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ABSTRACT:	Molecular	modeling	is	ordinarily	employed	to	understand	the	synthesis	of	complex	materials.	In	this	work,	we	
investigate	the	collective	assembly	of	building	units	that	have	been	experimentally	observed	to	initiate	Metal-Organic	Frame-
work	(MOF)	nucleation.	MOFs	exhibit	attractive	characteristics	such	as	remarkable	surface	area	and	diverse	porosities,	how-
ever,	a	mechanistic	understanding	of	their	synthesis	and	scale-up	remains	underexplored	due	to	the	complicated	nature	of	
the	building	block	interactions.	Here,	we	tackle	this	problem	with	large-scale	molecular	dynamics	simulations	under	a	variety	
of	synthesis	conditions	and	mixture	compositions.	We	observe	that	the	connectivity	of	building	units,	as	well	as	their	level	of	
crystalline	order	and	fractal	dimension,	largely	vary	depending	on	the	synthesis	conditions.	However,	these	properties	natu-
rally	emerge	when	interpreting	the	self-assembly	process	of	MOF	nuclei	as	the	time-evolution	of	an	undirected	graph.	The	
results	show	that	solution-induced	conformational	complexity	and	ionic	concentration	have	a	dramatic	effect	on	the	mor-
phology	of	clusters	emerging	during	assembly,	such	diversity	is	captured	by	key	features	of	the	graph	representation.	Princi-
pal	Component	Analysis	(PCA)	on	graph	properties	successfully	deconvolutes	MOF	self-assembly	to	be	characterized	by	a	
small	number	of	molecular	descriptors,	such	as	average	coordination	number	between	half-secondary	building	units	(half-
SBUs)	and	fractal	dimension,	which	can	be	followed	by	time-resolved	spectroscopy.	We	conclude	that	graph	theory	can	be	
used	to	understand	complex	processes	such	as	MOF	nucleation	by	providing	molecular	descriptors	accessible	by	both	simu-
lation	and	experiment.

INTRODUCTION	
Metal-Organic	 Frameworks	 (MOFs)	 are	 a	 class	 of	 porous	
materials	 that	 thanks	 to	 their	 high	 porosity	 and	 surface	
area,	have	ignited	interest	in	a	plethora	of	applications	in-
cluding	carbon	capture	and	storage1,	2,	separations3,	extrac-
tion	of	water	from	air4,	electrodes5	and	drug	delivery6.	Nev-
ertheless,	the	stability	of	MOFs	is	lower	than	other	porous	
materials	and	their	scaling-up	is	still	problematic,	thus	re-
ducing	 their	 applicability7,	 8.	 The	 presence	 of	 defects	 in	
MOFs	is	known	to	affect	their	thermomechanical	properties,	
stability,	 synthesis	 costs,	 and	overall	 suitability	 for	 indus-
trial	applications9,	10.	
This	has	 lead	 to	 recent	efforts	 to	understand	 the	detailed	
mechanisms	associated	with	MOF	synthesis	in	order	to	reg-
ulate	the	extent	of	defects11,	12.	The	formation	of	secondary	
building	units	(SBUs)	during	the	early	stages	of	synthesis	is	
crucial	in	determining	the	final	properties	of	a	MOF.	Ferey	
et	al.13	suggested	a	synthesis	mechanism	involving	the	for-
mation	of	pre-nucleation	building	units	(PNBUs)	and	their	
subsequent	nucleation.	These	are	soluble	zero-charged	spe-
cies	such	as	the	half-SBUs	mentioned	in	this	work.	More	ex-
perimental	 works	 have	 identified	 PNBUs	 and	 evaluated	
their	role	in	the	final	MOF	structure	following	the	approach	
of	synthesis	through	SBU	formation14-18.	Recently,	Liu	et	al.19	
suggested	a	three-step	MOF	nucleation	mechanism	through	

a	mixed	experimental	and	computational	work.	They	iden-
tified	metastable	structures	that	recrystallize	into	the	MOF,	
hence	acting	as	precursors	to	the	nucleation	of	crystalline	
MOFs,	 but	 could	not	 elucidate	 the	molecular	mechanisms	
governing	the	process.	
Computational	studies	on	the	early	stages	MOF	self-assem-
bly	are	rather	limited20.	Yoneya	et	al.21	studied	MOF	self-as-
sembly	with	a	 focus	on	optimizing	simulation	parameters	
using	 dummy	 atoms	 in	 implicit	 solvent.	 Biswal	 and	 Ku-
salik22	have	studied	MOF	self-assembly	using	Langevin	dy-
namics,	and	their	results	imply	the	existence	of	several	local	
energy	minima	associated	with	the	process.	Wells	et	al.23	in-
vestigated	 the	early	 stages	of	MOF	synthesis	using	Monte	
Carlo	methods	and	developed	an	algorithm	able	to	distin-
guish	 between	 different	 phases	with	 respect	 to	 composi-
tion.	Colon	et	al.24	focused	on	the	self-assembly	of	MOF-5	us-
ing	enhanced	sampling	methods,	but	they	did	not	consider	
all	 relevant	metastable	 states	 as	 they	 restrained	 the	 end-
points	of	 the	biased	simulation.	Cantu	et	al.25	 investigated	
the	assembly	of	MIL-101(Cr)	building	blocks	at	the	density	
functional	theory	level,	and	identified	possible	SBU	isomers	
through	modelling	 kinetics	 of	 formation.	 Finally,	 the	 for-
mation	 of	 “metal-free”	 covalent	 organic	 frameworks	 has	
been	 studied	 using	 coarse-grained	 models	 for	 building	
blocks26,	27.	The	shape	and	structure	of	clusters	can	be	exam-
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ined	as	a	means	to	characterize	the	growth	of	complex	ma-
terials.	In	this	respect,	the	fractal	dimension	is	a	well-known	
descriptor	of	compactness	used	to	describe	the	self-assem-
bly	of	metal-ligand	systems28.	Recently,	new	synthetic	strat-
egies	to	form	self-similar	MOFs	that	exhibit	fractal	geometry	
were	suggested29,	30.	Maurer	et	al.31	observed	that	fractal	di-
mension	 provides	 useful	 insight	 into	 the	 spatial	 arrange-
ment	 of	 structures	 which	 have	 similar	 radii	 of	 gyration.	
Tsao	et	al.32	used	the	fractal	dimension	to	explore	the	poten-
tial	of	hydrogen	storage	inside	MOF	pores.	Goesten	et	al.33	
investigated	MOF	growth	through	characterizing	the	fractal	
nature	of	precursors.	At	last,	Liu	et	al.19	linked	the	shape	of	
clusters	with	crystallinity	during	MOF	nucleation.		
Graph	theory	has	been	used	to	model	nucleation	of	metal-
oxide	 compounds34,	 or	 construction	 of	molecular	 polyhe-
dra35.	 Also,	 it	 has	 been	 successfully	 applied	 to	 study	 the	
properties	 of	 metal-ligand	 systems36	 and	 MOFs37-39,	 and	
characterize	the	dynamic	behavior	of	functional	materials40.	
In	 the	case	of	MOF	self-assembly,	a	dimensionality	reduc-
tion	based	on	graphs	is	a	computationally	efficient	way	to	
analyze	 simulation	 results,	 as	 a	 MOF	 can	 be	 naturally	
thought	of	as	a	network	of	nodes,	i.e.	the	metal	centres,	con-
nected	by	edges,	i.e.	the	ligands.	
In	a	previous	work,	we	have	demonstrated	how	the	initial	
population	of	 isomer	half-SBUs,	 the	 choice	of	 solvent	 and	
the	concentration	of	ionic	species	can	affect	the	formation	
of	 defects	 based	 on	 interactions	 between	 couples	 of	 half-
SBUs41.	 In	 this	work	we	 use	 large	 scale	 atomistic	 simula-
tions	 of	 the	 self-assembly	 of	 MOF	 precursors	 from	 pre-
formed	SBUs	in	order	to	systematically	understand	how	the	
composition	of	the	environment	and	the	relative	abundance	
of	different	half-SBUs	isomers	affects	the	collective	assem-
bly	behavior	that	leads	to	nucleation.		We	perform	an	unsu-
pervised	clustering	analysis	of	half-SBUs	based	on	a	graph-
based	model42	in	order	to	identify	MOF	precursors	emerg-
ing	from	solution,	to	calculate	the	properties	of	their	inter-
connected	structures.		
	Finally,	 we	 carry	 out	 a	 principal	 component	 analysis	 to	
identify	the	properties	which	largely	determine	how	self-as-
sembly	proceeds	under	various	conditions.	This	way	we	de-
convolute	the	characterisation	of	the	complex	MOF	self-as-
sembly	process	by	projecting	various	properties	on	the	low-
dimensional	space	of	principal	components.	This	allows	us	
to	evaluate	various	solution	compositions	and	group	them	
based	 on	 the	 similarity	 of	 the	 resulting	 assembly	mecha-
nism;	 thus,	 offering	 a	 mechanistic	 understanding	 of	 the	
early	stages	of	MOF	self-assembly.	

METHODS 
Simulation	 setup.	 Molecular	 Dynamics	 (MD)	 simulations	
were	performed	in	explicit	solvent.	Water	has	been	repre-
sented	with	the	TIP3P	model43	and	ions	with	the	OPLS-AA	
force	field44.	Our	analysis	is	carried	out,	apart	from	water,	in	
N,N-dimethylformamide	 (DMF)	 using	 force	 field	 parame-
ters	compatible	with	OPLS-AA44	obtained	from	the	virtual-
chemistry.org	 database45,	 46.	 The	 MOF	 half-SBUs	 were	
modelled	 using	 force	 field	 parameters	 obtained	 from	 a	
previous	work41.	The	leapfrog	integrator	was	used	to	prop-
agate	dynamics	of	the	system	with	a	time	step	of	2	fs.	The	

LINCS47	algorithm	preserved	the	distances	of	bonds	involv-
ing	hydrogen	atoms.	 	The	 cut-off	 for	non-bonded	 interac-
tions	is	10	Å.	Long	range	electrostatics	were	treated	using	
the	Particle-Mesh	Ewald	(PME)48	scheme.	The	Bussi-Dona-
dio-Parrinello	 thermostat49	 and	 the	 Berendsen	 barostat50	
preserved	the	temperature	and	pressure	at	493	K	and	3,500	
bar	respectively	for	an	equilibration	period	of	5	ns.	Produc-
tion	 molecular	 dynamics	 simulations	 followed	 using	 the	
Parrinello-Rahman	Barostat51	with	a	relaxation	time	of	2	ps	
in	water	and	4	ps	in	DMF.	Production	simulations	were	car-
ried	out	for	100	ns.	The	system	consists	of	132	half-SBUs	in	
explicit	solvent.		The	SBU	are	introduced	indifferent	propor-
tions	 of	 three	 different	 Metal-Ligand	 (ML)	 isomers	 each	
with	 different	 orientations	 of	 the	 ligands	 about	 the	 Cr3O3	
core	denoted	as,	MLA,	MLB,	and	MLC25,	41.	This	results	in	a	
total	number	of	approximately	800,000	atoms	in	water	and	
500,000	atoms	in	DMF	initially	dispersed	in	a	cubic	box	with	
an	edge	of	200	Å.	Two	initial	compositions	of	half-SBUs	are	
considered.	 In	 the	 first	 one	 (purely	 MLA),	 there	 are	 132	
MLA	half-SBUs	 in	solution.	The	second	one	(equiprobable	
MLA,	MLB,	and	MLC),	consists	of	44	MLA,	44	MLB	and	44	
MLC	in	solution.	Simulations	were	performed	with	periodic	
boundary	conditions	in	three	dimensions,	using	GROMACS	
201852.	Chemical	structures	were	visualized	with	VMD53.	
Distance	and	adjacency	matrices.	At	first,	a	(n	x	n)	distance	
matrix	 is	 constructed,	where	n	 is	 the	number	of	 the	half-
SBUs.	The	generic	ij	element	of	the	matrix	corresponds	to	
the	Euclidean	distance	between	the	central	oxygen	atoms	of	
the	ith	and	jth	half-SBUs	units	was	used	as	the	argument	of	a	
step	 function	 to	define	 the	adjacency	of	 two	half-SBUs	 .	A	
cutoff	distance	of	15	Å	is	chosen	as	this	value	lies	between	
the	first	and	second	coordination	shells	emerging	from	the	
calculation	of	the	pair	radial	distribution	function	between	
central	oxygen	atoms	of	half-SBUs.	In	the	adjacency	matrix,	
the	element	ij	is	equal	to	the	unity	if	the	distance	between	i	
and	j	is	below	the	cutoff	otherwise	it	is	set	to	zero.	Examples	
of	the	distance	and	adjacency	matrices	are	discussed	in	the	
Supporting	Information	(SI),	section	I.	
Graph-based	 clustering.	 The	 clustering	 analysis	 of	 half-
SBUs	is	performed	by	converting	molecular	structures	into	
lower	 dimension	 graph	 representations.	We	 consider	 the	
central	oxygen	atoms	of	the	building	units	(nodes)	and	con-
nect	these	nodes	advised	by	the	dissimilarity	matrix	formed	
through	a	distance	criterion.	Then,	we	identify	clusters	as	
connected	 components	 in	 the	 graph,	 where	 the	 smallest	
cluster	consists	of	two	half-SBUs	(dimer).54	Departing	form	
depth	first	search	(DFS)54	that	can	be	used	to	identify	clus-
ters,	we	analyze	the	properties	of	clusters	as	components	of	
a	graph;	hence	enrich	the	information	we	have	for	each	clus-
ter.	Also,	we	calculate	the	mass	of	each	cluster	as	the	sum	of	
the	masses	of	its	constituent	particles.	Furthermore,	the	lo-
cal	environment	of	each	half-SBU	is	characterized	by	enu-
merating	the	neighbors	of	each	node.	This	is	a	measure	of	
the	coordination	of	half-SBUs	in	the	cluster.	Also,	we	calcu-
late	the	number	of	“free”	half-SBUs	as	isolated	nodes,	with-
out	any	edges	attached.	This	allows	us	to	further	calculate	
certain	properties	of	the	graph,	such	as	the	number	of	con-
nections	 (average	 neighborhood	 degree	 of	 each	 node,	
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named	graph	degree	for	simplicity),	the	extent	of	intercon-
nected	 triplets	 (transitivity)	 and	 the	 number	 of	 nodes	
which	connect	with	similar	ones	based	on	their	degree	(as-
sortativity	coefficient).		The	graph	representation	was	con-
structed	using	the	NetworkX	Python	library42.	
Spherical	 radius	 and	 radius	of	 gyration.	The	 spherical	 ra-
dius	and	the	radius	of	gyration	are	calculated	for	each	clus-
ter.	The	first	follows	from	the	ideal	process	of	including	each	
cluster	in	a	sphere.	The	radius	of	that	sphere	would	then	be	
half	the	maximum	distance	between	any	two	metal	centers	
in	this	cluster.	The	radius	of	gyration55	provides	insight	into	
the	distribution	of	mass	in	complex	structures	and		is	used	
to	calculate	the	fractal	dimension	of	each	cluster.	Periodic	
boundary	conditions	in	three	dimensions	are		appropriately	
considered	in	all	these	calculations.	
Fractal	Dimension.	The	fractal	dimension	D!	was	computed	
using	a	power	law	approach56,	57	in	the	form	M	 = 	R"#$%! .		
Where	M	is	the	cluster	mass,	and	R"#$its	mass-weighted	ra-
dius	of	gyration.	In	single	structures	we	consider	all	atoms	
within	 a	 spherical	 volume	 extending	 from	 the	 center	 of	
mass	of	a	cluster.	For	all	atoms	included	into	spherical	vol-
umes	of	increasing	radii,	we	calculate	the	total	mass		and	the	
mass-weighted	radius	of	gyration.	The	fractal	dimension	is	
then	calculated	as	the	angular	coefficient	of	the	linear	func-
tion	obtained		by	fitting	logdR"#$e	against	log(M).		
This	is	repeated	for	all	clusters	consisting	of	at	least	three	
half-SBUs.	We	 consider	 spherical	 shells	 ranging	 from	 the	
minimum	distance	between	centers	of	half-SBUs	in	the	clus-
ter	increased	by	1	Å,	to	the	maximum	distance	increased	by	
5	Å.	This	allows	to	have	enough	atoms	to	calculate	a	mean-
ingful	radius	of	gyration	for	all	volumes,	with	the	largest	ra-
dius	containing	the	entire	cluster.	
A	similar	analysis	is	applied	to	clusters	that	spontaneously	
emerge	during	simulation.	We	observe	the	growth	of	a	frac-
tal	pattern	by	plotting	the	size	of	clusters	against	the	corre-
sponding	radii	of	gyration.	Then,	we	use	the	power-law	re-
lationship	 to	 calculate	 the	 fractal	 dimension	 of	 clusters	
formed	 along	 the	 simulation	 trajectory	 as	 in	 using	 the	
power	 law	approach.	 In	 this	case,	however,	we	substitute	
the	total	mass	M	with	the	number	of	half-SBUs	units	in	the	
cluster.	 For	 non-mass-weighed	 Rgyr	 of	 the	 cluster	 is	 com-
puted	from	the	positions	of	the	centers	of	mass	of	the	units.	
Diffraction	patterns.	We	calculate	the	X-Ray	powder	diffrac-
tion	 (XRD)	 patterns	 of	 clusters	 emerging	 throughout	 the	
simulation	using	PyMatGen58,	59.	The	wavelength	of	 the	Z-
Ray	source	used	is	equal	to	Cuk-a	radiation l=1.54184	Å.	
We	consider	angles	that	differ	less	than	10-5	radians	to	have	
the	same	intensity.	We	scale	intensities	so	that	the	unity	is	
the	 maximum	 value	 and	 scaled	 intensities	 less	 than	 10-5	
were	considered	to	be	negligible.	Hydrogen	atoms	are	not	
present	in	the	calculation	to	be	consistent	with	the	pattern	
of	the	experimental	crystal	structure.	This	analysis	is	per-
formed	for	the	five	largest	clusters	at	every	ns	of	the	simu-
lation.	Consequently,	distance	metrics	can	be	used	to	evalu-
ate	the	similarity	of	each	structure	with	the	reference60,	61.	
In	this	effort,	we	used	the	various	distance	metrics	such	as	
the	 Euclidean,	 Hellinger,	 cosine,	 Manhattan,	 c2	 and	 Can-
berra	distances62.	Similarity	is	calculated	as	the	difference	

of	the	distance	from	the	unity62.	It	should	be	noted	that	dis-
tance	is	normalized	by	its	maximum	value	in	all	simulations	
to	calculate	similarity.	Zero	distance	means	highly	similar,	
while	 distance	 equal	 to	 the	 unity	means	 patterns	 are	 not	
similar	to	MIL-101(Cr)63.		
Effect	of	ions	and	solvent.	Ions	(Na+,	F-)	are	added	at	con-
centrations	 of	 0.035M	 in	 water	 and	 0.075M	 in	 DMF.	We	
chose	small	concentrations	as	it	was	suggested	that	this	is	
the	optimal	balance	between	crystallinity	and	salt	precipi-
tation41.	Furthermore,	a	different	solvent	(DMF)	can	signif-
icantly	 affect	 the	 energetics	 of	 conformational	 transfor-
mations	of	the	solute41,	64.	In	this	context,	we	can	assess	the	
effect	of	guest	molecules	on	the	collective	assembly	of	half-
SBUs.	Finaly,	there	is	experimental	evidence	that	studying	
the	solution	in	the	early	stages	of	assembly	can	significantly	
improve	our	understanding	of	the	mechanism	of	MOF	syn-
thesis65.	
Calculation	 of	 rates.	We	 calculate	 the	 rate	 of	 cluster	 for-
mation	 during	 self-assembly	 following	 the	 approach	 dis-
cussed	by	Yuhara	et	al.66.	 In	more	detail,	we	calculate	 the	
rate	 of	 cluster	 formation	 per	 unit	 volume,	 J.	 This	 is	 com-
puted	directly	from	unbiased	simulations	by	estimating	the	
partial	 derivative	 of	 the	 number	 of	 clusters	 formed,	N(t),	
with	respect	to	simulation	time,	t,	and	then	normalizing	it	
by	the	volume	of	the	simulation	box	V:			

J = &
'
⋅ ()(+)

(+
		 			 	 			(2)	

In	 the	expression	above,	 the	volume	of	 the	 system	shows	
negligible	 fluctuations	 during	 the	 simulation,	 hence	 it	 is	
considered	a	constant.	A	variety	of	methods	is	employed	to	
calculate	the	partial	derivative.		At	first,	we	use	a	linear	fit	of	
the	transient	period	of	the	simulation	and	then	we	calculate	
J	from	the	slope.	Also,	we	approximate	J	as	the	ratio	of	the	
differences	 in	 N(t),	 t	 between	 consecutive	 time	 points,	
namely	 ∆N(t), ∆t	 as	 implemented	 in	 the	NumPy	 software	
package67.	 At	 last,	we	use	 the	more	 accurate	 finite	 differ-
ences	method	discussed	by	Fornberg68,	also	implemented	in	
NumPy67.	Ultimately,	the	rate	is	calculated	using	the	average	
value	of	the	derivative	in	the	transient	period.	Differences	
arising	due	to	the	use	of	various	methods	to	calculate	rates	
are	accounted	for	as	the	standard	deviation	of	the	estimate	
of	the	assembly	rate	in	each	simulation.	An	example	calcu-
lation	can	be	found	in	the	SI,	section	VI.	
Principal	Component	Analysis.	We	calculate	different	sets	of	
data	which	characterize	our	analysis	of	the	early	stages	of	
MOF	self-assembly.	A	dimensionality	reduction	can	be	per-
formed	while	retaining	meaningful	information	by	project-
ing	data	on	principal	components	that	possess	most	of	the	
variation	of	the	dataset69.	In	this	effort,	we	consider	the	av-
erage	values	of	quantities	corresponding	to	the	largest	clus-
ter	 along	 the	 trajectory	of	 each	 simulation.	We	normalize	
data	to	have	a	mean	of	zero	and	standard	deviation	equal	to	
unity.	This	is	done	to	combine	data	that	have	different	units	
and	magnitude70.	Then,	we	identify	eigenvectors	and	eigen-
values	of	the	covariance	matrix70.	At	last,	we	project	data	on	
the	 eigenvectors	 with	 the	 highest	 eigenvalues	 (principal	
components).		
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RESULTS 
Simulations	 in	pure	water.	We	start	our	analysis	with	 the	
system	of	MLA	half-SBUs	in	pure	water.	Half-SBUs	gradually	
attach	to	one	large	cluster	leaving	no	“free”	half-SBUs	after	
approximately	 70	 ns.	 This	 cluster	 is	 highly	 ordered	 and	
forms	 pores.	 	 The	 Q	 interaction	 between	 half-SBUs64,	 is	
prevalent	in	this	case.		This	interaction	type	is		which	is	en-
tropically	favoured	in	water	and	features	p-p	stacking	inter-
actions.	
We	observe	a	rapid	decrease	 in	the	number	of	clusters	 in	
the	 first	10	ns	as	almost	half-SBUs	are	already	connected	

with	other	two	neighbors	at	this	time.	Also,	we	monitor	the	
size	of	the	five	largest	clusters.	After	approximately	70	ns	
the	 clusters	 start	 sintering,	 incorporating	 into	 the	 large	
cluster	during	this	time.	On	average,	each	half-SBU	that	be-
longs	to	this	cluster	has	three	other	neighboring	half-SBUs.	
We	believe	that	this	high	degree	of	interconnectivity	is	what	
holds	this	cluster	intact	for	the	rest	of	the	simulation.	The	
five	largest	clusters	formed	of	MLA	half-SBUs	in	pure	water	
at	the	very	early	stages	of	the	simulations	are	reported	in	
Figure	1	along	with	their	corresponding	graph	representa-
tions.	

 
Figure	1.	Purely	MLA	half-SBUs	 in	water.	Left	panel:	molecular	(left)	and	graph	(right)	representations	the	 five	 largest	clusters	
(ranked	by	size)	after	5	ns	of	the	production	simulation.	Atom	color	code:	Cr	–	lime,	O	–	cyan,	H	–	gray,	C	–	blue.	Right	panel:	Trajectory	
of	the	size,	transitivity	and	average	degree	of	the	five	largest	clusters	throughout	the	simulation.	A	larger	representation	of	molecular	
structures	is	available	in	the	SI,	section	I.	Units	are	separated	from	the	axis	title	by	a	forward	slash.	

An	initially	equiprobable	distribution	of	half-SBUs	in	water	
results	 in	the	formation	of	two	relatively	smaller	clusters.	
Also,	these	are	less	ordered	than	the	previous	case	where	
MLB	and	MLC	were	absent.	Nevertheless,	the	clusters	pre-
sent	higher	dimensionality	than	the	cluster	emerging	from	
the	purely	MLA	system.	
The	number	of	clusters	is	gradually	decreasing	to	2,	reach-
ing	a	plateau	after	50	ns.	One	of	the	clusters	is	almost	30%	
larger	than	the	other	(4,380	and	3,420	atoms	respectively).	
The	average	number	of	neighbors	each	half-SBU	has	is	the	
largest	of	all	cases	as	 it	plateaus	to	a	value	greater	than	5	
after	50	ns.	At	this	point	it	should	be	noted	that	the	figures	
resulting	from	the	analysis	of	clusters	for	all	mixture	com-
positions	studied	in	this	work	are	available	in	the	SI,	section	
II.	Additionally,	the	probability	density	of	different	cluster	
sizes	is	discussed	in	the	SI,	section	III.	Structures	emerging	
from	the	simulation	of	assembly	in	pure	water	along	with	

the	corresponding	graph	representations	after	20	and	100	
ns	of	the	production	simulations	for	both	“purely	MLA”	and	
equiprobable	half-SBU	distributions	are	shown	in	Figure	2.	
The	structures	and	graph	representations	for	the	rest	of	the	
simulations	are	available	in	the	SI,	section	II.	
Furthermore,	we	used	two	clusters	formed	by	MLA	isomers	
in	pure	water	after	100	ns	and	ran	a	relatively	short	MD	sim-
ulation	in	vacuo.	The	reason	is	to	evaluate	whether	clusters	
of	higher	dimension	can	be	formed	from	2D	sheets,	as	the	
MIL-101	crystal	is	a	three-dimensional	network71.	A	cluster	
of	 increased	 fractal	 dimension	 emerged;	hence	 such	 clus-
ters	could	possibly	develop	after	longer	times	of	self-assem-
bly.	This	is	further	discussed	in	the	SI,	section	IV.	
Simulations	 in	 water	 with	 ions.	 The	 introduction	 of	 ions	
(Na+,	 F-)	 considerably	 affects	 the	 dynamics	 of	 assembly.	
Ions	promote	numerous	small	clusters	in	contrast	with	pure	
water.	 Crystal-like	 SBUs	 are	 formed	 in	 the	 presence	 of	
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ions;41	hence	ions	can	help	in	healing	defects	during	assem-
bly.	Also,	small	clusters	of	higher	dimensions	forming	in	this	
case	as	 it	 is	desirable71.	At	 last,	we	observe	small	clusters	
forming	 during	 assembly	 under	 both	 half-SBU	 distribu-
tions;	hence	solute	composition	does	not	significantly	affect	
the	early	stages	of	self-assembly	in	water	with	ions.	
In	further	detail,	the	number	of	clusters	gradually	reaches	a	
plateau	 at	 25	 ns	 for	 MLA	 half-SBUs,	 while	 this	 happens	
much	 faster	 in	 the	 equiprobable	 half-SBU	 distribution.	
There	are	approximately	13	and	25	clusters	in	the	“purely	
MLA”	and	the	“equiprobable	half-SBUs”	cases	respectively.	
The	two	largest	clusters	consist	of	1,320	and	1,140	atoms	
when	there	are	purely	MLA	half-SBUs	and	780	and	480	at-
oms	 when	 there	 is	 an	 equiprobable	 distribution	 of	 half-
SBUs.	

The	average	number	of	half-SBU	neighbors	is	close	to	3.1	on	
average	 in	 the	 “purely	MLA”	case,	and	only	slightly	 lower	
(close	to	2.4	on	average)	in	the	equiprobable	half-SBU	dis-
tribution.	 We	 note	 that	 the	 number	 of	 neighbors	 in	 the	
“purely	MLA”	scenario	is	similar	to	the	one	in	pure	water;	
hence	 ions	do	not	 alter	 the	degree	 of	 connectivity	 in	 this	
case.	A	different	behavior	is	observed	in	the	equiprobable	
distribution	of	half-SBUs	as	 ions	 tend	 to	 considerably	de-
crease	the	number	of	half-SBU	neighbors.	Therefore,	the	co-
ordination	within	the	clusters	is	highly	affected	by	the	pres-
ence	of	ions	in	water	when	only	MLB	and	MLC	are	consid-
ered.	The	choice	of	a	small	concentration	of	ions	is	further	
validated	by	results	obtained	from	a	larger	concentration	as	
discussed	in	the	SI,	section	V.

	
Figure	2.	Clusters	emerging	from	self-assembly	in	pure	water.	Molecular	structures	formed	of	the	"purely	MLA"	(top)	and	"Equi-
probable"	(bottom)	systems	after	20	ns	(left)	and	100	ns	(right)	production	simulations	are	shown	along	with	the	respective	graph	
representations.	Atom	color	code:	Cr	–	lime,	O	–	cyan,	H	–	gray,	C	–	blue	(MLA),	red	(MLB),	green	(MLC).	Nodes	in	the	graph	repre-
sent	the	central	oxygen	atom	of	each	monomer	and	an	edge	is	drawn	between	connected	nodes.	Graph	color	code:	nodes	–	gold,	
edges	–	blue.	

Simulations	 in	 DMF.	 Solvent	 effects	 are	 investigated	
through	simulation	of	the	early	stages	of	MOF	self-assem-
bly	 in	 DMF.	 The	 system,	 consisting	 of	 purely	MLA	 half-

SBUs,	rapidly	forms	a	large	cluster	where	the	Q	configura-
tion	 prevails,	 and	 linear	 chains	 are	 also	 formed.	 Pores	
form	in	a	similar	fashion	as	in	water.	In	the	equiprobable	
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half-SBUs	case,	we	see	one	long	cluster	forming	in	contrast	
with	 corresponding	 simulations	 in	water.	 Consequently,	
DMF	leads	to	a	decrease	in	the	dimensionality	of	the	re-
sulting	structure	in	the	equiprobable	half-SBUs	scenario.	
The	number	of	clusters	is	rapidly	decreased	when	purely	
MLA	 half-SBUs	 are	 present	 in	 DMF.	 Equiprobable	 half-
SBUs	 lead	 to	 the	 formation	 of	 two	 large	 clusters	 (4,080	
and	3,420	atoms	respectively)	between	30	and	50	ns.	The	
average	number	of	neighbors	plateaus	at	around	3	when	
purely	 MLA	 half-SBUs	 are	 present,	 while	 it	 is	 slightly	
higher	when	MLB	and	MLC	are	introduced.	
Simulations	in	DMF	with	ions.	Ionic	species	show	a	com-
pletely	 different	 behavior	 in	 DMF	when	 compared	with	
water.	The	 “purely	MLA”	system	 forms	a	 large,	ordered,	
and	 high-dimensional	 cluster	 compared	 with	 the	 one	
formed	in	absence	of	ions.	A	similar	behavior	is	observed	
when	ions	are	added	in	the	“equiprobable	half-SBUs”	sce-
nario.	
The	time	evolution	of	the	number	of	clusters	shows	a	sim-
ilar	 trend	 in	both	half-SBU	distributions	resulting	 in	3-4	
clusters	 after	 100	 ns.	 In	 “purely	 MLA”,	 we	 observe	 a	
slightly	higher	degree	of	interconnectivity	as	the	number	
of	neighbors	is	close	to	3.3	against	3	in	the	“equiprobable	
half-SBUs”	scenario.	
Graph	analysis.	A	graph	representation	of	the	system	al-
lows	us	to	calculate	of	certain	properties	of	the	molecular	

network	in	every	simulation.	The	equiprobable	distribu-
tion	of	species	results	 in	higher	numbers	of	connections	
per	 half-SBU,	 hence	 half-SBUs	 interact	more	 than	when	
MLA	 is	 the	 only	 species	 present.	 Also,	 the	 equiprobable	
distribution	of	species	and	the	presence	of	 ions	 leads	 to	
higher	 transitivity	 values;	 hence	 networks	 are	 more	
tightly	connected	as	more	triplets	of	interconnected	mem-
bers	exist.	In	contrast,	purely	MLA	systems	have	higher	as-
sortativity	coefficients,	 except	 in	 the	presence	of	 ions	 in	
DMF.	 Consequently,	 MLA	 leads	 to	 assortative	 mixing	
where	similar	molecules	(which	have	the	same	number	of	
connections	on	average)	are	interconnected	more.	
Overall,	 larger	 networks,	 formed	when	 purely	MLA	 iso-
mers	are	present,	feature	members	that	connect	to	others	
with	whom	they	share	similarities	(e.	g.	of	the	same	num-
ber	of	connections),	but	they	are	not	as	strongly	connected	
as	smaller	clusters	emerging	in	the	equiprobable	distribu-
tion	of	species.	The	latter	“communicate”	more	with	oth-
ers	that	are	not	similar;	hence	they	tend	to	connect	to	mol-
ecules	 that	 share	 different	 properties	 in	 a	way	 that	 can	
prove	 beneficial	 to	 heal	 defects	 in	 the	 longer	 term.	 The	
evolution	 of	 the	 largest	 cluster,	 represented	 as	 a	 graph,	
during	assembly	in	water,	is	shown	in	Figure	3.	The	rele-
vant	evolution	during	assembly	in	DMF	is	available	in	the	
SI,	section	II.

	

Figure	3.	Graph	representation	of	the	largest	cluster	formed	at	10,	50	and	90	ns	of	the	production	simulations	in	water.	Code	for	
abbreviations	follows,	AW:	“Purely	MLA	in	pure	water”,	EW:	“Equiprobable	MLA/B/C	in	pure	water”,	AWI:	“Purely	MLA	in	water	
with	ions”,	EWI:	“Equiprobable	MLA/B/C	in	water	with	ions”,	AD:	“Purely	MLA	in	pure	DMF”,	ED:	“Equiprobable	MLA/B/C	in	pure	
DMF”,	ADI:	“Purely	MLA	in	DMF	with	ions”,	EDI:	“Equiprobable	MLA/B/C	in	DMF	with	ions”.	Graph	color	code	is	the	same	as	in	
Figure	2.
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Estimation	of	rates.	The	rate	of	cluster	formation	during	
self-assembly	(see	Figure	4)	 is	 calculated	 for	all	 simula-
tions	performed.	Except	from	assembly	in	DMF	with	ions,	
samples	with	 purely	MLA	half-SBUs	 invariably	 result	 in	
faster	assembly	rates	than	the	equiprobable	distribution.	
In	all	cases,	 ions	tend	to	slow	down	self-assembly.	How-
ever,	ions	can	help	heal	defects.	Pure	DMF	results	in	faster	
assembly	for	both	solute	compositions.	The	fastest	assem-
bly	 corresponds	 to	 the	 case	 of	 purely	MLA	half-SBUs	 in	
DMF.	 Finally,	MLA	 forms	 clusters	 quicker	 in	water	with	
ions	than	in	DMF	with	ions,	while	the	opposite	occurs	for	
the	equiprobable	distribution	of	half-SBUs.	The	resulting	
values	are	provided	in	the	SI,	section	VI.	
Fractal	growth	process.	We	calculate	the	radii	of	gyration	
of	clusters	(see	Figure	4)	formed	and	growing	in	time	dur-
ing	the	simulation.	We	then	relate	these	values	with	their	
corresponding	size	expressed	in	terms	of	number	of	half-
SBUs.	In	this	manner,	we	can	calculate	the	fractal	dimen-
sion	associated	with	the	growth	process	(see	Figure	4).	In	
pure	water,	we	observe	that	in	the	“purely	MLA”	system	
evolves	by	forming	two-dimensional	structures	as	the	cor-
responding	fractal	dimension	is	close	to	2.	Introduction	of	
MLB	and	MLC	leads	to	a	slightly	higher	fractal	dimension,	
while	 ions	result	 in	an	overall	decrease	of	the	fractal	di-
mension.	On	the	other	hand,	in	DMF,	similar	fractal	dimen-
sion	 values	 are	 obtained	 for	 both	 solute	 compositions.	
However,	 these	 are	 appreciably	 lower	 than	 the	 ones	 in	
pure	water;	hence	DMF	decreases	 the	 fractal	dimension	
related	with	self-assembly.	Spectator	ions	in	DMF	further	
induce	a	slight	decrease	 in	the	fractal	dimension	related	
with	growth.	

Diffraction	 pattern.	 In	 this	 section,	we	 assess	 structural	
similarity	 based	 on	 the	 diffraction	 patterns	 of	 clusters	
formed	during	 the	simulation	and	 that	of	MIL-101(Cr)63	
(reference	structure).	We	performed	this	analysis	both	on	
clusters	formed	at	the	end	of	our	simulations	as	well	as	the	
5	largest	clusters	emerging	every	nanosecond	during	the	
whole	simulation	trajectory.	Clusters	formed	out	of	MLA	
units	 are	more	 similar	 to	 the	 reference	based	on	 cosine	
similarity.	This	more	pronounced	in	the	case	of	pure	wa-
ter.	Consequently,	MLA	promotes	the	crystallinity	of	clus-
ters	formed	during	assembly	in	pure	water.	This	analysis	
is	provided	in	detail	in	the	SI,	section	VII.	
Principal	 Component	 Analysis.	 Finally,	 we	 calculate	 the	
principal	components	on	which	the	descriptors	of	the	nu-
cleaton	 process	 computed	 from	 simulation	 can	 be	 pro-
jected.	This	analysis	enables	us	to	identify	similar	cases	(e.	
g.	purely	MLA	in	water	and	DMF)	as	well	as	“unique”	ones	
(equiprobable	 distributions	 in	 water	 with	 or	 without	
ions).	This	successful	dimensionality	reduction	resulting	
from	different	sets	of	data	agrees	with	the	qualitative	pic-
ture	that	we	get	from	describing	molecular	behavior	in	the	
trajectories	of	different	simulations.	Results	are	available	
in	Figure	4.	At	last,	we	see	that	the	1st	principal	component	
is	highly	correlated	(more	than	89%)	with	2/3	of	the	data.	
This	means	that	it	can	be	used	as	a	collective	variable	that	
can	explain	the	early	stages	of	growth	as	it	 incorporates	
most	of	the	information	gained	from	various	quantities.	At	
last,	correlation	coefficients	involving	this	data	and	PCA	of	
the	observables	at	 the	very	early	stages	of	assembly	are	
available	in	the	SI,	section	VIII.	
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Figure	4.	Principal	Component	Analysis	(top	center	panel)	based	on	nine	dimensions.	Dimensions	are	average	quantities	(squares)	
along	with	the	corresponding	standard	deviations	(error-bars).	These	are	calculated	over	the	production	simulation	trajectory.	
Cluster	size,	degree,	transitivity,	spherical	radius,	radius	of	gyration,	assortativity	coefficient,	and	cosine	similarity	refer	to	the	larg-
est	cluster.	Code	for	abbreviations	is	the	same	as	in	Figure	3.	
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CONCLUSIONS AND OUTLOOK 

The	 early	 stages	 of	 MOF	 self-assembly	 are	 investigated	
through	molecular	 simulation	 that	 allows	 us	 to	 identify	
key	interactions	during	nucleation	at	the	molecular	level.		
We	assess	the	effects	of	building	unit	distribution,	solvent,	
and	spectator	 ions	on	MIL-101	self-assembly	by	100	ns-
long	simulations	of	more	than	780,000	atoms.	Clusters	of	
building	units	are	then	characterized	as	an	evolving	graph.	
Our	results	corroborate	previous	studies,	where	the	solu-
tion	 composition	 considerably	 influences	 the	 dynamical	
rearrangement	 of	 building	 units.41,	 64	 Consequently,	 our	
conclusions	 confirm	 these	 phenomena	 at	 large	 length	
scales	where	the	complexity	is	significantly	increased.			

This	 increased	 complexity	 can	 be	 represented	 through	
graph	theory	which	we	show	can	be	used	to	monitor	and	
characterize	growth	at	the	early	stages	by	projecting	tra-
jectories	of	atomic	positions	on	lower-dimension	graphs.	
The	graphs	are	used	to	interpret	how	the	connectivity,	size	
and	morphology	of	clusters	evolve	during	assembly.	As	a	
result,	this	work	sets	the	base	for	further	analysis	of	nu-
cleation	 using	 data	 science	 to	 evaluate	 dynamics	 as	 the	
propagation	of	a	coarse-grained	graph	model.	

We	conclude	that	a	couple	of	molecular	descriptors	suffice	
to	 account	 for	 90%	 the	 variance	 of	 the	 dataset.	 Conse-
quently,	 we	 can	 successfully	 identify	 nucleation	 de-
scriptors	that	capture	the	evolution	of	both	local	and	ex-
tended	features.	One	principal	component	is	strongly	cor-
related	 with	 the	 fractal	 dimension	 related	 with	 growth	
that	is	also	a	proxy	for	the	average	degree	of	nodes	in	the	
graph.	As	such,	this	descriptor	allows	us	to	track	the	evo-
lution	of	the	local	structural	environment	of	the	half-SBU,	
a	variable	that	is	accessible	through	X-Ray	absorption	and	
scattering	methods.20,	72,	73	The	other	principal	component	
is	correlated	with	the	cosine	similarity	that	can	be	calcu-
lated	 from	 powder	 diffraction	 patterns,	 and	 measures	
long-range	order.	The	latter	can	be	monitored	by	time-re-
solved	 diffraction.20,	 28-32,	 63,	 72,	 73	 Ultimately,	 these	 de-
scriptors	can	also	form	a	basis	for	collective	variables	to	
simulate	 nucleation	 via	 enhanced	 sampling.41,	 74	 This	
opens	up	the	exciting	possibility	to	monitor	the	evolution	
of	these	graphs	both	experimentally	and	computationally.	
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