use for large-scale and long-timescale simulations. Here, we use Bayesian active learning
to construct a Gaussian process model of interatomic forces to describe Pt deposited on Ag(111). An
accurate model is obtained within one day of wall time after selecting only 126 atomic environments
based on two- and three-body interactions, providing mean absolute errors of 52 and 142 meV/Å for
Ag and Pt, respectively. Our work highlights automated and minimalistic training of machine-learning
force fields with high fidelity to DFT, which would enable large-scale and long-timescale simulations
of alloy surfaces at first-principles accuracy.

1. Introduction
Molecular dynamics (MD) is a computational method for simulating the physical movements

of atoms and molecules in real time. The atoms and molecules interact according to the energy model
of the system. The dynamical evolution and the corresponding real-time trajectories are determined
from numerical solution of Newton’s equations of motion, where interatomic forces are calculated as
gradients of the potential energy. Different force fields are suited to describe a variety of chemical
bonds, including covalent, ionic, and van der Waals interactions. The accuracy of MD simulation
depends on the accuracy of force field in describing the system of interest. MD simulations have
evolved into a mature technique to understand macromolecular structure-to-function relationships in
chemical physics, biophysics, drug design, and materials science.1,2

In classical molecular dynamics, empirical force fields (so-called molecular mechanics) are
frequently employed to describe the potential energy surface, usually the ground state. These models
are fitted against accurate quantum chemical calculations or experimentally measured physical
properties such as elastic constants, lattice parameters, and spectroscopic measurements. 3 However,
empirical models have several limitations, such as poor transferability and requirement of extensive
parameterizations.

In complex systems that require more accurate representations of the energy landscape,
electronic behavior can be obtained from first-principles calculations based on density functional
theory (DFT), utilized in ab initio molecular dynamics (AIMD). However, due to the large
computational cost of treating the electronic degrees of freedom, AIMD remains prohibitive for large-
scale and long-timescale simulations.4
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Machine-learning models of the energy landscape can enable fast simulations while
preserving first-principles level of accuracy. 5 Recently developed mapped Gaussian process (MGP)
force field has been applied to successfully simulate dynamics of complex multicomponent systems,
such as Pd deposited on Ag(111) surface. 6,7 Here, a detailed atomistic picture of the microsecond-
timescale restructuring of Pd on Ag was revealed by combining microscopy, spectroscopy, and novel
simulation methods. In soft metals such as Pd and Ag, the major chemical complexity arises from
elemental variations in the surface energy. Ag has a full d-shell and segregates to the surface, while
active metal like Pd will migrate to the subsurface, ultimately forming e.g. core@shell
nanostructures.8

Silver-based heterogeneous catalysts have industrial applications in several reactions where
selectivity is a challenge. Thus, fundamental understanding of the structure-property relationship
remains crucial toward designing selective catalysts. Previous study used scanning tunneling
microscopy (STM) to reveal the large-scale reorganization of Pt deposited on Ag at the atomic level.9
Several mechanisms have been shown to drive the restructuring process: place exchange and pop-out,
as well as step ascent and descent.7 The resulting surface vacancy pits would have a vital implication
in the catalytic process. The structure also depends on the annealing temperature: the density of Pt
atoms surrounding Ag step edges increased at higher temperatures. Further experiments have shown
that Pt atoms alloyed with Ag have a weaker binding affinity for CO molecules, which are well-
known to poison the catalyst surface. These observations of the alloy surface structure provide new
insights toward rational catalyst design.

In this project, we use a Bayesian active learning algorithm6 to train an accurate force field for
Pt/Ag using a training set generated by high-temperature AIMD to ensure a diverse set of atomic
environments. The training was completed within 24 hours of wall time on a regular laptop. Upon
validation, the mean absolute errors of the predicted atomic forces were 52 and 142 meV/Å for Ag
and Pt, respectively. The optimized hyperparameters give physically meaningful description of our
surface model. The resulting force field would enable large-scale and long-timescale simulations to
reveal detailed atomistic picture of Pt/Ag(111).

2. Methods
2.1. Bayesian active learning

We use a Bayesian active learning algorithm called FLARE (Fast Learning of Atomistic Rare
Events) and its module “Gaussian process from AIMD” (GPFA) which uses an AIMD trajectory as an
input. 6 The model is initialized using an arbitrary structure in the trajectory. At every frame, GP
predicts the forces on all atoms and the corresponding epistemic uncertainty for every force
component based on the dissimilarity of an atomic environment from the local environments stored in
the training set. An environment is added to the training set if its epistemic uncertainty exceeds the
current noise parameter of the model. This method has many advantages: it is nonparametric, fully
Bayesian, explicitly multicomponent, and can be mapped to highly efficient tabulated force fields.
The model is restricted to a sum over 2- and 3-body contributions with 7.0 and 4.5 Å cutoff,
respectively, which have been shown to be adequate for Group 10 & 11 alloy systems in a previous
study of Pd/Ag.7 Because of its low-dimensionality, regression over a high-dimensional descriptor is
not needed, and the corresponding hyperparameters are physically interpretable.
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2.2. Dataset

Table 1. List of methods and software for training and application of the Bayesian force field.
Application Method Software

Gaussian process (GP) Bayesian active learning6 Fast Learning of Atomistic Rare Events
(FLARE)6,10

Training data Ab initio molecular dynamics
(AIMD)11,12

Vienna Ab Initio Simulation Package
(VASP)13

Application Gaussian process
(ASE calculator)6

Atomic Simulation Environment
(ASE)14

Mapped Gaussian process
(LAMMPS pair style)15

Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS)16

Figure 1. Frames from high-temperature AIMD of a Pt cluster deposited on Ag(111) at 1100 K over
~30 ps. The structure was melted to generate a diverse set of atomic environments as our training set.

The AIMD dataset was generated following the same procedure described in a previous study
of Pd/Ag(111). 7 The temperature was set at 1100 K (bulk Ag melting point = 1235 K) to melt the
system and generate a diverse set of atomic environments for the training. After the active learning
was completed, we validated the GP model using 50 regularly spaced frames from the AIMD
trajectory after excluding those that were selected by the active learning protocol.
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3. Results and Discussion

Table 2. Final optimized GP hyperparameters: Two- and three-body signal variances, σ2 and σ3,
respectively, which determine the uncertainty of points far from the training set: two- and three-body
length scales, l2 and l3 respectively, which determine how rapidly the model varies in space; and the
noise parameter σn corresponding to the expected error level of the model.

σ2 (eV/Å) σ3 (eV/Å) l2 (Å) l3 (Å) σn (eV/Å)

0.303 0.00567 0.937 1.173 0.136

The hyperparameters provide physically interpretable insight on the nature of the atomistic
system (Table 2). Typical prediction errors for machine-learning force fields lie in the range of 50-
200 meV/Å, and the energy of a pair or triplet is much less than the total local energy assigned to an
atom. After optimization, the triplet contribution to the signal variance (0.00567 eV/Å) is significantly
smaller than the pair contribution (0.303 eV/Å): the variances correspond to the uncertainty of points
residing far from the training manifold, and both values are much less than 1 eV/Å. The length scale
of two-body (0.93 Å) and three-body (1.173 Å) are close to 1 Å: the length scales correspond to spatial
variation of the model, and both values are on the same order of magnitude as the average bond length
of 2.93 Å in face-centered cubic Ag employed in the training structure. The noise parameter is around
0.1 eV/ Å and corresponds to the noise arising from thermal fluctuation inherent in our AIMD
trajectory.

Figure 2. (a) Mean absolute error (MAE) of force predictions and the noise hyperparameter during
the active learning process; (b) the log marginal likelihood vs. the number of atomic environments.
New atomic environment is added at frames indicated by black dots in (a); most training occurs
during the first 100 frames, after which both MAE and the noise quickly plateau to an average value
of 0.07 and 0.14 eV/Å, respectively. The likelihood initially becomes negative but increases linearly
afterwards.

The active learning process is automated and minimalistic, as the model selects by itself
which atomic environment to add to the training set only when needed. The algorithm loops over all
atomic environments in a given AIMD frame. If any uncertainty prediction exceeds the threshold for
data acquisition threshold, which is set equal to the current noise parameter, the highest-uncertainty
atomic environment is added to the training set and hyperparameters reoptimized. In total, 126 atomic
environments have been added to the training set. As shown in Fig. 1a, the training set mean absolute
error (MAE) and the noise parameter quickly stabilize to ~0.07 and 0.14 eV/Å after the first 200
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frames, within which majority of the atomic environments are added. The log marginal likelihood first
shows a downward trend up to ~50th atomic environment, after which it increases steadily into the
positive regime after ~100th atomic environment. This observation demonstrates the capability of the
Gaussian process model to utilize the uncertainty to improve its performance in an autonomous
fashion.

Figure 3. Hyperparameters of signal variances (sig; yellow and green) and length scales (ls; blue and
red) for two- and three-body contributions, indicated by separate axes. Both ls and sig3 quickly
plateau after frame ~120; sig2 undergoes an abrupt increase at frame ~3500. The final values are
provided in Table 2.

The evolution of the remaining four hyperparameters over the training process is shown in
Fig. 3. Similar to the noise parameter, the two length scales stabilize after ~50th atomic environment.
In contrast, the signal variances show larger fluctuations: sig2 undergoes a sudden increase after ~80th
atomic environment, whereas sig3 settles to a small value after fluctuating over first 80 atomic
environments. Proper convergence of these values is important for reliability of the prediction model,
especially given that sig3 has a high weight in the mapped GP model. Further hyperparameter
optimization steps could potentially improve the convergence of these values, but the regression is
limited by its prediction time that grows roughly linearly with the number of training environments.17

Figure 4. Parity plot of the GP force components vs. the corresponding DFT force components for Ag
(left) and Pt (right) from the test set. The corresponding mean absolute error (MAE) values are shown
in the legends.
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Model validation was performed using AIMD frames whose atomic environments were not
included in the training set. The parity plot of the predicted vs. DFT force components is shown in Fig.
4 for each element. Our model provides MAE of 52 and 142 meV/ Å for Ag and Pt, respectively,
indicating high fidelity to DFT. Understandably, Ag has lower MAE than Pt due to the lower number
of Pt atoms in our training structures, as well as the full d-shell of Ag which likely makes its
interatomic interactions more electronically amenable for model description than those of Pt.

Conclusions

Machine-learning force fields offer promising solutions to the fundamental tradeoff between
accuracy and cost. In this work, we use Bayesian active learning for automated and minimalistic
training of a Gaussian process model of interatomic forces based on two- and three-body pairs. High-
temperature AIMD trajectory is used as the training set, generated with a small slab of Pt/Ag(111) at
1100 K for 30 ps. After training for one day of wall time, the resulting model exhibits high fidelity to
DFT, with mean absolute errors of 52 and 142 meV/ Å for force predictions of Ag and Pt, respectively.
The method enables MD simulation of large-scale systems for long-timescales and can be applied
easily to other alloy surfaces of interest.
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