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Low-energy spectra of single-molecule magnets (SMMs) are often described by the

Heisenberg Hamiltonian. Within this formalism, exchange interactions between mag-

netic centers determine the ground-state multiplicity and energy separation between

the ground and excited states. In this contribution, we extract exchange coupling

constants (J) for a set of iron (III) binuclear and tetranuclear complexes from all-

electron calculations using non-collinear spin-flip time-dependent density functional

theory (NC-SF-TDDFT). For the series of binuclear complexes with J-values rang-

ing from -6 to -132 cm−1, our benchmark calculations using the short-range hybrid

LRC-ωPBEh functional and 6-31G(d,p) basis set agree well (mean absolute error of

4.7 cm−1) with the experimentally derived values. For the tetranuclear SMMs, the

computed J constants are within 6 cm−1 from the values extracted from the exper-

iment. We explore the range of applicability of the Heisenberg model by analyzing

the radical character in the binuclear iron (III) complexes using natural orbitals

(NO) and their occupations. On the basis of the number of effectively unpaired

electrons and the NO occupancies, we attribute larger errors observed in strongly

anti-ferromagnetic species to an increased ionic character. The results illustrate the

efficiency of the spin-flip protocol for computing the exchange couplings and the

utility of the NO analysis in assessing the validity of effective spin Hamiltonians.

I. INTRODUCTION

Single-molecule magnets (SMMs) are of interest due to their potential use in high-density

information storage, spintronics, and quantum computing[1–5]. Rational tuning of their

ground-state spin, magnetic anisotropy, and magnetic exchange couplings is essential in the
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design of SMMs with desired magnetic behavior (i.e., ferromagnetic or antiferromagnetic,

switchable, etc.)[6]. For example, magnetic properties of SMMs arise due to their spin-

ordering, which in turn is governed by the exchange interactions between the localized

effective spins. In addition, the magnitude of the exchange coupling controls the magnetic

relaxation rate, as high exchange results in higher energy separations between the ground and

excited states, thereby suppressing faster magnetic relaxation via close-lying spin states[7, 8].

High-spin transition-metal compounds including multiple magnetic centers, such as iron

(III), iron (II), and manganese (III), are well suited for the design of SMMs[9–12]. Among

the best examples, a cluster of four iron (III) spins with S = 5 spin ground state shows

magnetic bistability for times as long as hundreds of nanoseconds, and, consequently, was

proposed as a qubit candidate (i.e., two-level system) for the implementation of molecule-

based quantum computers[9]. Similar magnetic frameworks anchored to a conducting surface

were also investigated in the context of molecular spintronics[13]. Despite the observation of

magnetic hysteresis in such multi-nuclear complexes, their low blocking temperature prevents

their incorporation into a real quantum device, and calls for a joint effort by experiment

and theory to tweak the SMMs magnetic properties through optimization of their chemical

structures.

First-principles calculations of exchange interactions in transition-metal complexes are

challenging because small energy gaps between the spin states of interest require accurate

treatment of both static and dynamic correlation effects. Traditionally, such systems have

been described by multi-reference methods, such as complete active space self-consistent

field methods augmented with perturbative corrections. For example, CASPT2[14] and

NEVPT2[15] (n-electron valence-state PT) are frequently used in studies of magnetic

molecules, providing accurate estimates of their magnetic properties[16, 17]. Due to the

high cost of such multi-reference calculations, more affordable DFT-based approaches are

often employed, such as the broken symmetry (BS) methods[18–20]. Notwithstanding its

wide use, the limitations of BS-DFT are well known—it is based on unphysical broken-

symmetry solutions and its application relies on somewhat arbitrary choice of projectors.

Furthermore, BS-DFT does not scale well with the number of radical sites, as the number

of BS solutions grows rapidly.

We follow an alternative strategy based on the spin-flip approach. Spin-flip (SF)

methods[21–27] offer a balanced treatment of multi-configurational states of polyradicals
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within a single-reference formalism, making the SF-protocol suitable for applications to

SMMs[28, 29]. The SF approach does not rely on scrambled spin-states and does not re-

quire choosing an active space. When combined with DFT[24, 25], the spin-flip approach

provides a computationally more efficient yet reliable approach to tackle extended SMMs.

Following previous SF studies of SMMs (see Ref. [28] and references therein), here we use

non-collinear spin-flip time-dependent density functional theory (NC-SF-TDDFT)[25, 30] to

calculate exchange interactions in binuclear and tetranuclear Fe (III) complexes. In these

molecules, each Fe (III) center has a d5 electronic configuration, with local ground-state spin

configuration ranging from hextet, quartet, and doublet states depending on the strength of

the ligand field, as illustrated in Fig. 1.

FIG. 1: Effect of the ligand-field strength on the local ground-state spin configuration of Fe (III)

ions. The orbital splitting pattern corresponds to octahedral coordination. In the weak-field limit,

the splitting between the d-orbitals is small and the low-lying manifold of electronic states is derived

from configurations with five unpaired electrons, i.e., when each d-orbital is singly occupied, as

prescribed by the Hund rule. In the opposite limit of strong field, the energy separation between the

two orbital sets is larger than the electron pairing energy, giving rise to the low-spin configuration.

Magnetic properties of SMMs can be modeled using phenomenological spin Hamiltonians

of varying complexity. These spin Hamiltonians contain parameters that can be determined

either by fitting to experimental measurements or by using ab initio calculations[31]. Thus,

spin Hamiltonians establish a connection between theory and experiment. The Heisenberg-

Dirac-Van Vleck (HDvV) Hamiltonian is often employed to describe the inter-site effective

exchange interactions. This model is expected to be suitable for treating exchange in-

teractions in multi-center Fe (III) SMMs within the weak-field limit, when the non-Hund

configurations (such as those in the middle and right panels of Fig. 1) are well separated in

energy from the configurations in which the local electronic configuration has five unpaired

electrons. We begin by assessing the applicability of the HDvV treatment in the binuclear

complexes by employing density-based analysis and natural orbitals (NOs)[28, 32]. We then

investigate the functional and basis-set dependence on exchange coupling constants in binu-
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clear complexes[33–35]. For tetranuclear SMMs, we simplify the problem of parameterizing

the Heisenberg Hamiltonian for a multi-center molecular magnet by performing only a single

SF calculation from the highest-multiplicity state, following the approach of Mayhall and

Head-Gordon[36].

The paper is organized as follows. Section II presents the spin-flip formalism and the

theory of the HDvV Hamiltonians. Section III provides the computational details. Section

IV A presents the natural orbital analysis of electronic states in mono- and bi- nuclear

complexes, followed by benchmark results for binuclear complexes in Section IV B and the

calculations on tetranuclear SMMs in Section IV C. Our concluding remarks are given in

Section V.

II. THEORETICAL FRAMEWORK

To describe spin states of the Fe(III) complexes under study, we rely on the spin-flip (SF)

method. In the SF methods[21, 22, 24, 37], high-spin states are used as a reference from

which all the multi-configurational lower-spin states can be obtained by spin-flipping exci-

tations. The high-spin state does not exhibit strong correlation and thus its wave function

can be accurately described by any single-reference method, including standard Kohn-Sham

DFT, and then used as a reference to access the lower-spin manifold as “excited” states in

the spin-flipped sector of the Fock space. Within the SF approach, the target low-spin states

are described as

ΨS,S−1
Ms=S−1 = R̂Ms=−1Ψ

S
Ms=S, (1)

where the spin-flip operator R̂Ms=−1 generates all possible singly excited determinants in

which the spin of one electron is flipped with respect to the high-spin reference (i.e., Kohn-

Sham reference in the SF-TDDFT formulation, see Refs. [24, 37]). SF methods have

shown robust performance in treating diradicals[25, 38], triradicals[39, 39, 40, 40–42], conical

intersections[43–47], and metal-containing SMMs[28, 29, 33].

Phenomenological spin Hamiltonians are commonly used to interpret magnetic measure-

ments and serve as a bridge between theory and experiment[31, 48]. The low-energy spec-
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trum of a system of interacting spins can be described by the HDvV Hamiltonian[49–51],

ĤHDvV = −
∑
A,B

JABŜAŜB, (2)

where operators ŜA,B are understood as effective local spins on centers A and B, and JAB is

the exchange coupling between them. The sign of JAB determines the nature of the exchange

interactions: ferromagnetic (JAB > 0) or antiferromagnetic (JAB < 0).

Experimentally, the coupling constants are obtained by fitting temperature-dependent

magnetic susceptibility to the HDvV model[52]. In contrast, a full-electron quantum-

chemistry calculation can, in principle, provide all electronic states of the system, and by

analyzing the resulting energies and wave functions, one can then assess the validity of the

spin Hamiltonian and determine the exchange interactions between the spin centers [31, 48].

However, such brute-force calculations of the entire manifold of low-lying states entail an

exponential computational cost. This problem can be circumvented by an elegant approach

presented by Mayhall and Head-Gordon[36], who demonstrated that one can construct and

parameterize the HDvV Hamiltonian of Eq. (2) for an arbitrary number of unpaired elec-

trons and metallic centers from the two highest-multiplicity states, the high-spin |S〉 and

adjacent |S − 1〉 spin states of Ms = S − 1 components. These states can be computed by

any spin-flip method (with a single spin-flip) from the highest-multiplicity reference state.

Further details about Mayhall’s approach can be found in Refs. [36, 53] and in the Supple-

mentary Information (SI).

In binuclear systems, the procedure of extracting J-values is simplified by employing the

Landé interval rule[54]:

E(S)− E(S − 1) = −2SJAB, (3)

which is derived by solving the HDvV Hamiltonian analytically. Hence, within the HDvV

model, a single spin-flip calculation is sufficient to compute the J-coupling between the

two metallic centers. Mayhall and Head-Gordon validated this approach by comparing

the single SF results against the full SF calculations (i.e., with multiple spin-flips) that

directly compute all components of the multiplet[53]. In the case of multinuclear SMMs,

the procedure of parameterizing the HDvV Hamiltonian requires additional post-processing
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steps and is based on the effective Hamiltonian theory as formalized by Bloch and described

in details elsewhere[31, 36, 55]. This approach can provide a large number of exchange

interaction couplings, enabling the validation of the HDvV model upon comparison with

the effective Hamiltonian generated from the energies and wave functions of an all-electron

ab initio calculation.

FIG. 2: Three types of configurations in Fe (III) binuclear SMMs: Neutral Hund-type (with fixed

orbital occupations), locally excited (non-Hund-type with paired electrons), and ionic (in which

the number of electrons on each center is different).

The bilinear exchange interactions of the HDvV model of Eq. (2) can be derived from the

more-general Hubbard model using second-order quasidegenerate perturbation theory[31].

The derivation assumes a large energy gap between the manifold of states with fixed orbital

occupations, such as all possible determinants with five unpaired electrons for Fe (III), and

states with doubly occupied orbitals, such as locally excited non-Hund and ionic configu-

rations in which the number of magnetic electrons on each center changes. Different types

of configurations are shown in Fig. 2. When present with large weights, these non-Hund

neutral and ionic configurations result in a non-Heisenberg spectral pattern, leading to dis-

crepancies between theoretically and experimentally obtained J-couplings. In such cases,

the HDvV model breaks down and models incorporating non-Hund configurations explicitly

should be considered instead.

To analyze the deviations from the Heisenberg behavior, we employ natural orbitals

and their occupations. Natural orbitals, which are eigenfunctions of the one-particle state

density matrix[56–59], offer a compact description of the correlated wave functions. The

corresponding eigenvalues can be interpreted as orbital occupations and used to quantify

the radical character in a given electronic state. Following our previous work[28, 32], we use



7

Head-Gordon’s index[60] to compute the number of effectively unpaired electrons,

nu,nl =
∑
i

n̄2
i (2− n̄i)2, (4)

where n̄i is spin-averaged occupation of natural orbital i and the sum runs over all natural

orbitals. For the HDvV model to be valid in binuclear Fe (III) complexes, the low-lying spin

states should have nu,nl = 10 (nu,nl = 20 for the tetranuclear ones) and deviations from this

value would indicate pairing of the active electrons. Similarly, the spin-traced occupancies of

10 frontier natural orbitals should be close to 1. The appearance of locally excited non-Hund

and ionic configurations would manifest itself in nu,nl <10 and spin-traced occupancies of

the frontier orbitals different from 1.

III. COMPUTATIONAL DETAILS

To asses the performance of the HDvV model, we extract J-couplings for a set of anti-

ferromagnetic Fe (III) SMMs (Fig. 3)[61–76]. Below we refer to them by the numbers as

shown in Fig. 3. Several of these complexes have been studied using broken symmetry DFT

(BS-DFT) approach by Joshi et al.[35]. All these complexes have Fe (III) atoms with d5

configuration. In binuclear complexes 1-12, the Fe atoms are connected by a dibridged oxo

unit (complexes 1-4), single oxo unit (complexes 5-7), oxo and acetate bridges (complexes

8-12). In the tetranuclear complexes 13 and 14, the Fe atoms are bridged by oxymethyl

groups whereas 15 and 16 have both oxo and acetate bridges. As shown by the experimental

studies and confirmed by our calculations, the kind of linkage between Fe atoms plays a key

role in determining the exchange coupling.

In addition to these multi-nuclear Fe (III) compounds, we also examined three model

mononuclear Fe (III) systems of varying crystal-field strengths: [Fe(Cl)6]
3− (weak field), a

monomer unit built from ABIZOA complex (ABI-m), and [Fe(CN)6]
3− (strong field). The

ABI-m complex consists of benzimidazole, azide, and ethanolamine ligands. For [Fe(Cl)6]
3−

and [Fe(CN)6]
3−, we used PCM solvent to stabilize the multiply charged anions. Corre-

sponding structures are given in the SI.

All calculations were carried out using the Q-Chem electronic structure package[77, 78].

We used high-spin reference states of S = 5 and S = 10 to compute spin-flip states in the
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FIG. 3: Crystal structures of the binuclear (1-12) and tetranuclear (13-16) complexes with Fe (III)

centers investigated in this study with their Cambridge structural database names.

binuclear and tetranuclear SMMs, respectively. We employed non-collinear formulation of

SF-TDDFT[25]. To investigate the functional dependence, we used the following:

� Hybrid functionals: B3LYP[79], B5050LYP[24], PBE0[80], and PBE50[25].

� Minnesota functionals[81]: meta-GGA M06-L, and hybrid meta-GGA M06-2X.

� Range-separated hybrid functionals: CAM-B3LYP[82], LRC-ωPBE[83], LRC-

ωPBEh[84], ωB97X-D[85], and ωB97M-V[86].
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We also evaluated basis-set effects (cc-pVDZ, def2-TZVP, and 6-31G(d,p)) and performance

of effective core potentials (CRENBL, SBKJC, SRSC, and LANL2DZ).

IV. RESULTS AND DISCUSSION

A. Natural orbital analysis of mono- and bi-nuclear complexes

TABLE I: Energy gapsa (∆E, eV), 〈S2〉 valuesb, and density-based analysis of spin-flip states

(denoted as “SFn”) obtained from the high-spin hextet reference state (denoted as “ref.”) in

model mononuclear Fe (III) complexesc.

Complex ref. SF1 SF2 SF3 SF4 SF5 SF6 SF7

[Fe(Cl)6]
3−
〈S2〉 8.75 8.76 3.81 3.81 3.81 3.82 3.82 3.82
∆E 0.00 1.61 1.61 1.61 1.73 1.74 1.74
nu,nl 5.00 3.16 3.19 3.04 3.03 3.09 3.08

ABI-m
〈S2〉 8.77 8.80 3.85 3.84 3.85 3.83 3.83 3.84
∆E 0.00 0.35 0.63 0.74 0.99 1.40 1.54
nu,nl 5.00 3.02 3.03 3.03 3.02 3.04 3.04

[Fe(CN)6]
3−
〈S2〉 8.76 3.83 3.82 3.82 3.82 3.82 3.82 8.76
∆E 0.00 0.04 0.04 0.18 0.19 0.19 1.59
nu,nl 3.01 3.01 3.01 3.01 3.05 3.05 5.00

a The energy gaps are computed with respect to the lowest spin-flip state (SF1).
b The

ideal 〈S2〉 values of high-spin (S = 5
2
) and low-spin (S = 3

2
) states are 8.75 and 3.75,

respectively. c LRC-ωPBEh/6-31G(d,p).

TABLE II: Occupancies of frontier natural orbitals (n = nα + nβ) in the lowest hextet (ideal 〈S2〉
is 8.75) and quartet (ideal 〈S2〉 is 3.75) state in mononuclear Fe (III) complexes.

Complex 〈S2〉 NO1 NO2 NO3 NO4 NO5

[Fe(Cl)6]
3− 8.76 1.00 1.00 1.00 1.00 1.00

3.81 0.20 0.86 1.00 1.14 1.82

ABI-m
8.80 1.00 1.00 1.00 1.00 1.00
3.85 0.05 1.00 1.00 1.00 1.96

[Fe(CN)6]
3− 3.83 0.02 0.99 1.00 1.00 1.97

8.76 1.00 1.00 1.00 1.00 1.00

To investigate the electronic structure pattern of the Fe (III) ion in a ligand field of various

strength, we begin by considering three model single-center Fe (III) systems: [Fe(Cl)6]
3−,

ABI-m, and [Fe(CN)6]
3−. [Fe(Cl)6]

3− and [Fe(CN)6]
3− represent weak- and strong-field

cases, respectively. Starting with a high-spin hextet reference state, we perform SF-TDDFT

calculations (using LRC-ωPBEh/6-31G(d,p)) and analyze the manifold of the computed
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S − 1 electronic states. The choice of the level of theory (functional/basis set) is justified

by our benchmark calculations described below (Section IV B). Here, our aim is to verify

the applicability of our SF protocol in describing the electronic structure of the Fe (III)

complexes within the strong field regime, where non-Hund configurations appear at low

energy spoiling the HDvV model, and to determine, on the basis of the natural orbital

analysis, whether the ABIZOA complex (and then other complexes shown in Fig 3) fall in

the weak field or the strong field category.

Table I shows energy gaps (∆E), the number of effectively unpaired electrons (nu,nl),

and the eigenvalue of the S2 operator (〈S2〉) for the spin-flip states of each model system

(energy gaps are reported with respect to the lowest SF state). The occupancies of the

natural frontier orbitals for the lowest hextet and quartet states are reported in Table II.

The respective natural orbitals are shown in the SI. [Fe(Cl)6]
3− and [Fe(CN)6]

3− exhibit

two threefold degeneracies of the quartet states due to Oh symmetry. As expected from

the crystal-field theory, the hextet state with five unpaired electrons is the lowest SF state

in [Fe(Cl)6]
3−. In contrast, in [Fe(CN)6]

3− a low-spin quartet state appears 1.6 eV below

the high-spin sextet state. The ABI-m model system clearly shows a weak-field pattern,

with the hextet state being the lowest. Due to lower local symmetry, the orbital and state

degeneracies are lifted.

FIG. 4: Orbital occupations of the lowest state (i.e., SF1) in mononuclear Fe (III) complexes.

We use natural orbital occupancies (i.e, sum of α and β NO occupations) of the lowest

spin states to determine the nature of non-Hund configuration for mononuclear complexes

and to establish the deviations from the HDvV model for multi-nuclear compounds. For

the mononuclear complexes, the high-spin hextet states have all orbital occupancies that are

nearly one, whereas in low-spin quartet states, the electrons become partially paired forming

non-Hund configurations and the occupations of two of the NOs differ considerably from 1

(see Table II). Somewhat surprisingly, the difference between [Fe(Cl)6]
3− and [Fe(CN)6]

3− is

not very large, although both nu,nl and the orbital occupations show the expected trend—
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larger contributions from the non-Hund configurations in the strong-field case. For multi-

nuclear compounds, the appearance of non-Hund and even ionic configurations results in

non-Heisenberg behavior, which requires mapping to biquadratic Heisenberg and Hubbard

models to capture their magnetic behavior. Below we extend such natural orbital analysis

to the binuclear complexes to assess whether the fit of magnetic susceptibility measurements

to the HDvV model is appropriate for these systems.

TABLE III: Frontier natural orbital occupancies (n = nα +nβ) and nu,nl of the lowest S = 4 state

showing an increase of ionic character with the absolute value of J (cm−1) in binuclear Fe (III)

complexes.

Complex J-expa J-theob nu,nl NO1 NO2 NO3 NO4 NO5 NO6 NO7 NO8 NO9 NO10

1 -6.4 -7.1 9.99 0.96 0.98 0.98 0.99 1.00 1.00 1.01 1.01 1.02 1.04
2 -13.6 -16.6 9.98 0.94 0.97 0.98 0.98 0.99 1.01 1.02 1.02 1.03 1.06
3 -13.7 -15.7 9.98 0.94 0.97 0.97 0.98 0.99 1.01 1.02 1.03 1.03 1.06
4 -21.3 -20.4 9.98 0.94 0.96 0.98 0.98 0.99 1.01 1.02 1.02 1.03 1.06
5 -100c -106.8 9.91 0.90 0.91 0.93 1.00 1.00 1.00 1.00 1.07 1.09 1.10
6 -87.5 -91.9 9.92 0.89 0.93 0.93 1.00 1.00 1.00 1.00 1.07 1.07 1.10
7 -98 -100.7 9.91 0.89 0.93 0.93 1.00 1.00 1.00 1.00 1.07 1.07 1.11
8 -108 -105.4 9.90 0.89 0.92 0.93 1.00 1.00 1.00 1.00 1.07 1.07 1.11
9 -119 -109.8 9.90 0.89 0.90 0.93 0.99 1.00 1.01 1.01 1.07 1.09 1.11
10 -121 -124.7 9.88 0.88 0.90 0.92 0.99 0.99 1.01 1.01 1.08 1.10 1.12
11 -130 -123.0 9.88 0.88 0.91 0.92 0.99 0.99 1.01 1.01 1.08 1.09 1.12
12 -132 -119.4 9.88 0.88 0.91 0.92 0.99 0.99 1.01 1.01 1.08 1.09 1.12

aExperimental exchange coupling from Refs. [61]-[76]. bComputed exchange coupling using
LRC-ωPBEh/6-31G(d,p) and the Landé interval rule. cThe exchange coupling is taken to

be -100 cm−1 due to discrepancies in reported experimental values.

Table III show the results for the set of binuclear Fe (III) SMMs (see Fig. 3 for structures).

In all of them, the high-spin S = 5 states have near one orbital occupancy for all 10 frontier

natural orbitals, with expected nu,nl = 10. In contrast, the lower S = 4 states show slight

deviations of occupations from one, which increase in the higher exchange coupling regime,

resulting in larger discrepancies between the theoretical (of this work) and experimental (see

Refs. [61]-[76]) exchange couplings. The same trend is reported for the number of unpaired

electrons, which decreases from 9.99 to 9.88 upon an increase in exchange interaction. The

effects of a large magnitude of exchange coupling can be compared to that of the lowest SF

state in [Fe(CN)6]
3−, where a large crystal field splitting stabilizes the non-Hund states (Fig.

4).

Overall, we observed small discrepancy between experimentally derived J-values and the

ones extracted from ab initio calculation using Eq. (3). This deviation increases with the
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size of J . Additionally, the larger is the J coupling (in absolute value) and the larger is

the deviation of nu,nl from 10 and of the NO occupancies from 1, suggesting the presence of

ionic and non-Hund contributions. These configurations are responsible for the discrepancy

between theory and experiment in the higher anti-ferromagnetic regime (i.e., more negative

J-values). However, deviation of nu,nl from 10 (less than 2%) and of NO occupancies from

unity (within 8 %) is small, meaning that the HDvV model can be considered valid for the

binuclear Fe (III) compounds under study.

B. Benchmark calculations

Having established a procedure to validate the HDvV model, we now proceed to bench-

marking the functional and basis-set choice against experiments. For the binuclear Fe (III)

SMMs, SF-TDDFT calculations using high-spin reference of S = 5 yield S = 5 and S = 4

states of Ms = 4 components from which the exchange couplings are computed using Eq.

(3). The 〈S2〉 values for the spin-flipped S = 5 and S = 4 states are close to 30 and 20 values

respectively, with negligible spin contamination ranging between 0.01 and 0.06. We compute

statistical measures of errors such as mean absolute error (MAE), mean error (ME), and

standard deviation error (SDE) of the computed J-values with respect to the experimentally

derived ones.

TABLE IV: J-couplings (cm−1) for 12 binuclear Fe(III) systems computed using NC-SF-TDDFT

with selected functionals and the 6-31G(d,p) basis set.

Complex Exp. B3LYP B5050 PBE0 PBE50 M06-L M06-2X CAM- LRC- LRC- ωB97 ωB97
LYP B3LYP ωPBE ωPBEh X-D M-V

1 -6.4 -10.9 -3.6 -6.9 -2.7 -11.5 -5.3 -7.7 -8.2 -7.1 -7.3 -7.7
2 -13.6 -24.7 -8.5 -16.9 -7.2 -25.5 -11.9 -19 -22.8 -16.6 -18.1 -18.4
3 -13.7 -23.5 -6.3 -15.2 -5 -28.5 -10.8 -17.6 -23.6 -15.7 -13.4 -17.4
4 -21.3 -27.3 -11.7 -20 -10 -31.9 -6.5 -21.1 -27.8 -20.4 -22.3 -23
5 -100.0 -134.2 -70.2 -101.9 -61.8 -129.9 -163.4 -119.5 -139.5 -106.8 -116.1 -115.5
6 -87.5 -115.7 -59.4 -87.4 -52.7 -125.3 -44.2 -103.2 -122.4 -91.9 -99.9 -101.5
7 -98.0 -124.1 -66.6 -95.6 -58.8 -119.6 -90.8 -113.1 -133.2 -100.7 -109.3 -111
8 -108.4 -140.3 -64.7 -102.4 -57.3 -147.4 -104 -118 -142 -105.4 -114.6 -112.1
9 -119.0 -147.3 -67 -106.9 -59 -155.2 -96.5 -123.5 -148.8 -109.8 -119.3 -118
10 -121.0 -164.7 -74.8 -119.9 -66.1 -172.8 -56.9 -140.4 -171.2 -124.7 -136.5 -132.1
11 -130.5 -166.3 -77.1 -120.1 -66.9 -170.3 -173.2 -139.2 -166.1 -123.1 -134.4 -131.9
12 -132.0 -155.9 -74 -114.5 -65 -163.7 -87.4 -134.7 -162 -119.4 -130.5 -130.6

MAE 23.7 30.6 4.9 36.6 27.5 26.0 8.8 26.4 4.7 6.1 6.0
ME -23.7 30.6 3.6 36.6 -27.5 8.4 -8.8 -26.4 0.8 -5.8 -5.6
SDE 12.8 20.4 6.5 23.7 28.13 35.4 7.0 15.4 6.0 11.48 6.0
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FIG. 5: Mean absolute error (MAE) of J-couplings calculated using different functionals with

respect to experimental values for 12 binuclear Fe (III) systems. The 6-31G(d,p) basis set was used

for all atoms.

FIG. 6: Theoretical versus experimental J-couplings for functionals with MAE < 10 cm−1. The

blue line shows the perfect match.

Tables IV collect the results for selected functionals using the 6-31G(d,p) basis set on all

atoms; the respective MAE are shown graphically in Fig. 5. Range-separated hybrid func-

tionals with short-range Hartree–Fock exchange such as LRC-ωPBEh, ωB97M-V, ωB97X-D,

and CAM-B3LYP provide a good estimate of exchange interactions (with MAEs around 5

cm−1). PBE0 also performs well. In contrast, M06-L, LRC-ωPBE, B3LYP, CAM-B3LYP,

ωB97X-D, and ωB97M-V functionals underestimate the couplings whereas the other func-

tionals overestimate them. Hybrid functionals PBE50, B5050LYP, B3LYP, and Minnesota-

06 functionals have MAEs greater than 20 cm−1, to be compared with MAEs below 10 cm−1

for range-separated functionals. Fig. 6 provides a more detailed view of this trend by show-
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ing the theoretical and experimental couplings as a scatter plot for the five best-performing

functionals (LRC-ωPBEh, ωB97M-V, ωB97X-D, CAM-B3LYP, and PBE0). All of them

reproduce the experimental observation: the connectivity between the iron atoms plays a

crucial rule in tuning the exchange interaction. Dibridged oxo units feature low couplings,

whereas a single oxo bridge or oxo bridge paired with acetate bridges result in higher J

values.

TABLE V: Basis-set dependence of J-couplings (cm−1) for the 12 binuclear complexes computed

with NC-SF-TDDFT with ωPBEh.
Complex Exp. cc-pVDZ def2-

TZVP
6-31G
(d,p)

CREN
BL

SBK
JC

SRSC LANL
2DZ

1 -6.4 -5.9 -5.8 -7.1 -5.3 -5.5 -6.0 -7.2
2 -13.6 -16.1 -15.9 -16.6 -14.5 -15.0 -15.2 -19.0
3 -13.7 -15.1 -14.5 -15.7 -13.9 -14.2 -14.4 -17.5
4 -21.3 -20.2 -19.4 -20.4 -18.9 -18.8 -18.9 -21.9
5 -100.0 -108.8 -108.2 -106.8 -101.0 -99.4 -101.8 -115.2
6 -87.5 -91.4 -92.3 -91.9 -83.6 -84.2 -84.1 -96.5
7 -98.0 -103.3 -104.6 -100.7 -94.8 -93.6 -96.8 -109.8
8 -108.4 -104.7 -105.4 -105.4 -93.9 -92.2 -126.3 -146.6
9 -119.0 -109.4 -109.9 -109.8 -96.3 -95.5 -97.7 -111.7
10 -121.0 -122.0 -123.2 -124.7 -109.1 -107.2 -109.9 -127.2
11 -130.5 -122.3 -123.2 -123.1 -109.2 -108.8 -109.8 -127.1
12 -132.0 -118.3 -119.4 -119.4 -106.4 -104.8 -140.3 -160.9

MAE 5.0 4.9 4.7 9.1 9.7 7.6 10.9
ME 1.2 0.8 0.8 8.7 9.4 2.5 -9.1
SDE 6.6 6.4 6.0 10.0 10.5 11.1 13.1

FIG. 7: MAE of the J-couplings computed using different basis sets with LRC-ωPBEh functional

for the 12 iron (III) binuclear systems.

To find optimal computational setting to be used for binuclear and tetranuclear Fe (III)

systems, we proceed to investigate the effects of the basis set and effective core potentials
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(ECPs) when coupled with one of the best performing functional, i.e., the LRC-ωPBEh

functional. Fig. 7 shows the results obtained using the 6-31G(d,p), cc-pVDZ, and def2-

TZVP basis sets (see also Table V). The calculated J values are not sensitive to the basis-

set choice, and agree well with experimental values with MAE of less than 5 cm−1. In

contrast, ECPs perform poorly with MAE of around 10 cm−1 and high standard deviations.

We conclude that LRC-ωPBEh/6-31G(d,p) is the best computational setting for computing

exchange interactions in these Fe(III) SMMs, which is consistent with findings by Orms and

Krylov for binuclear copper SMMs[28].

C. Tetranuclear Fe (III) complexes

FIG. 8: Iron core in star-type complexes 13, 14 (left) and butterfly-type complexes 15, 16 (right)

showing different exchange interactions. The superscripts w and b denote wing and body iron

atoms, respectively.

Having validated the SF-based computational protocol, we proceed to investigate the

more-challenging tetranuclear Fe (III) SMMs. We note that accurate determination of ex-

change constants is important in multinuclear complexes, because small differences can

change the ground state spin of the molecule[87].

To tackle poly-nuclear complexes, we follow the framework developed by Mayhall and

Head-Gordon[36]. First, we perform a single SF calculation providing energies and eigen-

states, which are projected onto the neutral determinant basis, following Ref. [36]. SF-

TDDFT calculations using high-spin reference of S = 10 yield S = 9 states whose 〈S2〉

values are close to 90 showing small spin contamination (between 0.02 and 0.38). Second, we

extract exchange constants in tetranuclear single-molecule magnets (complexes 13-16 in Fig.

3) as prescribed by Mayhall’s approach by mapping the effective Hamiltonian constructed

from single spin-flipped eigenstates and their eigenvalues to the HDvV model. Additional

details on Mayhall’s approach (translated into a post-processing Python script) and a sam-
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ple input for running Q-Chem calculations when combined with the parameterization of

the HDvV Hamiltonian are given in the SI. Complexes 13 and 14 have star-like structures

and the experimental fits show a predominant exchange interaction between the central and

three peripheral irons. Complexes 15 and 16 feature a butterfly-like core, with dominant

wing-body interactions (Jwb) and much smaller body-body (Jbb) and wing-wing (Jww) inter-

actions. In fitting the experimental data, Jww is often neglected. The effective Hamiltonian

approach enables the determination of all individual exchange interactions without assuming

simplified HDvV models, as often done in the experimental fitting.

TABLE VI: J-couplings (cm−1) for tetranuclear iron (III) complexes computed with NC-SF-

TDDFT/LRC-ωPBEh/6-31G(d,p).

Complex Exp. LRC-ωPBEh/6-31G(d,p) ave J a

13 -8.3 -10.1; -11.4; -11.2 -10.9
14 -8.5 -10.6; -11.7; -11.7 -11.3
15 -45.5; -8.9 -43.7; -42.3; -43.3; -44.5; -3.5; 5.1b -43.5; 0.8
16 -46; 0.0 -27.8; -30.1; -45.7; -58.6; -1.0; -1.9b -40.6; -1.5

a “Ave” stands for the average of J values extracted using LRC-ωPBEh/6-31G(d,p). b The
bigger J-values refer to the four wing-body couplings, while the smaller J-values are the

body-body and wing-wing ones.

Table VI shows the results. In complex 16, a simple two-J model (assumed in the exper-

imental study) appears to be insufficient. The experimental fitting assumed all wing-body

interactions to be the same, but our calculations show that the wing-body interactions can

differ by up to 30 cm−1. Still, the average J ’s matches the experimental coupling. In other

complexes, the simplified HDvV models appear to be justified. Overall, our calculations

closely reproduce the dominant interactions between the iron centers with an error of less

than 6 cm−1. For the lowest target S = 9 states, the occupations of the frontier NOs

(nα +nβ) is close to 1 and the deviation of the number of unpaired electrons (nu,nl) from 20

is small, i.e., less than 0.04, accordingly with the low exchange interaction regime for which

the HDvV model is a good approximation. Therefore, such calculations and the NOs analy-

sis of this work can help validating the simplified HDvV models used for fitting macroscopic

properties of poly-nuclear transition-metal complexes.
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V. CONCLUSIONS

In this contribution, we investigated magnetic properties of 12 binuclear and four tetranu-

clear Fe (III) SMMs. We employed NC-SF-TDDFT method to parameterize HDvV Hamil-

tonian. The validity of this approach was assessed using natural orbital analysis, which

shows that the target spin-flip states in all complexes are within the HDvV domain, cor-

responding to the weak field regime. Spin-contamination is negligible in all these com-

plexes. We employed several representative functionals (hybrid, Minnesota, range-separated

hybrids), basis sets, and ECPs. In agreement with earlier studies for Cu (II) SMMs[28],

range-separated hybrid functionals with short-range Hartree–Fock exchange agree well with

experiments (MAE < 10 cm−1). We recommend LRC-ωPBEh/6-31G(d,p) for computing J-

couplings using NC-SF-TDDFT. In poly-nuclear SMMs, the couplings extracted from the ab

initio-parameterized effective Hamiltonians reliably describe interactions between all metal

centers, without any simplifying assumptions. Such calculations can be used for a priori de-

termination of the validity of simplified HDvV models. The effective Hamiltonian approach

combined with SF-TDDFT can be extended to study even larger SMMs.[88, 89] Our results

underscore the role of the connectivity between the metal centers in tuning the exchange

interactions in SMMs.
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A. C. Paul, S. K. Paul, F. Pavošević, Z. Pei, S. Prager, E. I. Proynov, A. Rák, E. Ramos-

Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele,

M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J.

Stein, Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M.

Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh,

S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T.

Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai, S. Coriani, C. J.

Cramer, G. Cserey, A. E. DePrince, R. A. DiStasio, A. Dreuw, B. D. Dunietz, T. R. Furlani,

W. A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, C.-P. Hsu, T.-C. Jagau,

Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy,

J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V.

Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G.

Truhlar, T. Van Voorhis, T. A. Wesolowski, K. B. Whaley, H. L. Woodcock, P. M. Zimmerman,

S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert, and A. I. Krylov, Software for the

frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package, J.

Chem. Phys. 155, 084801 (2021).

[78] A. I. Krylov and P. M. W. Gill, Q-Chem: An engine for innovation, WIREs: Comput. Mol.

Sci. 3, 317 (2013).

[79] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem.

Phys. 98, 5648 (1993).

[80] C. Adamo and V. Barone, Toward reliable density functional methods without adjustable

parameters: The PBE0 model, J. Chem. Phys. 110, 6158 (1999).

[81] Y. Zhao and D.G. Truhlar, The M06 suite of density functionals for main group thermo-

chemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition

elements: two new functionals and systematic testing of four M06-class functionals and 12

other functionals, Theor. Chem. Acc. 120, 215 (2008).

[82] T. Yanai, D.P. Tew, and N.C. Handy, A new hybrid exchange–correlation functional using



27

the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393, 51 (2004).

[83] M. A. Rohrdanz and J. M. Herbert, Simultaneous benchmarking of ground-and excited-state

properties with long-range-corrected density functional theory, J. Chem. Phys. 129, 034107

(2008).

[84] M.A. Rohrdanz, K.M. Martins, and J.M. Herbert, A long-range-corrected density functional

that performs well for both ground-state properties and time-dependent density functional

theory excitation energies, including charge-transfer excited states, J. Chem. Phys. 130,

054112 (2009).

[85] J.-D. Chai and M. Head-Gordon, Long-range corrected hybrid density functionals with

damped atom-atom dispersion interactions, Phys. Chem. Chem. Phys. 10, 6615 (2008).

[86] N. Mardirossian and M. Head-Gordon, ωB97M-V: A combinatorially optimized, range-

separated hybrid, meta-GGA density functional with VV10 nonlocal correlation, J. Chem.

Phys. 144, 214110 (2016).

[87] G. Rajaraman, E. Ruiz, J. Cano, and S. Alvarez, Theoretical determination of the exchange

coupling constants of a single-molecule magnet Fe10 complex, Chem. Phys. Lett. 415, 6 (2005).

[88] C. Benelli, S. Parsons, G. A. Solan, and R. E. P. Winpenny, Ferric wheels and cages: De-

canuclear iron complexes with carboxylato and pyridonato ligands, Angew. Chem., Int. Ed.

35, 1825 (1996).

[89] A.-A. H. Abu-Nawwas, J. Cano, P. Christian, T. Mallah, G. Rajaraman, S. J. Teat, R. E. P.

Winpenny, and Y. Yukawa, An Fe(III) wheel with a zwitterionic ligand: the structure and

magnetic properties of [Fe(OMe)2(proline)]12[ClO4]12, Chem. Comm. , 314 (2004).


