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Despite the large relevance of bimetallic metal nanoparticles for heterogeneous catalysis, the re-
lation between their shape and elemental composition remains elusive. Here, we investigate this
relationship by implementing and applying global optimization methods enhanced with a novel
optimal-exchange algorithm. In particular, we determine the lowest energy chemical orderings for
PtAu nanoparticles, revealing that the most stable shape changes from highly symmetric struc-
tures for pure particles to distorted and less symmetric shapes for intermediate compositions. The
presented method leverages the local atomic contributions to an empirical surrogate energy expres-
sion to identify optimal atom exchanges. This also allows us to pinpoint the origin of the stability
of distorted shapes, revealing a favorable energy trade-off when over-coordinating Pt and under-
coordinating Au upon distorting the particle shape.

Bimetallic nanoparticles (NP), or nanoalloys, are
widely studied due to their applications in optics, mag-
netism, catalysis, and other energy-related applications
[1]. The large number of possible metal combinations of-
fers ample opportunities for adapting to very specific ap-
plications and property requirements. For example, the
chemical (and resulting catalytic) properties of bimetallic
materials can be tailored for activating different reactions
by the choice of metals and their relative concentration
[2, 3]. However, determining the structures formed when
combining two metals is challenging, even for bulk mix-
tures crystallizing into fcc-like lattices [4]. Surfaces and
NPs involve even more complex spaces of nonequivalent
chemical orderings [1], which is why most studies deter-
mining the stable structure of large bimetallic NPs have
focused on identifying the most stable chemical order-
ings only for fixed particle shapes, i.e. the most stable
homotop [5–7].

Investigating the chemical ordering for fixed shapes
provides valuable insights regarding the stability of dif-
ferent surface sites, but the structure and resulting shape
of metal NPs are indeed known to depend on their com-
position. Equilibrium shapes derived from the Wulff
construction [8] vary along different monometallic [9]
and bimetallic particles [10]. Even more drastic struc-
tural transitions involving departures from fcc-like struc-
tures can emerge in bimetallic particles when combining
weakly miscible metals with a large size-mismatch. In

such cases, symmetry-breaking transitions from an icosa-
hedral structure to a decahedral one can occur as a means
of releasing strain [11].

Despite the ample evidence pointing to a strong depen-
dence, the interplay between chemical ordering and shape
of large ( >100 atoms) particles remains unclear and is
inaccessible by current computational structure predic-
tion approaches. For example, shapes derived from the
Wulff construction [10] assume the preservation of bulk
chemical ordering, and the aforementioned single- and
fixed- shape approaches are limited by design. To ad-
dress this, we have developed a novel and efficient global
optimization approach exploiting energy decomposition
into atomic contributions to evaluate both chemical or-
dering and shape in bimetallic NPs. We showcase this
approach by studying technologically relevant [12, 13]
PtAu nanoalloys, for which we demonstrate that intri-
cate shape transitions occur as a function of the relative
Pt:Au concentration.

Our approach separates the shape and chemical order-
ing optimization tasks. We first obtain an ensemble of
hundreds of single-metal particles with different stable
shapes by carrying out a shape sampling and optimiza-
tion procedure. Subsequently, we search for the most
stable chemical ordering for each shape of the ensemble
and for each relative concentration of the two metals,
providing the relative energies between all shapes as a
function of metal concentration.
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Both shape and ordering optimization tasks use sur-
rogate models to evaluate the NP energies at each op-
timization step. These models rely on a graph parti-
tioning scheme and a topological energy approximation
to compute (local) atomic contributions to the energy of
single-metal and bimetallic NPs. In addition to provid-
ing sufficiently accurate NP total energies, the separation
into local contributions allows us to implement a optimal-
exchange schemes to accelerate established global opti-
mization methods.

This method is formulated for large (> 100 atoms)
nanoalloys of metals with small size mismatch such as
those formed by gold and platinum [14]. Local relaxation
effects in such particles are small and involve a minimal
loss of crystallinity, which allows constraining the op-
timization problem to changes in occupation of crystal
lattice positions. The energies of bimetallic particles in
the resulting space of conformations can be approximated
by surrogate models based on e.g. bond-centric parame-
ters [15] or topological descriptors [6]. These approaches
significantly reduce the computational cost with respect
to first principles approaches commonly used for such
systems. The Hamiltonian for the topological descrip-
tor model proposed by Kozlov et al. [6] (analogous to a
transverse field Ising model) is expressed as

H =

N∑
i

σiE
coor
CNi

+
1

2

N∑
<i,j>

Ebond
σiσj

+ E0 (1)

where σi is a variable assigned to each of the N atoms of
the NP that takes values {0, 1} depending on the atomic
identity (i.e. platinum or gold in our study). Ecoor

CNi
corre-

sponds to the contribution to the total energy of atom i
with coordination number CNi, and Ebond

σiσj
is the contri-

bution of a bond formed between atoms i and j. The first
term thus accounts for how often one of the two metals
occupies positions with different coordination numbers,
whereas the second accounts for the number of gold-gold,
gold-platinum and platinum-platinum bonds of the sys-
tem. We note that more negative values calculated from
eq. 1 correspond to more stable homotops.

To obtain the Eσiσj
and Eσi,σj

parameters, we fit eq. 1
to a set of known energies of NPs with different chemical
orderings by means of linear regression. The NP energies
are calculated by means of the Effective Medium Theory
(EMT) approach [16, 17] as implemented in the asap cal-
culator of the Atomic Simulation Environment [18]. This
allows testing and validating results using large data sets
obtained at very low computational cost. Calculations
based on Density-Functional Theory (DFT) are also used
to validate the most important results obtained in this
work and to show the general applicability of our ap-
proach to obtain DFT-like accuracy while using a data-
efficient strategy. Details regarding the accuracy of the
topological energy expression and the DFT calculation
parameters are described in the Supporting Information

(Fig. S1).
Global optimization approaches such as Markov-chain

Monte Carlo [6] and GAs [5] have been previously used to
explore the vast configurational space of possible homo-
tops for given particle shapes and compositions and find
the lowest-energy chemical ordering. However, Monte
Carlo simulations are often inefficient due to their inabil-
ity to escape deep basins of the potential energy surface,
whereas GAs not complemented with explicit relaxation
steps decrease slowly within basins.

To overcome these limitations, we have developed a
relaxation and basin-climbing approach that can improve
the efficiency of algorithms that globally optimize the
chemical ordering in bimetallic NPs. This approach relies
on approximations to the local energy of each metal atom
derived from eq. 1, which reveal optimal permutations
to be carried out by the optimization algorithm. The
identification of optimal permutations implemented here
is analogous to the deterministic search scheme proposed
by Schebarchov and Wales [19], which was itself based on
the heuristic approaches for partitioning graphs [20, 21].

The search for the most stable chemical ordering is typ-
ically carried out by iteratively permuting pairs of atoms
such that the energy of the system decreases. Since the
number of possible exchange pairs grows as O(N2) in
the number of atoms of the particle, a random selection
of pairs of atoms to be permuted becomes inefficient for
large particles. It is more convenient to instead select
permutations based on ”flip energies” Eflip

i [19], which
we define as the energy change when replacing the atom
type at a given site. We note that the most favorable ex-
changes correspond to those involving the most negative
Eflip
i values.
The energy change due to the exchange of two atoms

i and j can then be approximated by ∆Eij ≈ Eflip
i +

Eflip
j , which becomes exact in the case of eq. 1 if two

non-neighboring atoms are considered. Obtaining the flip
energies is straightforward due to the local nature of the
Hamiltonian. Particularly, the local energy of an atom
i is only dependent on the number of neighboring Au
atoms (a) and Pt atoms (b), such that

Fσi(a, b) = σiE
coor
(a+b) + aEbond

σi,1 + bEbond
σi,0 , (2)

where σi is 0 for Pt and 1 for Au. The flip gain for any
atom is then expressed as difference in environment ener-
gies of the two elements in the same atomic environment:

Eflip
i (a, b) = (−1)σi [F1(a, b)− F0(a, b)] . (3)

Examples of thus calculated flip energies are shown in
Fig. 1 for an AuPt NP with both a random compositional
ordering and a locally optimal ordered structure. The
flip energies readily provide an intuitive evaluation of the
stability of local structural motifs. The opposite sign of
the flip energies for the two elements indicates that Pt
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FIG. 1. a) Structure and b) flip energies of a Au47Pt93 trun-
cated octahedron with random compositional ordering (top)
and in a local ordering minimum (bottom). Darker colors in-
dicate more stable atoms. c) Sorted flip energies for the two
particles shown, indicating optimal permutations for relax-
ation (green arrows) and perturbation (purple arrows) steps.

forms stronger bonds than Au. This is also reflected in
the optimal atom ordering at this shape, where all Au
atoms occupy undercoordinated edge sites.

Obtaining the Eflip
i (a, b) for all atoms of a NP also

allows to identify the optimal permutation step, which
involves an atom from each element with the respective
lowest flip energies. The selection of atom pairs corre-
sponding to the optimal permutation based on sorted flip
energies is illustrated in Fig. 1. Consecutive executions
of such optimal permutations constitute a deterministic
local relaxation of the chemical ordering, reaching a min-
imum when further energy decrease by exchanging two
atoms is no longer possible.

We have implemented the optimal-exchange relaxation
algorithm described above within two global optimization
frameworks widely used in atomic structure prediction:
Basin Hopping (BH) [22] and Genetic Algorithm (GA)
approaches.

BH approaches consist of consecutive perturbation and
relaxation steps (see flow chart in Fig. S2 in SI), which
allow hopping to different basins and finding the mini-
mum within a basin, respectively. Our implementation
of BH uses the optimal-exchange relaxation for the lat-
ter minimization steps. The success of BH furthermore
depends on a judicious choice of perturbation steps, as
very destabilizing perturbations are often immediately
reverted by the local optimization.[23] An optimal per-
turbation should therefore allow escaping a basin while
keeping the energy of the system low.

Efficient perturbations also rely on flip energies.
Specifically, pairs of atoms are selected iteratively, start-
ing from the most stable ones and until the resulting
exchange leads to an energy increase. The consecutive
execution of such climb-out steps results in a smooth

and gradual escape from local minima. The number of
energy-increasing permutations executed during a per-
turbation and the number of perturbation-relaxation cy-
cles are hyper-parameters of the algorithm.

The optimal-exchange relaxation has also been imple-
mented into a GA, such that generated candidates are
relaxed to an adjacent local minimum (see details in the
SI).

Figure 2 illustrates the performance of the global opti-
mization of the chemical ordering of a truncated octahe-
dral Au106Pt209 particle using the optimal-exchange BH,
the GA with and without optimal-exchange relaxations
and simple Monte Carlo (MC) runs. The cumulative suc-
cess rate for all algorithms has been calculated by running
each algorithm 100 times (from different starting points)
and evaluating the fraction of runs that have found the
(known) global minimum as a function of the number of
steps. A step here is defined as the generation and total
energy evaluation of one candidate structure.

Without local optimization, the ”bare” GA is unable
to locate the global minimum, whereas the MC algorithm
requires a very large (> 105) number of steps. In con-
trast, algorithms assisted by the optimal-exchange algo-
rithm are able to find the minimum requiring approxi-
mately two orders or magnitude fewer steps. We further
note that the effect of the optimal-exchange scheme on
performance is even more significant when increasing par-
ticle size. Such remarkable improvement allows to com-
fortably perform a large number of global optimizations
for different particles on commodity compute architec-
tures. Despite requiring a similar number of steps to find
the global minimum, our implementation of the optimal-
exchange BH algorithm is faster in CPU time than the
GA with optimal exchange relaxation (see Fig. S3 in SI),
and we therefore rely on the former to optimize the order-
ings of ensembles of AunPt140−n particles with different
shape and composition.

Having established the performance of the method for
the chemical ordering optimization of particles with a
fixed shape, we next turn to exploring ensembles of dif-
ferent shapes. In order to generate a large ensemble of
stable single-metal particle shapes, we reuse the BH al-
gorithm whereby an element ’X’ is introduced as a place-
holder for an empty fcc lattice site. We carry this op-
timization out for Pt particles of 140 atoms and recal-
culate the most stable structures for Au. We find more
than 200 structures within a 1.0 eV energy range for
Pt ( 1.4 eV for Au), and that the truncated octahedron
(TO) is the global minimum for both metals. For ev-
ery shape, a separate training set consisting of 100 ran-
domly ordered structures with evenly spaced composi-
tions is calculated at the EMT level of theory and used
for fitting the parameters of our energy model (Ecoor

CNi

for CNi = 6, 7, 8, 9, 12 and Ebond
0,0 , Ebond

0,1 , Ebond
1,1 , and

a term accounting for variable composition). We then
optimize the chemical ordering for every particle of the
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FIG. 2. Cumulative success rates of four different algorithms
for optimizing the chemical ordering in a Au106Pt209 particle.

ensemble and for every composition, circumventing the
difficulty of optimizing both shape and ordering at the
same time. In order to speed up the ordering optimiza-
tion at each composition, we feed the solution for the
particle AunPt140−n as the starting guess for the next
previous composition (Aun+1Pt139−n). This allows per-
forming the ∼ 30k global optimizations required to find
the global minimum for every shape and stoichiometry.

FIG. 3. a) Minimum energy hulls calculated at the EMT level
for an ensemble of 160 AuPt particle shapes. b) Difference in
the average coordination numbers of Au and Pt between the
lowest-energy structures of the two shapes.

The lowest-energy chemical orderings found for every

shape and composition result in a minimum-energy hull
for every shape in the ensemble, illustrating the evolution
of the mixing energy within that shape as a function
of composition. The mixing energy (also referred to as
excess energy) represents the propensity of two metals to
form bimetallic particles instead of monometallic ones,
and is calculated as

Emix = EAunPtm −
nEAun+m

+mEPtn+m

(n+m)
(4)

where EAunPtm and EXn+m are the energy of the
bimetallic particle and single metal particles (in their
most stable truncated octahedral shape), respectively,
calculated at the EMT level of theory. Figure 3 illus-
trates the mixing energies for particles featuring each
of the 160 most stable shapes for monometallic Pt. All
shapes exhibit a qualitatively similar behavior, with par-
ticles of mixed composition being more stable than their
monometallic counterparts, Au atoms preferentially oc-
cupying surface positions, and an Emix minimum in the
range between 90 and 100 Au atoms. The structure with
lowest Emix for all shapes corresponds to a perfect core-
shell ordering, with a complete Au shell and no bulk-like
Au atoms. The composition at which this ordering is
possible depends on the number of surface atoms of each
shape, which explains observed variations in the position
of the minimum for different minimum-energy hulls.

Two particle shapes are significantly more stable than
the rest: the truncated octahedron, which is the min-
imum energy shape for single metal particles; and a
slightly less symmetric shape, which we here refer to
as ”asymmetrically truncated octahedron” (ATO). Both
shapes are shown in the insets of Fig. 3a for different
compositions. The minimum-energy hulls of these two
structures are highlighted with different colors in Fig. 3a
and, remarkably, cross at Au53Pt87 and Au97Pt43. The
distorted shape (ATO) therefore becomes the most sta-
ble one in the yellow-shaded region between these two
compositions. Importantly, this shape with composition
Au93Pt47 and a perfect core-shell structure has the over-
all lowest Emix among all evaluated shapes, compositions,
and chemical orderings, making it the most stable con-
figuration from the millions of evaluated structures.

Changes in relative energies of the different shapes
as a function of composition not only affect the lowest-
energy shapes, but also those with higher energy. In fact,
changes in relative energy are even more pronounced for
some highly distorted structures with an increased num-
ber of surface atoms and with lower coordination num-
bers. This indicates that variations in composition not
only induce a change in the minimum energy shape, but
also makes otherwise very unstable shapes thermally ac-
cessible.

The energy approximation in eq. 1 accounts for and
quantifies contributions from metal atoms in different co-
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ordination environments. Understanding the transition
from the TO to the ATO shape is thus possible by ana-
lyzing the varying distribution of coordination numbers
for the two metals (see Table SIV). The two shapes have
the exact same average coordination number. However,
the ATO has more 12-coordinated bulk-like atoms, com-
pensated with an average lower coordination number of
surface sites. This distortion in the distribution of co-
ordination numbers is particularly relevant in terms of
stability when surface and bulk-like sites are occupied by
Au and Pt atoms, respectively.

The differences between the two shapes in the average
coordination number for Au and Pt atoms, ∆〈CN〉 =
〈CN〉ATO

Au − 〈CN〉TO
Au are shown in Fig. 3b and Fig. S6.

The most prominent feature in the evolution of ∆〈CN〉
lies precisely in the yellow-shaded region, where the Au
and Pt in the truncated octahedron are significantly over-
and under-coordinated, respectively, with respect to the
distorted shape. The larger core of the distorted shape
therefore allows to over-coordinate Pt at the expense of
under-coordinating Au. For concentrations nAu > 96,
all surface sites are occupied by Au, the average coordi-
nation number of Au and Pt are the same for the two
shapes, and the truncated octahedron is again the most
stable shape. We note the presence of another feature
at (20 ≤ nAu ≤ 30). This emerges because Au occupies
all (24) corners of the TO first, whereas it is more favor-
able to occupy some edge positions of the distorted shape
before filling all of its corners.

In order to corroborate the composition-induced shape
transition with more accurate first-principles calcula-
tions, we fit the parameters of eq. 1 to NP energies cal-
culated at the DFT level of theory (see details in SI). In
particular, we calculate the energies of NPs with varying
composition of both the TO and the ATO. This allows
optimizing the chemical ordering of every stoichiometry
and generate the corresponding DFT-based minimum-
energy hull for each shape, as shown in Fig. S7. Al-
though mixing energies are larger in magnitude for DFT,
the minimum-energy hulls are qualitatively similar to
the EMT-derived ones. In particular, they also exhibit
a shape transition at intermediate compositions (with
crossings at ∼Au40Pt100 and ∼Au120Pt20). The presence
of a shape transition for such intermediate compositions
was further confirmed by calculating Emix values explic-
itly at the DFT level theory for selected stoichiometries.
The resulting ETO − EATO values for AunPt140−n stoi-
chiometries with n = 10, 90, 93, 96, and 130 are 2.08,
-0.82, -1.18, -0.26, and 0.63 eV, respectively. These re-
sults confirm both the composition-induced shape tran-
sition and that the EMT approach can qualitatively ap-
proximate the properties of bimetallic AuPt NPs.

We next address the interplay between shape and com-
position for particle sizes that cannot form the symmet-
ric and very stable truncated octahedron shape typical of
e.g. 79-, 140-, 201-atom particles. Although these magic

FIG. 4. Most stable (top row) and second most stable (bot-
tom row) Pt NPs of different size.

numbers form particularly stable particles, experimen-
tally prepared metal NPs typically exhibit a rather wide
particle size distribution [24]. To generalize the interplay
between size and shape to non-magic number particle
sizes, we have repeated the minimum-energy hull line-
scan optimization (fitting eq. 1 to EMT energies) for
(AunPtm−n) for m = 135, 145, and 150. The resulting
ensembles of minimum-energy hulls for each of these par-
ticle sizes are shown in Figs. S8 to S11, and the two most
relevant structures for each size are shown in Fig. 4.

For these non-magic particle sizes, the low-energy
structures similarly feature Au at surface positions. Con-
sequently, Emix minima also appear at compositions al-
lowing complete Au shells and Pt cores. Variations in
relative energies with composition are observed for all
sizes, leading to clear shape transitions for AunPt140−n
and AunPt150−n. For AunPt135−n and AunPt145−n,
nearly degenerate shapes compete in stability along the
entire composition range. In addition, for AunPt135−n
several unstable shapes become nearly as stable as the
global minimum for n≈70-80. The variations in compo-
sition therefore affect the stability ordering for all particle
sizes evaluated here, indicating that composition-induced
shape changes are general and occur regardless of size for
metals with sufficiently different surface energies. A sim-
ilar example was recently observed on Ag deposited on
Pd surfaces [25], which undergoes a reconstruction where
Pd encapsulates Ag.

In conclusion, the shape of bimetallic NPs markedly
depends on the composition even for combinations of fcc
metals of similar atom size such as Pt and Au. This be-
havior emerges in various particle sizes and suggests that
fine-tuning the composition can maximize the abundance
of desired surface sites. Nevertheless, interaction with ad-
sorbed reactants [26, 27] and with a support [28] should
be considered for a complete picture of these shape tran-
sitions under relevant conditions.
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and J. Llorca, Science 346, 620 (2014).



Supplementary information for ”Interplay between shape and

composition in bimetallic nanoparticles revealed by an efficient

optimal-exchange optimization algorithm”

Felix Neumann

Chair of Theoretical Chemistry and Catalysis Research Center,

Technische Universität München, Garching, Germany

Johannes Margraf and Karsten Reuter

Chair of Theoretical Chemistry and Catalysis Research Center,

Technische Universität München, Garching, Germany and

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

Albert Bruix∗

Chair of Theoretical Chemistry and Catalysis Research Center,

Technische Universität München, Garching, Germany and
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IMPLEMENTATION DETAILS OF THE OPTIMIZATION ALGORITHMS

The exact implementation details and choice of hyperparameters can significantly af-

fect the performance of any optimization algorithm. Very often this choice follows a trial-

and-error procedure which is hard to justify by underlying principles. Nevertheless do we

hope that our parameters and implementations provide a good starting point for future

investigations of different systems. All algorithms have been implemented in Python on

top of the Atomic Simulation Environment (ASE) package [1] in our own nanoparticle li-

brary NPL. The repository, including code and tutorials, is freely available on Github:

https://github.com/Themistoflix/NPL

Greedy exchange optimization / Basin Hopping

The parameters for the perturbation strength and number local relaxations/perturbations

are given in the following table:

GA with and without local optimization

The two GA implementations are conceptually identical except for inclusion of the local

optimization procedure directly after the creation of a new offspring particle. We have

opted for a pool-based approach where a newly created offspring is immediately added
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Parameter 79 atoms 140 atoms 314 atoms

Perturbation Strength 10 20 30

No. of relaxations 5 20 60

TABLE I. Parameters used for the Basin Hopping. The perturbation strength denotes how many

exchanges are made during the careful climbout phase. In total, No. of relaxation times the particle

is locally relaxed and perturbed again.

to the population. For offspring creation we implemented two operators, the Cut-and-

Splice operator, and an exchange operator, which would randomly exchange atoms of two

species. Multiple exchanges are possible with the with the probability of n exchanges being

p(n) = 2−n. Probabilities for the application were 0.4 for the cut-and-splice operator and 0.6

for the exchange operator, respectively. As fitness function we used fi = exp(−αρi) with ρi

being the the normalized energy and chose particles for procreation by a probability directly

proportional to to their fitness. To maintain the diversity of the population particles with a

duplicate energy were filtered out immediately after creation. Especially when including the

local optimization procedure this was necessary as a multitude of particles will result in the

exact same local minimum. We note that each step is more demanding for the GA, where

the calculated fitness of each candidate also involves estimating the structural diversity of

the population.

Determining convergence was achieved via counting the generations (i.e. number of pro-

duced candidates) which did not improve the minimal energy of the population and finishing

after a certain number of unsuccessful generations had passed. Particles which were filtered

out due to their similarity to already existing particles would not be counted as unsuccessful

generations until this has happened a predefined number of times in a row. Exact parame-

ters values for population size, non-improving generations before termination and maximum

number of particles that can be rejected due to non uniqueness are shown for both the GA

with and without local optimzation in table II:

Monte Carlo

In addition to the GA without local optimization we turned to the Metropolis algorithm

for a further unbiased method. Best results were achieved using β = 150 1
eV

≈ 77K. The tem-
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Parameter 79 atoms 140 atoms 314 atoms

with local optimization

Population size 5 10 15

Termination after generation 5 10 15

Max. iterations 5 10 10

without local optimization

Population size 15 25 35

Termination after generation 400 800 1200

Max. iterations 5 10 10

TABLE II. Parameters used for the GA with and without local optimization.

perature was held constant during the whole process. Again we allowed multiple exchanges

to mitigate the risk of getting trapped in local minima by following the same procedure as

was applied in the exchange operator of the genetic algorithm.

A convergence criterion based on the total number of possible exchanges has been intro-

duces by Kozlov et al. [2] which we apply: After 2NPtNAu exchanges without improvement

the search terminates with a probability of having tried every possible single pair exchange

with a probability of 63%.

Energy model

Obtaining the parameters for the topological descriptors was achieved via linear regres-

sion. The training sets consisted of 20 randomly created structures in the case of fixed com-

position 100 randomly created structures with evenly spaced concentrations for the convex

hull optimization. In all cases we obtain the feature vectors for the non-relaxed structures

and fit to the energies of the relaxed structures. We highlight here that this approach can

describe the energy of AuPt particles with mean absolute errors < 3 meV/atom. .
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FIG. 1. Parity plot between mixing energies for the Au140−NPtN system calculated at the EMT

level and those calculated using the surrogate model.
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BENCHMARK DETAILS

FIG. 2. Run-time comparison of the different algorithms using a single core of a commodity

desktop computer. We show this to illustrate relative run-times of different algorithms rather than

the absolute numbers (which are highly sensitive to architecture and quickly outdated).
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FIG. 3. (a) Flow chart of the optimal-exchange BH algorithm and (b) energy evolution of an

exemplary run illustrating the optimization (green) and perturbation (red) steps.
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FIG. 4. Distribution of the energies of every algorithm’s best solutions after 100 runs.
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ENSEMBLE CREATION

Obtaining an ensemble of differently shaped but equally sized particles was realised using

the BH algorithm in combination with a purpose-tailored training set. By introdućıng an

element ’X’ we are able to map the task of rearranging atoms on a fixed fcc lattice (i.e.

shape optmization) to the chemical ordering problem that our method was designed for

to solve. However, the problem arises that random orderings then resemble by no means

physically meaningful structures, which in turn leads to extremely large displacements of

atoms during relaxation and thus renders the use of the topological descriptors impossible.

By restricting the relaxation process to one step we circumvent this hurdle as the nominal

energies are not of interest in this case. The second challenge that emerges is the fact that

the distribution of coordination numbers of a specific particle shifts dramatically during the

optimization process, from on average very low to medium/high as a more and more compact

structures is formed. Our final training set has to account for this in order to be applicable.

By combining three methods for generating porous, semi-compact and compact particles

we tried to resemble the different stages of the algorithm and distributions of coordination

numbers. The methods were i) random ordering ii) randomly removing surface atoms from

compact particles and iii) greedily maximizing the coordination number to create compact

particles. Each method contributed 20 particles to our final training set resulting in the

parameters shown in table III for the energy model. Across the different sizes (135, 140, 145

and 150 atoms) this set of parameters was reused.

The optimization process was repeated several times for every size, during which we

captured all local minima and added them to the ensemble. Recalculating the obtained

candidates with EMT allowed us then to identify the 100 (160 for 140 atoms) most stable

shapes which we then used as starting point for further investigation. It should be noted,

that in case of a monometallic particle

only suitable for smaller shapes as energy model insensitive to higher Miller indices

In the case of an monometallic particle the model degenerates to a solely coordination

dependent model.
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FIG. 5. Particles in the ensemble for 140 atoms, left to right, top to bottom, Shape: 0, 1, 2, 3, 10,

60, 110, 150

Parameter EPt−Pt E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E11 E12

Energy [eV] 0.149 4.561 3.141 2.206 1.636 1.192 0.795 0.484 0.224 -0.029 -0.248 -0.487

-0.681 -0.879

TABLE III. Coefficients of the energy model used for the creation of the ensemble of shapes (Pt

only). The index denotes the coordination number.
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CROSSOVER DISCUSSION

Descriptor Octahedron # Distorted Shape #

Total bonds 636 636

6-fold Pt atoms 24 24

7-fold Pt atoms 24 27

8-fold Pt atoms 0 3

9-fold Pt atoms 48 39

12-fold Pt atoms 44 47

TABLE IV. Occurences of features in the octahedron and the distorted particle

Here we also need to include a table with the coordination numbers of the atoms in the

two minima of the 140-atom particle.

FIG. 6. Evolution with composition of the average coordination of gold and platinum for the TO

and distorted shapes of 140-atom PtAu nanoparticles.)
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DENSITY FUNCTIONAL THEORY CALCULATIONS

Computational details

All Density Functional Theory (DFT) calculations were carried out with the periodic

Quantum Espresso code [3], using ultra-soft pseudopotentials and the van der Waals-

corrected BEEF-vdW exchange correlation functional [4]. The Brillouin zone was sampled

at the Gamma point only, and cut-offs of 500 and 5000 eV were used for the orbitals and

charge density, respectively. The electronic structure was self-consistently calculated until

energy differences between consecutive steps were smaller than 5E-5 eV, and all nanoparticle

structures were relaxed until forces for all atoms were smaller than 0.05 eV/Å. In order to

avoid interactions between NPs in neighboring unit cells, vacuum was added to the supercell

ensuring particle-particle distances < 8Å.

DFT-derived convex hull

FIG. 7. DFT-derived mixing energy evolution with composition for different shapes of 140-atom

particles)
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GENERALIZATION OF COMPOSITION-DEPENDENT SHAPE TO

DIFFERENT PARTICLE SIZES

Convex hulls for different shapes of 135, 140, 145, and 150-atom nanoparticles.

FIG. 8. Mixing energy evolution with composition for different shapes of 135-atom particles .)

FIG. 9. Mixing energy evolution with composition for different shapes of 140-atom particles)
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FIG. 10. Mixing energy evolution with composition for different shapes of 145-atom particles)

FIG. 11. Mixing energy evolution with composition for different shapes of 150-atom particles)

∗ corresponding author: abruix@ub.edu
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