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Abstract 

The development of predictive tools to assess enzyme mutant performance and physical organic approaches to enzyme 

mechanistic interrogation are crucial to the field of biocatalysis. While many indispensable tools exist to address qualitative 

aspects of biocatalytic reaction design, they often require extensive experimental data sets or a priori knowledge of reaction 

mechanism. However, quantitative prediction of enzyme performance is lacking. Herein, we present a workflow that merges 

both computational and experimental data to produce statistical models that predict the performance of new substrates and 

enzyme mutants while also providing insight into reaction mechanism. As a validating case study, this platform was applied 

to investigate a non-native enantioselective photoenzymatic radical cyclization. Statistical models enabled interrogation of 

the reaction mechanism, and the predictive capabilities of these same models led to the quantitative prediction of the 

enantioselectivities of new substrates with several enzyme mutants. This platform was constructed for application to any 

biocatalytic system wherein mechanistic interrogation, prediction of reaction performance with new substrates, or 

quantitative performance of enzyme mutants would be desirable. Overall, this proof of concept study provides a new tool to 

complement existing protein engineering and reaction design strategies.  

Introduction 

Enzymes play a significant role as selective, efficient catalysts for biotechnology, biomedicine, biofuels, and industrial 

pharmacology.1–4 Contemporary investigation of non-natural biocatalytic transformations often relies on robust screens of 

mutant space through protein engineering (e.g., directed evolution (DE)).5,6 Although exceptionally effective, engineering 

campaigns rarely lead to a deeper understanding of the biocatalytic mechanism that affords the desired product, and detailed 

computational analyses are often required to uncover the interactions between a biocatalyst and reactant that facilitate 

reactivity and selectivity.7–9 Further, translation of the optimized enzyme to new reactants can be challenging. Specifically, 

expansion of reaction scope often requires additional rounds of engineering or DE optimization,10 and mechanistic models 

may need to be (re)developed to explain the observed selectivity of each enzyme/substrate pair. These tasks limit the 

accessibility of biocatalysis to labs that lack the infrastructure for high throughput experimentation and/or computational 

resources. 

Thus, we were motivated to develop a strategy to concurrently optimize biocatalytic reactions and gain mechanistic 

insight, with an emphasis on simultaneous exploration of sequence (enzyme mutants) and chemical (substrate scope) space. 

Specifically, we envisioned a tool that would quantitatively relate the molecular features of enzymes and substrates to 

observables like enantioselectivity using statistical models. This would require the design and acquisition of empirical results 

for a matrix of both substrate variants and enzyme mutants, and computational characterization of the reaction components.11 

The empirical data would be regressed against computed molecular features, resulting in statistical models that would 
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provide predictive power and molecular-level insights into the origin of substrate and enzyme performance. Although 

ideologically similar to quantitative structure/sequence activity relationships, our attention to molecular conformational 

ensembles, simultaneous parameterization of both enzyme and substrate, use of multivariate linear regression models, and 

implementation of higher-level descriptors would result in models with greater interpretability and generalizability.12–14 

We designed a workflow to accommodate several common types of empirical data, including enantioselectivity, 

conversion, regioselectivity, or substrate specificity. Notably, this process would not require large data sets and would be 

adoptable by laboratories with a range of experimental and computational capabilities. Herein, we demonstrate the viability 

of this general strategy in the context of non-native enantioselective photoenzymatic radical cyclization reactions catalyzed 

by ‘ene’-reductase variants from Gluconobacter oxydans (GluER, Fig. 1a).15 This strategy successfully guided GluER 

substrate scope expansion to reduce experimental screening efforts, and the statistical models rationalized the observed and 

predicted selectivities of previously untested substrates. Unlike current technologies for in silico protein engineering, which 

require additional datasets for each new substrate,16–18 our method accounts for both substrate and enzyme features, allowing 

for knowledge transfer to predict the performance of new substrate and mutant combinations.  

Design of a broadly accessible workflow 

We selected GluER-T36A as a biocatalytic framework to study as it has recently been utilized in a range of non-native 

enantioselective reactions with potential applications in the chemical industry. Specifically, GluER-T36A is a selective 

catalyst for the photoenzymatic cyclization of many -chloroamides (Fig. 1a). However, a number of substrates required 

alternative enzymes to achieve high enantioselectivity in the initial report.15 Although effective in this instance, the general 

Figure 1. Workflow to develop statistical models of enzyme performance.  

a, The workflow was developed using the enantioselective photoenzymatic cyclization of ɑ-chloroamide substrates facilitated by GluER-

T36A. b, Substrates 1a–4a were subjected to GluER-T36A or mutant to generate a training set for model development. c, Two 

complementary approaches were developed to generate enzyme conformers from a GluER-T36A crystal structure (PDB ID: 6MYW) after 

introducing the desired mutation in silico. d, Enzyme features were quantified using a residue and site-based approach. Dynamic parameters 

were measured by overlaying a residue conformational ensemble, encapsulating it in a fictitious surface, and measuring the resulting surface 

area and volume. Site-specific descriptors were generated by measuring the length, width, and backbone angles of each residue conformer, 

and the fluctuations of these measurements. Ligands were subjected to both a geometric analysis and DFT calculations to acquire electronic 

descriptors, including the NBO charges of atoms indicated by a yellow sphere. e, Descriptors for each enzyme/ligand were regressed against 

the experimentally determined selectivites, resulting in statistical models that were validated using leave-one-out and k-fold cross-

validation. f, Select statistical models were interrogated for mechanistic insight and used to predict the selectivity of untested enzyme and 

substrate combinations. 

 

 



 

 

practice of shifting enzyme frameworks can lead to unexpected results (i.e., enantiodivergent transformations or unexpected 

products), and introduce biosynthetic challenges including re-optimization of expression and reaction conditions.19,20 An 

alternative tactic to improve underperforming substrates would be to engineer the GluER-T36A active site to each 

substrate;21 however, site-saturation mutagenesis (SSM) of even five active-site residues would require 100 individual 

variants to be constructed, expressed, and evaluated in the laboratory. Additionally, reaction improvements in a SSM library 

rarely transfer to new substrates, necessitating evaluation of existing or new mutant libraries to optimize for the best 

performing variant.22  

By relying on a small, representative training set that encompasses a range of reaction outputs, we hypothesized that 

robust statistical models relating function to structural features could be developed to predict the performance of new 

substrates or substrate/mutant combinations. Importantly, this method would draw from all training set data, including 

mutants that did not enhance selectivity. In this context, we designed a focused training set with diversity in both substrate 

characteristics and enzyme mutations. The transformation of substrates 1a–4a (Fig. 1b) encompass three different 

cyclization modes (1a : 5-endo, 2a, 3a: 5-exo, and 4a: 6-exo), varying electronic properties (as in 2a and 3a), and alkene 

substitution pattern (1a vs 2a–4a). We also identified five residues within the GluER-T36A active site for mutation: W66, 

Y177, Q232, F269, and Y343 (Fig. S1) and subjected each site to site-directed mutagenesis to introduce residues W, F, D, 

L, or A, as these mutations would sample a wide range of active site properties. Substrates 1a–4a were subjected to reaction 

with each expressible mutant, resulting in a total of 50 datapoints to use in model training and selection. A full table of 

substrate/enzyme combinations and the resultant e.e.’s are included in Table S1.  

We next considered strategies to computationally characterize both enzyme and ligand (substrate and product) 

structures for descriptor extraction (Fig. 1c). We have previously described methods to characterize small molecule catalysts 

and extract chemical descriptors by pairing molecular mechanics (MM) based structural analysis with density functional 

theory (DFT) calculations.23,24 However, the shift from small chemical systems to biocatalytic platforms presents a number 

of unique challenges. The size and elaborate dynamics of enzymes has necessitated bespoke computational strategies to 

study the dynamics of enzyme ligand complexes [EL], however many of these are best suited for in-depth analysis of one 

or a few [EL] pairs due to their operational complexity and resource demands.25,26 We therefore sought workflows that would 

account for the dynamic nature of biocatalysts while also introducing operational simplicity, scalability, and consideration 

of ligand interactions.  

We identified two complementary conformational search platforms: Induced fit docking (IFD) and accelerated 

molecular dynamics (aMD) (Fig. 1c). IFD is a MM-based docking protocol that is widely utilized by medicinal chemists to 

approximate the docking pose of a ligand and the concomitant repositioning of nearby enzyme residues.27–29 We generated 

ensembles of the [EL] by hijacking the IFD protocol to describe both ligand and enzyme repositioning. In addition to the 

robust [EL] structural data generated by IFD, we integrated IFD into our workflow because it is easily implemented and 

does not require sophisticated computing hardware. To complement the IFD workflow, we desired a scalable platform to 

rapidly scan enzyme mutant space. Therefore, we employed aMD, which allows for flexibility in the entire enzyme, to 

quickly assemble apo-enzyme structures that represent the dynamic ensemble.30,31 These structures were paired with free 

ligand conformational ensembles from MM/DFT. Since enzymes and substrates are assembled separately in the aMD 

sampling platform, this approach is applicable to large enzyme-ligand matrices and has potential for virtual screening. 

Upon acquisition of the enzyme and ligand conformational ensembles with either IFD or aMD, quantitative chemical 

descriptors were computed, automatically extracted, and curated for the ligands as well as for individual residues in the 



 

 

active site (Fig. 1d). These descriptors included electronic (e.g., natural bond orbital (NBO) charges),32 steric (e.g., sterimol 

values),33 and dynamic descriptors, which describe topographical properties of a collection of conformers (e.g., dynamic 

surface area, (DSA)).34 Describing the active site by its individual residues in this manner reveals which residues have the 

most influence on reaction enantioselectivity.  

These descriptors were regressed against the experimentally collected dataset (70:30 split of training:test set data points) 

using a forward-stepwise multivariate linear regression (MLR) algorithm, which resulted in thousands of candidate models 

for each conformational search platform (Fig. 1e).23 From these candidate models, we identified a representative high-

performing IFD statistical model (Fig. 2a), which had a Training R2 of 0.83, and a mean absolute error (MAE) of 0.18 

kcal/mol, indicating a good correlation between the measured and predicted values of the training set. The Test R2 is the 

correlation between measured and predicted values for the test set (the partition of data that was withheld from model 

training); the IFD model had a Test R2 of 0.57 and a corresponding Test MAE of 0.29 kcal/mol, which was overall 

satisfactory. The selected aMD statistical model (Fig. 2b) demonstrated a Training R2 of 0.82 with a MAE of 0.19 kcal/mol; 

therefore, the IFD and aMD models performed similarly in their capability to describe the data in the training set. The aMD 

model exhibited a Test R2 of 0.73 and Test MAE = 0.19 kcal/mol, indicating it had an improved predictive capability 

compared to the IFD model. Successful identification of statistical models from both IFD and aMD workflows validated our 

hypothesis that molecular features of enzymes and ligands can describe the outcome of a biocatalytic reaction. With these 

statistical models, we were primed to interrogate the mechanistic features responsible for reaction performance and 

ultimately predict unseen enzyme/substrate combinations. 

  

Figure 2. Statistical models of GluER-T36A and variant selectivity.  

a, The IFD model had a training and test R2 of 0.83 and 0.57, respectively, a leave-one-out (LOO) R2 of 0.73, and a 4-fold R2 of 0.70. The 

model had ligand descriptors (green) and enzyme descriptors (purple). The NBOpdt, carbonyl O is the NBO charge of the carbonyl oxygen from 

product structures. The NBOpdt, β-H, min describes the minimum NBO charge of the hydrogen bound to the β-carbon in product structures. 

Residue 100pdt, Sterimol B5 is the maximum width of residue 100 from product-docked enzyme structures. Residue 269sub, Sterimol B5
GS is the G-

Score (docking-score) weighted maximum width of residue 269 from the substrate-docked enzyme structures. Residue 100pdt, DSA and 

Residue 172pdt, DSA are the dynamic surface areas of residues 100 and 172 from product-docked enzyme structures, respectively. Residue 

343sub, 𝚫Sterimol L is the difference in the maximum and minimum length values (flexibility) of residue 343 from substrate-docked enzyme 

structures. b, The aMD model had a training and test R2 of 0.82 and 0.73, respectively, LOO R2 of 0.70, and 4-fold R2 of 0.67. The aMD 

model also included ligand descriptors (green), and enzyme descriptors (purple). The 𝚫NBOpdt, β-C is the difference in the maximum and 

minimum values of the NBO charge on the β-carbon of product structures. The 𝚫Sterimol Lsub is the difference in the maximum and 

minimum substituent length values (flexibility) of substrate structures. Residue 66𝚫Sterimol L is the difference in the maximum and minimum 

residue length values (flexibility) of residue 66. Residue 100𝚫Angle 1 and Residue 342𝚫Angle 3 are the difference in the maximum and minimum 

Angle 1 and Angle 3 (see SI) values of residues 100 and 343, respectively. Residue 172Sterimol L, max is the maximum length of residue 172. 

 

Mechanistic Interpretability  

Unlike other machine learning (ML) technologies, the statistical models resulting from this strategy are interpretable at 

the molecular level. The parameters in the IFD model included the NBO charge of the hydrogen on the 𝛽-carbon from 



 

 

product structures, which classified whether the radical cyclization mechanism is 5-exo or not, and the NBO charge of the 

carbonyl oxygen, which further differentiated between ring sizes (Fig. 3a, left). The first free ligand parameter in the aMD 

model (the NBO charge of the 𝛽-carbon) similarly classified 5-exo cyclization. The second parameter in the aMD model 

(Sterimol Lsub, describes the flexibility of the substrate’s alkene substituent) differentiated the resulting ring sizes in product 

structures. The positive coefficient accompanying the Sterimol LSub. term was associated with lower selectivity when 

Sterimol Lsub is large, as in 4a (Fig. 3a).  

Both aMD and IFD statistical models include features that describe how particular H172 conformations enhance 

selectivity, indicated by the negative sign associated with the coefficients. The aMD parameter corresponding to this residue 

measures the maximally extended conformation of H172 for each GluER-T36A variant. When H172 was extended, nearby 

residues N175 and Y177 were concomitantly displaced, resulting in the formation of a distinct binding pocket, shown as 

yellow spheres in both the cartoon and the aMD structure of GluER-T36A-F269L (Fig. 3b). Enzyme variants where H172 

was retracted (Fig. 3b, GluER-T36A-Y177W), resulted in occlusion of the putative binding pocket by nearby residues, 

leading to diminished enantioselectivity. We hypothesized an open binding site, as in GluER-T36A-F269L, resulted in facile 

substrate binding without significant steric rejection, which could induce substrate detrimental dissociation or rotation. These 

observations are also corroborated by the high conservation of H172 across ‘ene’-reductase families, and studies on oxyanion 

holes in ‘ene’-reductases.35 

 
Figure 3. Mechanistic interpretation of descriptors in statistical models. 

a, Illustration of IFD and aMD ligand parameters from selected statistical models. Five-membered rings with aryl substituents typically 

had a more positive carbonyl oxygen NBO charge (greater than –0.73.) The NBO charge of the hydrogen attached to the product β-carbon 

was generally less than 0.2 for the products that resulted from 5-exo cyclizations (2a and 3a). The aMD steric descriptor (𝚫Sterimol Lsub) 

describes the flexibility of the substrate; it distinguished the most flexible substrate 4a (unscaled 𝚫Sterimol Lsub = 6.64 Å) from the less 

flexible substrates (1a = 0.14 Å, 2b = 1.19 Å). b, The Residue 172Sterimol L, max term from the aMD model indicated that extended 

configurations of H172 facilitated selectivity. Examination of enzyme conformers where this term was large (GluER-T36A-F269L = 6.7 

Å) showed H172 to be extended (green) and revealed an open binding pocket (yellow sphere); this binding pocket was occluded in 

structures where values of this parameter were small  (GluER-T36A-Y177W = 5.2 Å, purple) c, The aMD conformers demonstrate that 

when aromatic residues 100 and 177 were closely associated (green), interactions between residues 66 and 100 were precluded, which 

induced residue 66 flexibility and higher selectivity. The IFD conformational ensembles (right) corroborated that flexibility of residue 66 

is necessary for substrate binding. 

 

 



 

 

The statistical models also revealed that positioning of the (natively) aromatic residues 66 and 100 affected selectivity 

in the radical cyclization.36,37 The positive coefficients associated with features describing residue 100 flexibility 

communicated that rigidity of this residue lead to greater enantioselectivity, while the negative coefficient associated with 

residue 66 in the aMD model (Residue 66Sterimol L) indicated that dynamic behavior of this residue facilitated selective 

transformations. To gain a deeper understanding of these effects, we interrogated the aMD conformational ensembles, which 

implied that W100 was involved in a network of competitive non-covalent interactions (NCIs) with flanking residues 66 and 

177. Our analysis led us to postulate that when W100 preferentially interacts with residue 177, engagement with residue 66 

is precluded. This results in increased mobility of residue 66, which allows residue repositioning and substrate binding. In 

concordance, IFD revealed significant repositioning of residue 66 upon substrate 6a binding (relative to apo, Fig. 3c, right). 

The importance of these aromatic NCIs is further supported by the lack-of-function observed when Y177 is mutated to 

a non-aromatic residue. Y177A/D/L mutants did not afford products with any substrate, with the exception of Y177A with 

1a. Interestingly, the differential alkene geometry of 1a (compared to 2a-4a) positioned the substrate alkene substituent on 

the opposite side of the active site such that the ligand did not necessitate residue 66 repositioning, as revealed by IFD (Fig. 

S4).   

 

Demonstration of predictive capability 

As a final validation of the workflow, the prediction of out-

of-sample combinations of substrates and enzyme variants 

were explored. Compared to established procedures to 

predict biocatalyst selectivity, the statistical models 

presented herein possessed the unique ability to evaluate 

substrates that were not included in model training. We 

therefore used both IFD and aMD statistical models to 

predict the performance of various GluER-T36A mutants 

with two new substrates: 5a and 6a (Table 1). These were 

selected to incorporate substrate characteristics that were 

not represented in the training set, including an alkyl 

substituted example (5a), and a different cyclization mode 

(6a, 7-exo). For the aMD model, 5a and 6a conformers 

were collected and combined with existing enzyme 

trajectories, and for IFD the relevant [EL] poses were 

generated. Descriptors for these ensembles were 

automatically extracted. Using these descriptors, the 

enantioselectivities of 5a and 6a with each GluER-T36A 

variant were predicted using the statistical models from 

Figure 2 (Table 1).  

Gratifyingly, experimental evaluation of these combinations revealed the IFD model successfully predicted the 

enantioselectivity of 50% of the reactions within one MAE (0.29 kcal/mol). Within two MAE (0.58 kcal/mol), the IFD 

a Enantioselectivities of reactions with 5a and 6a to form 5b and 6b, 

predicted from the IFD and aMD models. The range of predicted 

selectivities from IFD was derived from the mean absolute error 

(MAE) of 0.29 kcal/mol. The range for the aMD predictions was 

derived from an MAE of 0.19 kcal/mol. b Predicted from aMD 

Model 2, Fig. S3. 

Table 1.a Predicted selectivity of new substrates with GluER-

T36A mutants. 



 

 

model successfully predicted 71% of enantioselectivities. The aMD model successfully predicted 57% of reaction 

enantioselectivities within one MAE (0.19 kcal/mol) and 64% within two MAE (0.38 kcal/mol). These results demonstrated 

the ability of these statistical models to predict quantitative enantioselectivity data of unseen substrates and enzyme 

combinations, which has been a historic limitation in other ML, rational design, or computational enzyme investigation38,39   

Conclusion 

In summary, a general approach was disclosed to quantitatively relate enzyme and ligand features to experimental 

observables; specifically, enzyme and ligand structures from either IFD or aMD/MM were related to the observed 

enantioselectivity in a photoenzymatic radical cyclization using statistical models. The resultant statistical models were 

mechanistically insightful and provided new perspectives on the origin of enantioselectivity in GluER systems. Furthermore, 

the utility of the statistical modeling strategy was demonstrated by predicting the enantioselectivity for out-of-sample 

combinations of mutants and substrates, with a particular emphasis on substrate scope to complement contemporary 

predictive approaches. Future applications of this workflow will include enhancement of enzymatic descriptors and virtual 

screening of enzyme mutants for reaction engineering.  
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